LIGHT QUARKS (*u, d, s*`

OMITTED FROM SUMMARY TABLE

u-QUARK MASS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as \overline{MS} . The ratios m_{II}/m_{cl} and m_{s}/m_{cl} are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.

Starting with this edition of the *Review*, we have normalized the \overline{MS} masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
1.5 to 5 OUR EVALUATION	-			

• • We do not use the following data for averages, fits, limits, etc. • • •

$3.9\!\pm\!1.1$	$^{ m 1}$ JAMIN	95 THEO MS scheme
3.0 ± 0.7	² NARISON	95C THEO MS scheme
	³ CHOI	92B THEO
4.3	⁴ BARDUCCI	88 THEO
$3.8 \!\pm\! 1.1$	⁵ GASSER	82 THEO

¹ JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{II}(1 \text{ GeV})$ = 5.3 \pm 1.5 to $\mu=$ 2 GeV.

d-QUARK MASS

See the comment for the u quark above.

Starting with this edition of the Review, we have normalized the MS masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35.

VALUE (MeV) DOCUMENT ID TECN COMMENT

3 to 9 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $^{^2\, {\}rm For\ NARISON}$ 95C, we have rescaled $m_{_{I\!I}}(1\, {\rm GeV})=4\pm 1$ to $\mu=2\, {\rm GeV}.$

 $^{^3}$ CHOI 92B argues that $m_{II} = 0$ is okay based on instanton contributions to the chiral coefficients. Disagrees with DONOGHUE 92 and DONOGHUE 92B.

 $^{^4}$ BARDUCCI 88 uses a calculation of the effective potential for $\overline{\psi}\psi$ in QCD, and estimates for $\Sigma(p^2)$. We have rescaled $m_{\mu}(1 \text{ GeV}) = 5.8$ to $\mu = 2 \text{ GeV}$.

 $^{^{}m b}$ GASSER 82 uses chiral perturbation theory for the mass ratios, and uses QCD sum rules to extract the absolute values. We have rescaled $m_{\mu}(1~{\rm GeV})=5.1\pm1.5$ to $\mu=2~{\rm GeV}$.

7.0 ± 1.1	⁶ JAMIN	95 THEO N	MS scheme
7.4 ± 0.7	⁷ NARISON	95c THEO T	MS scheme
	⁸ ADAMI	93 THEO	
	⁹ NEFKENS	92 THEO	
6.2	¹⁰ BARDUCCI		
	¹¹ DOMINGUEZ	87 THEO	
	¹² KREMER	84 THEO	
$6.6 \!\pm\! 1.9$	¹³ GASSER	82 THEO	

⁶ JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_d(1\,{\rm GeV})=9.4\pm1.5$ to $\mu=2\,{\rm GeV}.$

$\overline{m} = (m_u + m_d)/2$

See the comments for the u quark above.

Starting with this edition of the *Review*, we have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT

2 to 6 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • •

2.7 ± 0.2	¹⁴ EICKER	97	LATT	MS scheme
3.6 ± 0.6	¹⁵ GOUGH	97	LATT	MS scheme
$3.4 \pm 0.4 \pm 0.3$	¹⁶ GUPTA	97	LATT	MS scheme
4.5 ± 1.0	¹⁷ BIJNENS	95		

¹⁴ EICKER 97 use lattice gauge computations with two dynamical light flavors.

 $^{^7}$ For NARISON 95C, we have rescaled $m_d(1\,{\rm GeV})=10\pm 1$ to $\mu=2\,{\rm GeV}.$

 $^{^8}$ ADAMI 93 obtain $m_d-m_u{=}3\pm1$ MeV at $\mu{=}0.5$ GeV using isospin-violating effects in QCD sum rules.

 $^{^9}$ NEFKENS 92 results for m_d-m_u are 3.1 \pm 0.4 MeV from meson masses and 3.6 \pm 0.4 MeV from baryon masses.

¹⁰ BARDUCCI 88 uses a calculation of the effective potential for $\overline{\psi}\psi$ in QCD, and estimates for $\Sigma(p^2)$. We have rescaled $m_d(1~{\rm GeV})=8.4$ to $\mu=2~{\rm GeV}$.

 $^{^{11}}$ DOMINGUEZ 87 uses QCD sum rules to obtain $m_u + m_d = 15.5 \pm 2.0$ MeV and $m_d - m_u = 6 \pm 1.5$ MeV.

 $^{^{12}}$ KREMER 84 obtain $m_u+m_d=21\pm 2$ MeV at $\mathit{Q}^2=1~\mathrm{GeV}^2$ using SVZ values for quark condensates; they obtain $m_u+m_d=35\pm 3~\mathrm{MeV}$ at $\mathit{Q}^2=1~\mathrm{GeV}^2$ using factorization values for quark condensates.

 $^{^{13}}$ GASSER 82 uses chiral perturbation theory for the mass ratios, and uses QCD sum rules to extract the absolute values. We have rescaled $m_d(1\,{\rm GeV})=8.9\pm2.6$ to $\mu=2\,{\rm GeV}$.

¹⁵ GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives $2.1 < \overline{m} < 3.5$ MeV at μ =2 GeV.

 $^{^{16}}$ GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamic flavors at $\mu=2$ GeV is $2.7\pm0.3\pm0.3$ MeV.

¹⁷ BIJNENS 95 determines $m_u + m_d$ (1 GeV) = 12 \pm 2.5 MeV using finite energy sum rules. We have rescaled this to 2 GeV.

s-QUARK MASS

See the comment for the u quark above.

Starting with this edition of the *Review*, we have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35.

<u>VALUE (MeV)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **60 to 170 OUR EVALUATION**

• • • We do not use the following data for averages, fits, limits, etc. • • •

152.4 ± 14.1	¹⁸ CHETYRKIN	97	THEO	MS scheme
≥ 89	¹⁹ COLANGELO	97	THEO	MS scheme
140 ± 20	²⁰ EICKER	97	LATT	MS scheme
95 ± 16	²¹ GOUGH	97	LATT	MS scheme
$100 \pm 21 \pm 10$	²² GUPTA	97	LATT	MS scheme
127 ± 11	²³ CHETYRKIN	95	THEO	MS scheme
140 ± 24	²⁴ JAMIN	95	THEO	MS scheme
146 ± 22	²⁵ NARISON	95 C	THEO	MS scheme
	²⁶ NEFKENS	92	THEO	
144 ± 3	²⁷ DOMINGUEZ	91	THEO	
88	²⁸ BARDUCCI	88	THEO	
	²⁹ KREMER	84	THEO	
130 ±41	³⁰ GASSER	82	THEO	

 $^{^{18}}$ CHETYRKIN 97 obtains 205.5 \pm 19.1 MeV at μ =1 GeV from QCD sum rules including fourth-order QCD corrections. We have rescaled the result to 2 GeV.

 $^{^{19}}$ COLANGELO 97 is QCD sum rule computation. We have rescaled $m_{\rm S}(1~{\rm GeV})>120$ to $\mu=2~{\rm GeV}.$

 $^{^{20}}$ EICKER 97 use lattice gauge computations with two dynamical light flavors.

²¹ GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives 54 $< m_{\rm S} <$ 92 MeV at μ =2 GeV.

²² GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamical flavors at $\mu=2$ GeV is 68 \pm 12 \pm 7 MeV.

²³ CHETYRKIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{\rm S}(1~{\rm GeV})=171\pm15$ to $\mu=2~{\rm GeV}.$

²⁴ JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{\rm S}(1~{\rm GeV})$ = 189 \pm 32 to μ = 2 GeV.

 $^{^{25}\,\}mathrm{For}$ NARISON $^{95}\mathrm{C},$ we have rescaled $m_{\mathrm{S}}(1\,\mathrm{GeV})=197\pm29$ to $\mu=2\,\mathrm{GeV}.$

 $^{^{26}}$ NEFKENS 92 results for $m_s-(m_u+m_d)/2$ are 111 \pm 10 MeV from meson masses and 163 \pm 15 MeV from baryon masses.

²⁷ DOMINGUEZ 91 uses QCD sum rules with $\Lambda_{\rm QCD}=100$ –200 MeV and the SVZ value for the gluon condensate. We have rescaled $m_{\rm s}(1~{\rm GeV})=194\pm9$ to $\mu=2~{\rm GeV}$.

²⁸ BARDUCCI 88 uses a calculation of the effective potential for $\overline{\psi}\psi$ in QCD, and estimates for $\Sigma(p^2)$. We have rescaled $m_s(1~{\rm GeV})=118$ to $\mu=2~{\rm GeV}$.

 $^{^{29}}$ KREMER 84 obtain $m_u+m_s=245\pm10$ MeV at $Q^2=1~{\rm GeV^2}$ using SVZ values for quark condensates; they obtain $m_u+m_s=270\pm10~{\rm MeV}$ at $Q^2=1~{\rm GeV^2}$ using factorization values for quark condensates.

³⁰ GASSER 82 uses chiral perturbation theory for the mass ratios, and uses QCD sum rules to extract the absolute values. We have rescaled $m_s(1 \, \text{GeV}) = 175 \pm 55$ to $\mu = 2 \, \text{GeV}$.

LIGHT QUARK MASS RATIOS

u/d MASS RATIO

	+- 0.7 OUD EVALUATION			•
VALUE		DOCUMENT ID	TECN	COMMENT

0.2 to 0.7 OUR EVALUATION

• • We do not use the following data for averages, fits, limits, etc.

0.44	³¹ GAO	97 THEO MS scheme
0.553 ± 0.043	³² LEUTWYLER	96 THEO Compilation
< 0.3	³³ CHOI	92 THEO
0.26	³⁴ DONOGHUE	92 THEO
0.30 ± 0.07	³⁵ DONOGHUE	92B THEO
0.66	³⁶ GERARD	90 THEO
0.4 to 0.65	³⁷ LEUTWYLER	
0.05 to 0.78	³⁸ MALTMAN	90 THEO
0.0 to 0.56		89B THEO
0.0 to 0.8	⁴⁰ KAPLAN	86 THEO
$0.57\ \pm0.04$		82 THEO
0.38 ± 0.13	⁴² LANGACKER	79 THEO
$0.47\ \pm0.11$	⁴³ LANGACKER	79в THEO
0.56	⁴⁴ WEINBERG	77 THEO

³¹ GAO 97 uses electromagnetic mass splittings of light mesons.

³² LEUTWYLER 96 uses a combined fit to $\eta \to 3\pi$ and $\psi' \to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.

³³ CHOI 92 result obtained from the decays $\psi(2S) \to J/\psi(1S)\pi$ and $\psi(2S) \to J/\psi(1S)\eta$, and a dilute instanton gas estimate of some unknown matrix elements.

³⁴ DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \to 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S) \to J/\psi(1S)\pi)/(\psi(2S) \to J/\psi(1S)\eta)$.

³⁵ DONOGHUE 92B computes quark mass ratios using $(\psi(2S) \to J/\psi(1S)\pi)/(\psi(2S) \to J/\psi(1S)\eta)$, and an estimate of L_{14} using Weinberg sum rules.

³⁶ GERARD 90 uses large N and η - η' mixing.

 $^{^{37}}$ LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .

 $^{^{38}}$ MALTMAN 90 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Uses a criterion of "maximum reasonableness" that certain coefficients which are expected to be of order one are ≤ 3 .

³⁹ CHOI 89 uses second-order chiral perturbation theory and a dilute instanton gas estimate of second-order coefficients in the chiral lagrangian.

⁴⁰ KAPLAN 86 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Assumes that less than 30% of the mass squared of the pion is due to second-order corrections.

 $^{^{41}}$ GASSER 82 uses chiral perturbation theory for the meson and baryon masses.

 $^{^{42}}$ LANGACKER 79 result is from a fit to the meson and baryon mass spectrum, and the decay $\eta \to 3\pi$. The electromagnetic contribution is taken from Socolow rather than from Dashen's formula.

⁴³ LANGACKER 79B result uses LANGACKER 79 and also ρ - ω mixing.

⁴⁴ WEINBERG 77 uses lowest-order chiral perturbation theory for the meson and baryon masses and Dashen's formula for the electromagnetic mass differences.

s/d MASS RATIO

DOCUMENT ID TECN COMMENT to 25 OUR EVALUATION • • • We do not use the following data for averages, fits, limits, etc. • • ⁴⁵ GAO 97 THEO MS scheme 20.0 ⁴⁶ LEUTWYLER 96 THEO Compilation 18.9 ± 0.8 ⁴⁷ DONOGHUE 92 21 THEO ⁴⁸ GERARD 18 90 THEO ⁴⁹ LEUTWYLER 90B THEO 18 to 23 ⁵⁰ KAPLAN 15 to 26 ⁵¹ GASSER 82 19.6 ± 1.5 THEO ⁵² LANGACKER 79 22 ± 5 THEO ⁵³ LANGACKER 79B THEO 24 ± 4 ⁵⁴ WEINBERG 20

⁴⁸ GERARD 90 uses large N and η - η' mixing.

$(m_s - m)/(m_d - m_u)$ MASS RATIO

 $\overline{m} \equiv (m_{II} + m_{d})/2$ **VALUE**

DOCUMENT ID

to 51 OUR EVALUATION

• • We do not use the following data for averages, fits, limits, etc.

		⁵⁵ ANISOVICH	96	THEO
36	± 5	⁵⁶ NEFKENS		THEO
45	± 3	⁵⁷ NEFKENS	92	THEO
38	± 9	⁵⁸ AMETLLER	84	THEO
43.	5 ± 2.2	GASSER	82	THEO
34	to 51	GASSER	81	THEO
48	± 7	MINKOWSKI	80	THEO

 $^{^{55}\,\}mathrm{ANISOVICH}$ 96 find $\mathit{Q}{=}22.7\,\pm\,0.8$ with $\mathit{Q}^2\equiv(m_\mathit{S}^2-m^2)/(m_\mathit{d}^2-m_\mathit{S}^2)$ from η \rightarrow $\pi^+\pi^-\pi^0$ decay using dispersion relations and chiral perturbation theory.

 $^{^{}m 45}\,{\rm GAO}$ 97 uses electromagnetic mass splittings of light mesons.

⁴⁶ LEUTWYLER 96 uses a combined fit to $\eta \to 3\pi$ and $\psi' \to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.

 $^{^{47}}$ DONOGHUE 92 result is from a combined analysis of meson masses, $\eta
ightarrow 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S) \rightarrow$ $J/\psi(1S)\pi)/(\psi(2S) \rightarrow J/\psi(1S)\eta).$

⁴⁹LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .

 $^{^{50}}$ KAPLAN 86 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Assumes that less than 30% of the mass squared of the pion is due to second-order corrections.

⁵¹ GASSER 82 uses chiral perturbation theory for the meson and baryon masses.

⁵²LANGACKER 79 result is from a fit to the meson and baryon mass spectrum, and the decay $\eta \rightarrow 3\pi$. The electromagnetic contribution is taken from Socolow rather than from Dashen's formula.

 $^{^{53}}$ LANGACKER 79B result uses LANGACKER 79 and also ρ - ω mixing.

⁵⁴WEINBERG 77 uses lowest-order chiral perturbation theory for the meson and baryon masses and Dashen's formula for the electromagnetic mass differences.

 $^{^{56}}$ NEFKENS 92 result is from an analysis of meson masses, mixing, and decay.

 $^{^{57}}$ NEFKENS 92 result is from an analysis of of baryon masses. 58 AMETLLER 84 uses $\eta\to~\pi^+\,\pi^-\,\pi^0$ and ρ dominance.

LIGHT QUARKS (u, d, s) REFERENCES

CHETYRKIN	97	PL B404 337	K.G. Chetyrkin, D. Pirjol, K.	Schilcher
COLANGELO	97	PL B408 340	P. Colangelo+	(CECAM C II I)
EICKER GAO	97 97	PL B407 290	N. Eicker+	(SESAM Collab.)
GOUGH	97 97	PR D56 4115 PRL 79 1622	DN. Gao, B.A. Li, ML. Ya B. Gough+	111
GUPTA	97 97	PRL 79 1022 PR D55 7203	R. Gupta, T. Bhattacharya	
ANISOVICH	96	PL B375 335	A.V. Anisovich, H. Leutwyler	
LEUTWYLER	96	PL B378 313	H. Leutwyler	
BIJNENS	95	PL B348 226	+Prades, de Rafael	(NORD, BOHR, CPPM)
CHETYRKIN	95	PR D51 5090	+Dominguez, Pirjol, Schilcher	(INRM, CAPE, MANZ)
JAMIN	95	ZPHY C66 633	+Munz	(HEIDT, MUNT)
NARISON	95C	PL B358 113	, wanz	(MONP)
ADAMI	93	PR D48 2304	+Drukarev, Ioffe	(CIT, ITEP, PNPI)
CHOI	92	PL B292 159	, , , , , , , , , , , , , , , , , , , ,	(UCSD)
CHOI	92B	NP B383 58		(UCSD)
DONOGHUE	92	PRL 69 3444	+Holstein, Wyler	(MASA, ZURI)
DONOGHUE	92B	PR D45 892	+Wyler	(MASA, ŽURI, UCSBT)
NEFKENS	92	CNPP 20 221	+Miller, Slaus	(UCLA, WASH, ZAGR)
DOMINGUEZ	91	PL B253 241	+van Gend, Paver	(CAPE, TRST, INFN)
GERARD	90	MPL A5 391		(MPIM)
LEUTWYLER	90B	NP B337 108		(BERN)
MALTMAN	90	PL B234 158	+Goldman, Stephenson Jr.	(YORKC, LANL)
CHOI	89	PRL 62 849		
CHOI	89B	PR D40 890	+Kim	(CMU, JHU)
BARDUCCI	88	PR D38 238	+Casalbuoni, De Curtis+	(FIRZ, INFN, LECE, GEVA)
Also	87	PL B193 305	Barducci, Casalbuoni+	(FIRZ, INFN, LECE, GEVA)
DOMINGUEZ	87	ANP 174 372	+de Rafael	(ICTP, MARS, WIEN)
KAPLAN	86	PRL 56 2004	+Manohar	(HARV)
AMETLLER	84	PR D30 674	+Ayala, Bramon	(BARC)
KREMER GASSER	84 82	PL 143B 476 PRPL 87 77	+Papadopoulos, Schilcher	(MANZ)
GASSER	81	ANP 136 62	+Leutwyler	(BERN) (BERN)
MINKOWSKI	80	NP B164 25	+Zepeda	(BERN)
LANGACKER	79	PR D19 2070	+Pagels	(DESY, PRIN)
LANGACKER	79B	PR D20 2983	i ageis	(PENN)
WEINBERG	77	ANYAS 38 185		(HARV)
		22 22 200		(: " " ")