Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

$$\Delta(1920) P_{33}$$

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

Δ (1920) BREIT-WIGNER MASS

VALUE	(MeV)	DOCUMENT ID		TECN	COMMENT
1900	to 1970 (\approx 1920) OUR EST	ΓΙΜΑΤΕ			
2014	± 16	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1920	± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1868	± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • •	We do not use the following	data for averages	, fits	, limits,	etc. ● ● ●
1840	±40	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
1955.0	0±13.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
2065.0	$0^{+13.6}_{-12.9}$	1 CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

△(1920) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 300 (≈ 200) OUR ESTIM	IATE			
152 ± 55	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
300 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
220 ± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits,	etc. • • •
200 ± 40	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
88.3± 35.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
62.0± 44.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$

Δ (1920) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1850 to 1950 (\approx 1900) OUR ESTI	MATE			
1900	² HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1900 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits	, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 400 (\approx 300) OUR ESTIMA	TE			
$300\!\pm\!100$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	s, fits	, limits,	etc. • • •
not seen	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90

HTTP://PDG.LBL.GOV

MODULUS r				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
24±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
PHASE $ heta$				
VALUE ($^{\circ}$)	DOCUMENT ID		TECN	COMMENT
-150 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

△(1920) ELASTIC POLE RESIDUE

△(1920) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ_1	Νπ	5–20 %
Г2	ΣΚ	
Γ ₃	$N\pi\pi$	
Γ ₄	$arDelta(1232)\pi$, $\it P$ -wave	
Γ ₅	$N(1440)\pi$, P -wave	
Γ ₆	$N\gamma$, helicity=1/2	
Γ ₇	$N\gamma$, helicity=3/2	

△(1920) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.2 OUR ESTIMATE				
0.02 ± 0.02	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
0.20 ± 0.05	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.14 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\bullet \bullet \bullet$ We do not use the following	data for averages	s, fits	s, limits,	etc. • • •
0.24	1 CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
0.18	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(19)$	920) $\rightarrow \Sigma K$		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
		0.4		$+$ $\Sigma^+ \nu^+$
-0.052 ± 0.015	CANDLIN	84	DPVVA	$\pi \cdot p \rightarrow \Sigma \cdot K \cdot$
• • • We do not use the following	data for averages	s, fits	s, limits,	etc. • • •
-0.049	LIVANOS	80	DPWA	$\pi p \rightarrow \Sigma K$
0.048 to 0.120	³ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta(19)$	920) $\rightarrow \Delta(123)$	2) π	, P-wav	e $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
		00		
-0.13 ± 0.04		92		$\pi N \rightarrow \pi N \& N \pi \pi$
0.3	5 NOVOSELLER	18	IPVVA	$\pi N \rightarrow N \pi \pi$
0.27	~ NOVOSELLER	78	IPWA	$\pi N \rightarrow N \pi \pi$

HTTP://PDG.LBL.GOV

Created: 6/29/1998 11:37

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{to}$	$_{tal}$ in $N\pi o \Delta(19)$	20) → <i>N</i> (144	θ) π,	P-wav	е (Г ₁ Г ₅) ^{1⁄2} /Г		
VALUE		<u>DOCUMENT</u> ID		TECN	COMMENT		
$+0.06 \pm 0.07$		MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$		
ک(1920) PHOTON DECAY AMPLITUDES							
Δ(1920) →	$N\gamma$, helicity-1/2	amplitude A ₁	/2				

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT	
0.040±0.014	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$	
$\Delta(1920) \rightarrow N\gamma$, helicity-3/2 amplitude $A_{3/2}$					
VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT	
0.023 ± 0.017	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$	

Δ (1920) FOOTNOTES

¹CHEW 80 reports two P_{33} resonances in this mass region. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83. ²See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters

² See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of πN elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

 3 The range given for DEANS 75 is from the four best solutions.

⁴ A Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near -90° .

⁵ A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near -90° .

△(1920) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

HOEHLER	93	π N Newsletter 9 1		(KARL)
MANLEY	92	PR D45 4002	+Saleski	(KENT) IJP
Also	84	PR D30 904	Manley, Arndt, Goradia, Teplitz	(VPI)
ARNDT	91	PR D43 2131	+Li, Roper, Workman, Ford	(VPI, TELE) IJP
CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
HOEHLER	83	Landolt-Boernstein 1/98	32	(KARLT)
PDG	82	PL 111B	Roos, Porter, Aguilar-Benitez+	(HELS, CIT, CERN)
AWAJI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CHEW	80	Toronto Conf. 123		(LBL) IJP
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARLT) IJP
Also	80	Toronto Conf. 3	Koch	(KARLT) IJP
NOVOSELLER	78	NP B137 509		(CIT)
NOVOSELLER	78B	NP B137 445		(CIT)
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	+Longacre, Miller, Rosenfeld+	(LBL, SLAC)

HTTP://PDG.LBL.GOV