Not in general a mass eigenstate. See note on neutrino properties above.

Written April 1996 by D.E. Groom (LBNL).
These limits apply to ν_{1}, the primary mass eigenstate in ν_{e}. They would also apply to any other ν_{j} which mixes strongly in ν_{e} and has sufficiently small mass that it can occur in the respective decay. The neutrino mass may be of a Dirac or Majorana type; the former conserves total lepton number while the latter violates it. Either would violate lepton family number, since nothing forces the neutrino mass eigenstates to coincide with the neutrino interaction eigenstates. For limits on a Majorana ν_{e} mass, see the section on "Searches for Massive Neutrinos and Lepton Mixing," part (C), entitled "Searches for Neutrinoless Double- β Decay."

The square of the neutrino mass $m_{\nu_{e}}^{2}$ is measured in tritium beta decay experiments by fitting the shape of the beta spectrum near the endpoint; results are given in one of the tables in this section. In many experiments, it has been found to be significantly negative. In the 1994 edition of this Review, it was noted that the combined probability of a positive result was 3.5%. The problem has been exacerbated by the precise and careful experiments reported in two new papers (BELESEV 95 and STOEFFL 95). Both groups conclude that unknown effects cause the accumulation of events in the electron spectrum near its end point. If the fitting hypothesis does not account for this, unphysical values for $m_{\nu_{e}}^{2}$ are obtained. BELESEV 95 obtain their value for $m_{\nu_{e}}^{2}$ and limit for $m_{\nu_{e}}(4.35 \mathrm{eV}$ at $95 \% \mathrm{CL})$ under the assumption that a certain narrow region is free of both high-energy and low-energy anomalies. Including the endpoint accumulation (they find no low-energy anomaly), STOEFFL 95
find a value for $m_{\nu_{e}}^{2}$ which is more than 5 standard deviations negative, and report a Bayesian limit of 7 eV for $m_{\nu_{e}}$ which is obtained by setting $m_{\nu_{e}}^{2}=0$. Given the status of the tritium results, we find no clear way to set a meaningful limit on $m_{\nu_{e}}$. On the other hand, a mass as large as $10-15 \mathrm{eV}$ would probably cause detectable spectrum distortions near the endpoint.

The spread of arrival times of the neutrinos from SN 1987A, coupled with the measured neutrino energies, should provide a simple time-of-flight limit on $m_{\nu_{e}}$. This statement, clothed in various degrees of sophistication, has been the basis for a very large number of papers. The LOREDO 89 limit (23 eV) is among the most conservative and involves few assumptions; as such, it is probably a safe limit. We list this limit below as "used," but conclude that a limit about half this size is justified by the tritium decay experiments.

ν_{e} MASS

Most of the data from which these limits are derived are from β^{-}decay experiments in which a $\bar{\nu}_{e}$ is produced, so that they really apply to $m_{\bar{\nu}_{1}}$. Assuming CPT invariance, a limit on $m_{\bar{\nu}_{1}}$ is the same as a limit on $m_{\nu_{1}}$. Results from studies of electron capture transitions, given below " $m_{\nu_{1}}-$ $m_{\bar{\nu}_{1}}$ ", give limits on $m_{\nu_{1}}$ itself. OUR EVALUATION of the present status of the tritium decay experiments is discussed in the above minireview.

VALUE (eV)		CL\%	DOCUMENT ID		TECN	COMMENT
< 15 OUR EVALUATION						
< 23			LOREDO	89	ASTR	SN 1987A
- - We do not use the following data for averages, fits, limits, etc. - -						
< 4.35		95	1 BELESEV	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
< 12.4		95	${ }^{2}$ CHING	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
< 92		95	3 HIDDEMANN	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
15	+32 +15		HIDDEMANN	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<19.6		95	KERNAN	95	ASTR	SN 1987A
<7.0		95	4 STOEFFL	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
<460		68	5 YASUMI	94	CNTR	e capture in ${ }^{163} \mathrm{Ho}$

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

<7.2		95	${ }^{6}$ WEINHEIMER	93 SPEC	${ }^{3} \mathrm{H} \beta$ decay
< 11.7		95	7 HOLZSCHUH	92b SPEC	${ }^{3} \mathrm{H} \beta$ decay
< 13.1		95	8 KAWAKAMI	91 SPEC	${ }^{3} \mathrm{H} \beta$ decay
<9.3		95	${ }^{9}$ ROBERTSON	91 SPEC	${ }^{3} \mathrm{H} \beta$ decay
< 14		95	AVIGNONE	90 ASTR	SN 1987A
< 16			SPERGEL	88 ASTR	SN 1987A
17	to 40		10 BORIS	87 SPEC	$\bar{\nu}_{e},{ }^{3} \mathrm{H} \beta$ decay

${ }^{1}$ BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. A fit to a normal Kurie plot above 18300-18350 eV (to avoid a low-energy anomaly) plus a monochromatic line $7-15 \mathrm{eV}$ below the endpoint yields $m_{\nu}^{2}=-4.1 \pm 10.9 \mathrm{eV}^{2}$, leading to this Bayesian limit.
${ }^{2}$ CHING 95 quotes results previously given by SUN 93 ; no experimental details are given. A possible explanation for consistently negative values of m_{ν}^{2} is given.
${ }^{3}$ HIDDEMANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. Bayesian limit calculated from the weighted mean $m_{\nu}^{2}=221 \pm 4244 \mathrm{eV}^{2}$ from the two runs listed below.
${ }^{4}$ STOEFFL 95 (LLNL) result is the Bayesian limit obtained from the m_{ν}^{2} errors given below but with m_{ν}^{2} set equal to 0 . The anomalous endpoint accumulation leads to a value of m_{ν}^{2} which is negative by more than 5 standard deviations.
${ }^{5}$ The YASUMI 94 (KEK) limit results from their measurement $m_{\nu}=110_{-110}^{+350} \mathrm{eV}$.
${ }^{6}$ WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate.
${ }^{7}$ HOLZSCHUH 92B (Zurich) result is obtained from the measurement $m_{\nu}^{2}=-24 \pm 48 \pm 61$ (1σ errors), in eV^{2}, using the PDG prescription for conversion to a limit in m_{ν}.
${ }^{8}$ KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid. This result is the Bayesian limit obtained from the m_{ν}^{2} limit with the errors combined in quadrature. This was also done in ROBERTSON 91, although the authors report a different procedure.
${ }^{9}$ ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+ BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV . However, the probability of a positive m^{2} is only 3% if statistical and systematic error are combined in quadrature.
${ }^{10}$ See also comment in BORIS 87B and erratum in BORIS 88.

ν_{e} MASS SQUARED

The tritium experiments actually measure mass squared. A combined limit on mass must therefore be obtained from the weighted average of the results shown here. The recent results are in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+ BORIS 88, erratum)] that $m_{\nu_{1}}$ lies between 17 and 40 eV . The BORIS 87 result is excluded because of the controversy over the possibly large unreported systematic errors; see BERGKVIST 85B, BERGKVIST 86, SIMPSON 84, and REDONDO 89. However, the average for the new experiments given below
implies only a 3.5% probability that m^{2} is positive．See HOLZSCHUH 92 for a review of the recent direct $m_{\nu_{1}}$ measurements．

VALUE（eV			CL\％	DOCUMENT ID		TECN	COMMENT
－27士	20	OUR	RAG	Error includes scale factor of 4．2．See the ideogram below．			
－22土	4.8			11 BELESEV	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
$-130 \pm$	20	± 15	95	12 STOEFFL	95	SPEC	${ }^{3} \mathrm{H} \beta$ decay
－31士	75	± 48		13 SUN	93	SPEC	${ }^{3} \mathrm{H} \beta$ decay
－39土	34	± 15		14 WEINHEIMER	93	SPEC	${ }^{3} \mathrm{H} \beta$ decay
－24土	48	± 61		15 HOLZSCHUH	92B	SPEC	${ }^{3} \mathrm{H} \beta$ decay
－65土	85	± 65		16 KAWAKAMI	91	SPEC	${ }^{3} \mathrm{H} \beta$ decay
$-147 \pm$	68	± 41		17 ROBERTSON	91	SPEC	${ }^{3} \mathrm{H} \beta$ decay
－－We do not use the following data for averages，fits，limits，etc．－－							
129 ± 6010				18 HIDDEMANN 95 SPEC ${ }^{3} \mathrm{H} \beta$ decay			
313 ± 5994				18 HIDDEMANN 95 SPEC			${ }^{3} \mathrm{H} \beta$ decay

11 BELESEV 95 （Moscow）use an integral electrostatic spectrometer with adiabatic mag－ netic collimation and a gaseous tritium sources．This value comes from a fit to a normal Kurie plot above $18300-18350 \mathrm{eV}$（to avoid a low－energy anomaly），including the effects of an apparent peak $7-15 \mathrm{eV}$ below the endpoint．
12 STOEFFL 95 （LLNL）uses a gaseous source of molecular tritium．An anomalous pileup of events at the endpoint leads to the negative value for m_{ν}^{2} ．The authors acknowledge that＂the negative value for the best fit of m_{ν}^{2} has no physical meaning＂and discuss possible explanations for this effect．
13 SUN 93 uses a tritiated hydrocarbon source．See also CHING 95.
14 WEINHEIMER 93 （Mainz）is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field．The source is molecular tritium frozen onto an aluminum substrate．
15 HOLZSCHUH 92B（Zurich）source is a monolayer of tritiated hydrocarbon．
16 KAWAKAMI 91 （Tokyo）experiment uses tritium－labeled arachidic acid．
17 ROBERTSON 91 （LANL）experiment uses gaseous molecular tritium．The result is in strong disagreement with the earlier claims by the ITEP group［LUBIMOV 80，BORIS 87 （ + BORIS 88 erratum）］that m_{ν} lies between 17 and 40 eV ．However，the probability of a positive m_{ν}^{2} is only 3% if statistical and systematic error are combined in quadrature．
18 HIDDEMANN 95 （Munich）experiment uses atomic tritium embedded in a metal－dioxide lattice．They quote measurements from two data sets．

$$
m_{\nu_{1}}-m_{\nu_{1}}
$$

These are measurement of $m_{\nu_{1}}$ (in contrast to $m_{\bar{\nu}_{1}}$, given above). The masses can be different for a Dirac neutrino in the absense of CPT invariance. The test is not very strong.

VALUE (eV)	CL\%	DOCUMENT ID		TECN	COMMENT
< 225	95	SPRINGER	87	CNTR	$\nu,{ }^{163} \mathrm{Ho}$
<550	68	YASUMI	86	CNTR	$\nu,{ }^{163} \mathrm{Ho}$

- - We do not use the following data for averages, fits, limits, etc.

$<4.5 \times 10^{5}$	90	CLARK	74	ASPK	$K_{e 3}$ decay
<4100	67	BECK	68	CNTR	$\nu,{ }^{2} 2 \mathrm{Na}$

ν_{1} CHARGE

$\underline{\text { VALUE (units: electron charge) DOCUMENT ID TECN COMMENT }}$

- - We do not use the following data for averages, fits, limits, etc. - -
$<2 \times 10^{-15}$
19 BARBIELLINI 87 ASTR SN 1987A
$<1 \times 10^{-13} \quad$ BERNSTEIN 63 ASTR Solar energy losses
19 Precise limit depends on assumptions about the intergalactic or galactic magnetic fields and about the direct distance and time through the field.
ν_{1} MEAN LIFE
VALUE (s) CL\% DOCUMENT ID TECN COMMENT
- - We do not use the following data for averages, fits, limits, etc. - - -

20 COWSIK	89	ASTR	$m_{\nu}=1-50 \mathrm{MeV}$
21 RAFFELT	89	RVUE	$\bar{\nu}$ (Dirac, Majorana)
22 RAFFELT	89 B ASTR		
23 LOSECCO	87 B IMB		
24 HENRY	81	ASTR	$m_{\nu}=16-20 \mathrm{eV}$
25 KIMBLE	81	ASTR	$m_{\nu}=10-100 \mathrm{eV}$

20 COWSIK 89 use observations of supernova SN 1987A to set the limit for the lifetime of a neutrino with $1<m<50 \mathrm{MeV}$ decaying through $\nu_{H} \rightarrow \nu_{1}$ e e to be $\tau>4 \times 10^{15}$ $\exp (-m / 5 \mathrm{MeV}) \mathrm{s}$.
21 RAFFELT 89 uses KYULDJIEV 84 to obtain $\tau m^{3}>3 \times 10^{18} \mathrm{~s} \mathrm{eV}^{3}$ (based on $\bar{\nu}_{e} e^{-}$ cross sections). The bound is not valid if electric and magnetic transition moments are equal for Dirac neutrinos.
22 RAFFELT 89B analyze stellar evolution and exclude the region $3 \times 10^{12}<\tau m^{3}$ $<3 \times 10^{21} \mathrm{seV}^{3}$.
23 LOSECCO 87B assumes observed rate of 2.1 SNU (solar neutrino units) comes from sun while 7.0 ± 3.0 is theory.
${ }^{24}$ HENRY 81 uses UV flux from clusters of galaxies to find limit for radiative decay.
25 KIMBLE 81 uses extreme UV flux limits.

ν_{1} (MEAN LIFE) / MASS

$\operatorname{VALUE}(\mathrm{s} / \mathrm{eV})$	CL\%	DOCUMENT ID		TECN	COMMENT
$>7 \times 10^{9}$		26 RAFFELT	85	ASTR	
>300	90	27 REINES	74	CNTR	$\bar{\nu}$

- - We do not use the following data for averages, fits, limits, etc. - - -

$>2.8 \times 10^{15}$	
>6.4	90
$>6.3 \times 10^{15}$	
$>1.7 \times 10^{15}$	
$>8.3 \times 10^{14}$	
>22	68
>38	68
>59	68
>30	68
>20	68
$>2 \times 10^{21}$	

28,29 BLUDMAN	92	ASTR	$m_{\nu}<50 \mathrm{eV}$
30 KRAKAUER	91	CNTR	$\bar{\nu}$ at LAMPF
29,31 CHUPP	89	ASTR	$m_{\nu}<20 \mathrm{eV}$
29 KOLB	89	ASTR	$m_{\nu}<20 \mathrm{eV}$
32 VONFEILIT...	88	ASTR	
33 OBERAUER	87		$\bar{\nu}_{R}$ (Dirac)
33 OBERAUER	87		$\bar{\nu}$ (Majorana)
33 OBERAUER	87		$\bar{\nu}_{L}$ (Dirac)
KETOV	86	CNTR	$\bar{\nu}$ (Dirac)
KETOV	86	CNTR	$\bar{\nu}$ (Majorana)
34 STECKER	80	ASTR	$m_{\nu}=10-100 \mathrm{eV}$

${ }^{26}$ RAFFELT 85 limit is from solar x - and γ-ray fluxes. Limit depends on ν flux from $p p$, now established from GALLEX and SAGE to be >0.5 of expectation.
${ }^{27}$ REINES 74 looked for ν_{e} of nonzero mass decaying to a neutral of lesser mass $+\gamma$. Used liquid scintillator detector near fission reactor. Finds lab lifetime $6 . \times 10^{7} \mathrm{~s}$ or more. Above value of (mean life)/mass assumes average effective neutrino energy of 0.2 MeV . To obtain the limit $6 . \times 10^{7}$ s REINES 74 assumed that the full $\bar{\nu}_{e}$ reactor flux could be responsible for yielding decays with photon energies in the interval $0.1 \mathrm{MeV}-0.5$ MeV . This represents some overestimate so their lower limit is an over-estimate of the lab lifetime (VOGEL 84). If so, OBERAUER 87 may be comparable or better.
28 BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological limits are also obtained.
${ }^{29}$ Nonobservation of γ 's in coincidence with ν 's from SN 1987A.
30 KRAKAUER 91 quotes the limit $\tau / m_{\nu_{1}}>\left(0.3 a^{2}+9.8 a+15.9\right) \mathrm{s} / \mathrm{eV}$, where a is a parameter describing the asymmetry in the neutrino decay defined as $d N_{\gamma} / d \cos \theta=$ $(1 / 2)(1+a \cos \theta) \quad a=0$ for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for $a=-1$).
31 CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency (about $1 / 4$), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino.
${ }^{32}$ Model-dependent theoretical analysis of SN 1987A neutrinos.
33 OBERAUER 87 bounds are from comparison of observed and expected rate of reactor neutrinos.
${ }^{34}$ STECKER 80 limit based on UV background; result given is $\tau>4 \times 10^{22}$ s at $m_{\nu}=20$ eV.

$|(v-c) / c|\left(v \equiv \nu_{1}\right.$ VELOCITY $)$

Expected to be zero for massless neutrino, but tests also whether photons and neutrinos have the same limiting velocity in vacuum.

$V A L U E$ (units 10^{-8})	EVTS	DOCUMENT ID		TECN	COMMENT
<1	17	35 STODOLSKY	88	ASTR	SN 1987A
<0.2		36 LONGO	87	ASTR	SN 1987A

35 STODOLSKY 88 result based on $<10 \mathrm{hr}$ between $\bar{\nu}_{e}$ detection in IMB and KAMI detectors and beginning of light signal. Inclusion of the problematic 5 neutrino events from FREJ (four hours later) does not change the result.
36 LONGO 87 argues that uncertainty between light and neutrino transit times is $\pm 3 \mathrm{hr}$, ignoring FREJUS events.

ν_{1} MAGNETIC MOMENT

Must vanish for Majorana neutrino or purely chiral massless Dirac neutrino. The value of the magnetic moment for the standard $S U(2) \times U(1)$ electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is $\mu_{\nu}=3 e G_{F} m_{\nu} /\left(8 \pi^{2} \sqrt{2}\right)=\left(3.20 \times 10^{-19}\right) m_{\nu} \mu_{B}$ where m_{ν} is in eV and $\mu_{B}=e \hbar / 2 m_{e}$ is the Bohr magneton. Given the upper bound $m_{\nu_{1}}$ $<7.3 \mathrm{eV}$, it follows that for the extended standard electroweak theory, $\mu\left(\nu_{1}\right)<2.3 \times 10^{-18} \mu_{B}$. Current experiments are not yet challenging this limit. There is considerable controversy over the validity of many of the claimed upper limits on the magnetic moment from the astrophysical data. For example, VOLOSHIN 90 states that "in connection with the astrophysical limits on μ_{ν}, \ldots there is by now a general consensus that contrary to the initial claims (BARBIERI 88, LATTIMER 88, GOLDMAN 88, NOTZOLD 88), essentially no better than quoted limits (from previous constraints) can be derived from detection of the neutrino flux from the supernova SN1987A." See VOLOSHIN 88 and VOLOSHIN 88C.

- - We do not use the following data for averages, fits, limits, etc.

<0.62			ELMFORS	97	COSM	Depolarization in early universe plasma
< 3.2	90		GOVAERTS	96		
< 0.003-0.0005			GOYAL	95		SN 1987A
< 7.7	95		MOURAO	92	ASTR	HOME/KAM2 ν rates
<2.4	90		VIDYAKIN	92	CNTR	Reactor $\bar{\nu}_{e} e \rightarrow \bar{\nu}_{e} e$
<10.8	90		KRAKAUER	90	CNTR	LAMPF $\nu_{e} e \rightarrow \nu_{e} e$
<0.02			RAFFELT	90	ASTR	Red giant luminosity
< 0.1			RAFFELT	89B	ASTR	Cooling helium stars
< 0.02-0.08		44,45,46	BARBIERI	88	ASTR	SN 1987A
			FUKUGITA	88	COSM	Primordial magn. fields
<0.01		45,46,48	GOLDMAN	88	ASTR	SN 1987A
<0.005		44,46	LATTIMER	88	ASTR	SN 1987A
≤ 0.015		44,46	NOETZOLD	88	ASTR	SN 1987A
$\leq .3$			RAFFELT	88B	ASTR	He burning stars
<0.11			FUKUGITA	87	ASTR	Cooling helium stars
<0.4			LYNN	81	ASTR	
< 0.1-0.2			MORGAN	81	COSM	${ }^{4} \mathrm{He}$ abundance
<0.85			BEG	78	ASTR	Stellar plasmons
<0.6			SUTHERLAND	76	ASTR	Red giants + degen. dwarfs
< 1			BERNSTEIN	63	ASTR	Solar cooling
<14			COWAN	57	CNTR	Reactor $\bar{\nu}_{e}$

37 DERBIN 94 supersedes DERBIN 93.
38 ELMFORS 97 calculate the rate of depolarization in a plasma for neutrinos with a magnetic moment and use the constraints from a big-bang nucleosynthesis on additional degrees of freedom.
39 GOVAERTS 96 limit is on $\sqrt{\Sigma \mu \nu_{\ell}^{2}}$, based on limits on 2ν decay of ortho-positronium.
40 GOYAL 95 assume that helicity flip via μ_{ν}, would result in faster cooling and hence shorter burst from SN1987A. Limit is based on the assumed presence of a pion condensate or quark core in the remanant.
41 VIDYAKIN 92 limit is from a $e \bar{\nu}_{e}$ elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was $1 / 10$. The limit uses $\sin ^{2} \theta_{W}=0.23$ as input.
42 KRAKAUER 90 experiment fully reported in ALLEN 93.
43 RAFFELT 90 limit applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives $<1.4 \times 10^{-12}$. Limit at 95% CL obtained from δM_{C}.
44 Significant dependence on details of stellar models.
${ }^{45}$ A limit of 10^{-13} is obtained with even more model-dependence.
46 These papers have assumed that the right-handed neutrino is inert; see BARBIERI 88B.
47 FUKUGITA 88 find magnetic dipole moments of any two neutrino species are bounded by $\mu<10^{-16}\left[10^{-9} G / B_{0}\right]$ where B_{0} is the present-day intergalactic field strength.
48 Some dependence on details of stellar models.
49 We obtain above limit from SUTHERLAND 76 using their limit $f<1 / 3$.

NONSTANDARD CONTRIBUTIONS TO NEUTRINO SCATTERING

We report limits on the so-called neutrino charge radius squared in this section. This quantity is not an observable, physical quantity and this is reflected in the fact that it is gauge dependent (see LEE 77C). It is not necessarily positive. A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.

$\underline{V A L U E ~}\left(10^{-32} \mathrm{~cm}^{2}\right)$	CL\%	DOCUMENT ID	TECN	COMMENT
0.9 ± 2.7		ALLEN	93 CNTR	LAMPF $\nu_{e} e \rightarrow \nu^{\prime}$
$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. - •				
<2.3	95	MOURAO 92 ASTR HOME/KAM2 ν rates		
<7.3	90	50 VIDYAKIN	CNTR	Reactor $\bar{\nu}_{e} e \rightarrow \bar{\nu}_{e} e$
1.1 ± 2.3	ALLEN 51 GRIFOLS		91 CNTR	Repl. by ALLEN 93 SN 1987A
			89B ASTR	

50 VIDYAKIN 92 limit is from a $e \bar{\nu}_{e}$ elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was $1 / 10$. The limit uses $\sin ^{2} \theta_{W}=0.23$ as input.
51 GRIFOLS 89B sets a limit of $\left\langle r^{2}\right\rangle<0.2 \times 10^{-32} \mathrm{~cm}^{2}$ for right-handed neutrinos.

ν_{e} REFERENCES

ELMFORS	97	NP B503 3	P. Elmfors, K. Enqvist, G. R	Raffelt, G. Sigl
GOVAERTS	96	PL B381 451	+Van Caillie	(LOUV)
BELESEV	95	PL B350 263	+Bleule, Geraskin, Golubev+	(INRM, KIAE)
CHING	95	IJMP A10 2841	+Ho, Liang, Mao, Chen, Sun	(CST, BEIJT, CIAE)
GOYAL	95	PL B346 312	+Dutta, Choudhury	(DELH)
HIDDEMANN	95	JP G21 639	+Daniel, Schwentker	(MUNT)
KERNAN	95	NP B437 243	+Krauss	(CASE)
STOEFFL	95	PRL 753237	+Decman	(LLNL)
DERBIN	94	PAN 57222 Translated from YAF 57236.		(PNPI)
YASUMI	94	PL B334 229	+Maezawa, Shima, Inagaki+	(KEK, TSUK, KYOT+)(UCI, LANL, ANL, UMD)
ALLEN	93	PR D47 11	+Chen, Doe, Hausammann+	
DERBIN	93	JETPL 57768 Translated from ZETFP	$\begin{aligned} & \text { =Phernyi, Popeko, Muratova+ } \\ & =P 7755 \text {. } \end{aligned}$	+ (PNPI)
SUN	93	CJNP 15261	+Liang, Chen, $\mathrm{Si}+$	(CIAE, CST, BEIJT)
WEINHEIMER	93	PL B300 210	+Przyrembel, Backe+	(MANZ)
BLUDMAN	92	PR D45 4720		(CFPA)
HOLZSCHUH	92	RPP 551035		(ZURI)
HOLZSCHUH	92B	PL B287 381	+Fritschi, Kuendig	(LISB, LISBT, CERN, KANS)
MOURAO	92	PL B285 364	+Pulido, Ralston	
VIDYAKIN	92	JETPL 55206 Translated from ZETF	+Vyrodov, Gurevich, Koslov+ $=P \quad 55 \quad 212 \text {. }$	+ (KIAE)
ALLEN	91	PR D43 R1	+Chen, Doe, Hausammann	(UCI, LANL, UMD)
KAWAKAMI	91	PL B256 105	+Kato, Ohshima+ (INUS,	TOHOK, TINT, KOBE, KEK)
KRAKAUER	91	PR D44 R6	+ Talaga, Allen, Chen+	(LAMPF E225 Collab.)
ROBERTSON	91	PRL 67957	+Bowles, Stephenson, Wark, W	Wilkerson, Knapp (LASL, LLL)
AVIGNONE	90	PR D41 682	+ Collar	(SCUC)
KRAKAUER	90	PL B252 177	+Talaga, Allen, Chen+	(LAMPF E225 Collab.)
RAFFELT	90	PRL 642856		(MPIM)
VOLOSHIN	90	NP B (Proc. Suppl) 1	19433	(ITEP)
Neutrino 90 Conference (${ }^{\text {a }}$				
CHUPP	89	PRL 62505	+Vestrand, Reppin	(UNH, MPIM)
COWSIK	89	PL B218 91	+Schramm, Hoflich	(WUSL, TATA, CHIC, MPIM)
GRIFOLS	89B	PR D40 3819	+Masso	(BARC)
KOLB	89	PRL 62509	+ Turner	(CHIC, FNAL)
LOREDO	89	ANYAS 571601	+Lamb	(CHIC)
RAFFELT	89	PR D39 2066		(PRIN, UCB)
RAFFELT	89B	APJ 33661	+Dearborn, Silk	(UCB, LLL)
REDONDO	89	PR C40 368	+Robertson	(LANL)
BARBIERI	88	PRL 6127	+Mohapatra	(PISA, UMD)

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

