b' (4th Generation) Quark, Searches for

MASS LIMITS for b' (4th Generation) Quark or Hadron in $p\overline{p}$ Collisions

These experiments (except for MUKHOPADHYAYA 93 and ABACHI 97D) assume that no two-body modes such as $b' \rightarrow b\gamma$, $b' \rightarrow bg$, or $b' \rightarrow cH^+$ are available.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>128	95	¹ ABACHI	95F	D0	$\ell\ell$ + jets, ℓ + jets	
• • • We do not use the following data for averages, fits, limits, etc. • •						
> 96	95	² ABACHI	97 D	D0	$FCNC\;(b'\to\;b\gamma)$	
> 75	95	³ MUKHOPAD	. 93	RVUE	FCNC $(b' \rightarrow b\ell^+\ell^-)$	
> 85	95	⁴ ABE	92	CDF	$\ell\ell$	
> 72	95	⁵ ABE	90 B	CDF	$e + \mu$	
> 54	95	⁶ AKESSON	90	UA2	$e+jets+missing\;E_{T}$	
> 43	95	⁷ ALBAJAR	90 B	UA1	$\mu+jets$	
> 34	95	⁸ ALBAJAR	88	UA1	e or $\mu+{ m jets}$	

 $^{^1}$ ABACHI 95F bound on the top-quark also applies to b' and t' quarks that decay predominantly into W. See FROGGATT 97.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

Created: 6/29/1998 12:08

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>46.0	95	9 DECAMP	90F ALEP	any decay

 $^{^2}$ ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\,\overline{b}' \to \ \gamma+3$ jets) and B($b'\,\overline{b}' \to \ 2\gamma+2$ jets), which can be interpreted as the lower mass bound $m_{B'}>m_Z+m_b$.

³ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes B($b' \rightarrow b\ell^+\ell^-$)=1%. For an exotic quark decaying only via virtual Z [B($b\ell^+\ell^-$) = 3%], the limit is 85 GeV.

 $^{^4}$ ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b^\prime quarks, as discussed in ABE 90B.

⁵ ABE 90B exclude the region 28–72 GeV.

⁶ AKESSON 90 searched for events having an electron with $p_T>12$ GeV, missing momentum > 15 GeV, and a jet with $E_T>10$ GeV, $|\eta|<2.2$, and excluded $m_{b'}$ between 30 and 69 GeV.

⁷ For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.

⁸ALBAJAR 88 study events at $E_{\rm CM}=546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b' \, \overline{b}'$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_s^3)$ cross section of ALTARELLI 88.

• • • vve do not use	the follow	ling data for average	s, fits, limits,	etc. • • •
		¹⁰ ADRIANI	93G L3	Quarkonium
>44.7	95	ADRIANI	93M L3	$\Gamma(Z)$
>45	95	ABREU	91F DLPH	$\Gamma(Z)$
none 19.4-28.2	95	ABE	90D VNS	Any decay; event shape
>45.0	95	ABREU	90D DLPH	B(CC) = 1; event shape
>44.5	95	¹¹ ABREU	90D DLPH	$b' \rightarrow cH^-, H^- \rightarrow \overline{c}s, \tau^- \nu$
>40.5	95	¹² ABREU	90D DLPH	
>28.3	95	ADACHI	90 TOPZ	B(FCNC)=100%; isol. γ or 4 jets
>41.4	95	13 AKRAWY	90B OPAL	Any decay; acoplanarity
>45.2	95	¹³ AKRAWY	90B OPAL	B(CC) = 1; acoplanarity
>46	95	¹⁴ AKRAWY	90J OPAL	$b' ightarrow \gamma + any$
>27.5	95	¹⁵ ABE	89E VNS	$B(CC) = 1; \mu, e$
none 11.4-27.3	95	¹⁶ ABE	89G VNS	$B(b' o b\gamma) > 10\%;$ isolated γ
>44.7	95	¹⁷ ABRAMS	89c MRK2	B(CC)=100%; isol.
>42.7	95	¹⁷ ABRAMS	89c MRK2	B(bg)=100%; event shape
>42.0	95	¹⁷ ABRAMS	89c MRK2	Any decay; event shape
>28.4	95	^{18,19} ADACHI	89C TOPZ	$B(CC) = 1; \mu$
>28.8	95	²⁰ ENO	89 AMY	$B(CC) \gtrsim 90\%; \mu, e$
>27.2	95	^{20,21} ENO	89 AMY	any decay; event shape
>29.0	95	²⁰ ENO	89 AMY	$B(b' \rightarrow bg) \gtrsim 85\%;$ event shape
>24.4	95	²² IGARASHI	88 AMY	μ ,e
>23.8	95	²³ SAGAWA	88 AMY	event shape
>22.7	95	²⁴ ADEVA	86 MRKJ	μ
>21		²⁵ ALTHOFF	84C TASS	R, event shape
>19		²⁶ ALTHOFF	84ı TASS	Aplanarity

⁹ DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \to bg$ for B($b' \to bg$) > 65% $b' \to b\gamma$ for B($b' \to b\gamma$) > 5% are excluded. Charged Higgs decay were not discussed.

Created: 6/29/1998 12:08

 $^{^{10}}$ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium- Z mixing parameter $\delta m^2 < (10{\text -}30)~\text{GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S $(b'\bar{b}')$ state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

 $^{^{11}}$ ABREU 90D assumed $m_{H^-} < m_{b^\prime} - 3$ GeV.

¹²Superseded by ABREU 91F.

 $^{^{13}}$ AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm}=91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between ($m_{H^+}+1.5$ GeV) and 45.5 GeV.

¹⁴ AKRAWY 90J search for isolated photons in hadronic Z decay and derive $B(Z \to b' \overline{b}') \cdot B(b' \to \gamma X) / B(Z \to hadrons) < 2.2 \times 10^{-3}$. Mass limit assumes $B(b' \to \gamma X) > 10\%$.

 $^{^{15}\,\}mathrm{ABE}$ 89E search at $E_\mathrm{cm}=56\text{--}57$ GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.

 $^{^{16}}$ ABE 89G search was at $E_{\rm cm} = 55$ –60.8 GeV at TRISTAN.

- ¹⁷ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for For Higgs decay ($b' \rightarrow cH^-$, $H^- \rightarrow \overline{c}s$) is 45.2 GeV.
- $^{18}\,\mathrm{ADACHI}$ 89C search was at $E_\mathrm{cm}=56.5\text{--}60.8$ GeV at TRISTAN using multi-hadron events accompanying muons.
- $^{19}\,\mathrm{ADACHI}$ 89C also gives limits for any mixture of C C and bg decays.
- 20 ENO 89 search at $E_{\rm cm} = 50-60.8$ at TRISTAN.
- 21 ENO 89 considers arbitrary mixture of the charged current, bg, and $b\gamma$ decays.
- ²² IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b'} > 24.4$ GeV.
- 23 SAGAWA 88 set limit $\sigma(\text{top}) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\text{cm}} = 52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.
- ²⁴ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm}=45.4$ GeV.
- ²⁵ ALTHOFF 84C narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m >21 GeV, CL = 95%.
- ²⁶ ALTHOFF 84I exclude heavy quark pair production for 7 < m < 19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

Created: 6/29/1998 12:08