Number of Light Neutrino Types

The neutrinos referred to in this section are those of the Standard SU(2)×U(1) Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m_{\nu} < m_{Z}/2$. The limits are on the number of neutrino families or species, including ν_{e} , ν_{μ} , ν_{τ}

THE NUMBER OF LIGHT NEUTRINO TYPES FROM COLLIDER EXPERIMENTS

Revised April 1998 by D. Karlen (Carleton University).

The most precise measurements of the number of light neutrino types, N_{ν} , come from studies of Z production in e^+e^- collisions. At the time of this report, the most recent (preliminary) combined analysis of the four LEP experiments [1] included over 16 million visible Z decays. The invisible partial width, $\Gamma_{\rm inv}$, is determined from these data by subtracting the measured visible partial widths, corresponding to Z decays into quarks and charged leptons, from the total Z width. The invisible width is assumed to be due to N_{ν} light neutrino species each contributing the neutrino partial width Γ_{ν} as given by the Standard Model. In order to reduce the model dependence, the Standard Model value for the ratio of the neutrino to charged leptonic partial widths, $(\Gamma_{\nu}/\Gamma_{\ell})_{\rm SM} = 1.991 \pm 0.001$, is used instead of $(\Gamma_{\nu})_{\rm SM}$ to determine the number of light neutrino types:

$$N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\rm SM}$$

The combined LEP result is $N_{\nu} = 2.993 \pm 0.011$.

In the past, when only small samples of Z decays had been recorded by the LEP experiments and by the Mark II at SLC, the uncertainty in N_{ν} was reduced by using Standard Model fits to the measured hadronic cross sections at several centerof-mass energies near the Z resonance. Since this method is

much more dependent on the Standard Model, the approach described above is favored.

Before the advent of the SLC and LEP, limits on the number of neutrino generations were placed by experiments at lower-energy e^+e^- colliders by measuring the cross section of the process $e^+e^- \to \nu \overline{\nu} \gamma$. The ASP, CELLO, MAC, MARK J, and VENUS experiments observed a total of 3.9 events above background [2], leading to a 95% CL limit of $N_{\nu} < 4.8$. This process has a much larger cross section at center-of-mass energies near the Z mass and has been measured at LEP by the ALEPH, DELPHI, L3, and OPAL experiments [3]. These experiments have observed several thousand such events, and the combined result is $N_{\nu} = 3.00 \pm 0.09$.

Experiments at $p\overline{p}$ colliders also placed limits on N_{ν} by determining the total Z width from the observed ratio of $W^{\pm} \to \ell^{\pm} \nu$ to $Z \to \ell^{+} \ell^{-}$ events [4]. This involved a calculation that assumed Standard Model values for the total W width and the ratio of W and Z leptonic partial widths, and used an estimate of the ratio of Z to W production cross sections. Now that the Z width is very precisely known from the LEP experiments, the approach is now one of those used to determine the W width.

References

- 1. The LEP Collaborations, the LEP Electroweak Working Group, and the SLD Heavy Flavor Group, CERN/PPE/97-154. (Based upon published and preliminary electroweak results).
- VENUS: K. Abe et al., Phys. Lett. B232, 431 (1989);
 ASP: C. Hearty et al., Phys. Rev. D39, 3207 (1989);
 CELLO: H.J. Behrend et al., Phys. Lett. B215, 186 (1988);
 MAC: W.T. Ford et al., Phys. Rev. D33, 3472 (1986);
 MARK J: H. Wu, Ph.D. Thesis, Univ. Hamburg (1986).

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

3. L3: M. Acciarri *et al.*, CERN/PPE/98-25 (submitted to Phys. Lett. B);

DELPHI: P. Abreu et al., Z. Phys. C74, 577 (1997);

OPAL: R. Akers et al., Z. Phys. C65, 47 (1995);

ALEPH: D. Buskulic et al., Phys. Lett. **B313**, 520 (1993).

UA1: C. Albajar et al., Phys. Lett. B198, 271 (1987);
 UA2: R. Ansari et al., Phys. Lett. B186, 440 (1987).

Number from e⁺e⁻ Colliders

Number of Light ν Types

Our evaluation uses the invisible and leptonic widths of the Z boson from our combined fit shown in the Particle Listings for the Z Boson, and the Standard Model value $\Gamma_{\nu}/\Gamma_{\ell}=1.9908\pm0.0015$.

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u>
2.994±0.012 OUR EVALUATION Combined fit to all LEP data.

• • • We do not use the following data for averages, fits, limits, etc. • • •

 3.00 ± 0.05 1 LEP 92 RVUE

Number of Light ν Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^- \to \nu \overline{\nu} \gamma$. All are obtained from LEP runs in the $E^{ee}_{\rm CM}$ range 88–94 GeV.

VALUE	DOCUMENT ID	TECN	COMMENT
3.07 ± 0.12 OUR AVERAGE			
$2.89 \pm 0.32 \pm 0.19$	ABREU	97」DLPH	1993-1994 LEP runs
$3.23\pm0.16\pm0.10$	AKERS	95C OPAL	1990-1992 LEP runs
$2.68 \pm 0.20 \pm 0.20$	BUSKULIC	93L ALEP	1990-1991 LEP runs
$3.24 \pm 0.46 \pm 0.22$	ADEVA	92 L3	1990 LEP run
$3.14 \pm 0.24 \pm 0.12$	ADRIANI	92E L3	1991 LEP run
• • We do not use the following data for averages, fits, limits, etc. • •			
$3.1 \pm 0.6 \pm 0.1$	ADAM	96c DLPH	$\sqrt{s}=$ 130, 136 GeV

Limits from Astrophysics and Cosmology

Number of Light ν Types

("light" means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this *Review*.

VALUE DOCUMENT ID TECN

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<	4.9	COPI	97	COSM
<	3.6	² HATA	97 B	COSM
<	4.0	³ OLIVE	97	COSM
<	4.7	² CARDALL	96 B	COSM
<	3.9	³ FIELDS	96	COSM

¹Simultaneous fits to all measured cross section data from all four LEP experiments.

I

	_		
< 4.5	² KERNAN	96	COSM
< 3.6	⁴ OLIVE	95	COSM
< 3.3	WALKER	91	COSM
< 3.4	OLIVE	90	COSM
< 4	YANG	84	COSM
< 4	YANG	79	COSM
< 7	STEIGMAN	77	COSM
	PEEBLES	71	COSM
<16	⁵ SHVARTSMAI	V69	COSM
	HOYLE	64	COSM

 $^{^2\,{\}rm Limit}$ based on high D/H from quasar absorption systems. $^3\,{\rm Limit}$ based on high $^4{\rm He}$ and $^7\,{\rm Li}.$

Number Coupling with Less Than Full Weak Strength

VALUE	DOCUMENT ID	<u>TECN</u>	
ullet $ullet$ We do not use the follow	ing data for average	es, fits, limits, etc. • • •	
<20		81c COSM	
<20	⁶ STEIGMAN	79 COSM	
⁶ Limit varies with strength of coupling. See also WALKER 91.			

REFERENCES FOR Limits on Number of **Light Neutrino Types**

ABREU COPI HATA OLIVE ADAM CARDALL FIELDS KERNAN AKERS OLIVE BUSKULIC ADEVA ADRIANI LEP WALKER DENEGRI OLIVE YANG OLIVE	97J 97 97B 97 96C 96B 96 95C 95 93L 92 92E 92 91 90 84 81	PL B354 357 PL B313 520 PL B275 209 PL B292 463 PL B276 247 APJ 376 51 RMP 62 1 PL B236 454 APJ 281 493 APJ 246 557	P.S. Kernan, S. Sarkar +Alexander, Allison+ +Steigman +De Bonis, Decamp+ +Adriani, Aguilar-Benitez+ +Aguilar-Benitez, Ahlen, Akbari, Alcaraz+ +ALEPH, DELPHI, L3, OPAL +Steigman, Schramm, Olive+ (HSCA, C) +Sadoulet, Spiro +Schramm, Steigman, Walker +Turner, Steigman, Schramm, Olive +Schramm, Steigman, Turner, Yang+	(OSU, PENN) (MINN, FLOR) (DELPHI Collab.) (UCSD) RN, MINN, FLOR) (CASE, OXFTP) (OPAL Collab.) (MINN, OSU) (ALEPH Collab.) (L3 Collab.) - (L3 Collab.) (LEP Collabs.) SU, CHIC, MINN) ERN, UCB, SACL) HIC, OSU, HARV) (CHIC, BART) (CHIC, BART)
OLIVE	81C	NP B180 497	+Schramm, Steigman	`(EFI, BART)
STEIGMAN	79	PRL 43 239	+Olive, Schramm	(BART, EFI)
YANG	79	APJ 227 697		HIC, YALE, VIRG)
STEIGMAN	77	PL 66B 202	+Schramm, Gunn (YALE, CHIC, CIT)
PEEBLES	71	Physical Cosmology		(PRIN)
		Press (1971)		
SHVARTSMAN	l 69	JETPL 9 184		(MOSU)
		Translated from ZETFI	~_~~.·	
HOYLE	64	Nature 203 1108	+Tayler	(CAMB)

⁴OLIVE 95 limit assumes the existence of at least three (massless) neutrinos.

⁵ SHVARTSMAN 69 limit inferred from his equations.