p

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Status: ***

p MASS

The mass is known much more precisely in u (atomic mass units) than in MeV; see the footnote. The conversion from u to MeV, 1 u = 931.49432 ± 0.00028 MeV, involves the relatively poorly known electronic charge.

VALUE (MeV)	DOCUMENT ID)	TECN	COMMENT	
938.27231±0.00028	¹ COHEN	87	RVUE	1986 CODATA value	
$\bullet \bullet \bullet$ We do not use the following	g data for averag	es, fits	, limits,	etc. • • •	
938.2796 ± 0.0027	COHEN	73	RVUE	1973 CODATA value	
1 The mass is known much more precisely in u: $m=1.007276470\pm 0.000000012$ u.					

p MASS

See, however, the next entry in the Listings, which establishes the \overline{p} mass much more precisely.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not use the following of	lata for averages	, fits	, limits,	etc. • • •
938.30 ±0.13	ROBERTS	78	CNTR	
938.229±0.049	ROBERSON	77	CNTR	
938.179 ± 0.058	HU	75	CNTR	Exotic atoms
938.3 ±0.5	BAMBERGER	70	CNTR	

\overline{p}/p CHARGE-TO-MASS RATIO, $\left|\frac{q_{\overline{p}}}{m_{\overline{p}}}\right|/(\frac{q_{p}}{m_{p}})$

A test of *CPT* invariance. Listed here are measurements involving the *inertial* masses. For a discussion of what may be inferred about the ratio of \overline{p} and *p* gravitational masses, see ERICSON 90; they obtain an upper bound of 10^{-6} - 10^{-7} for violation of the equivalence principle for \overline{p} 's.

VALUE	DOCUMENT ID	TECN	COMMENT
$1.000000015 \pm 0.000000011$	² GABRIELSE 95	TRAP	Penning trap
• • • We do not use the follow	ving data for averages, fi	ts, limits,	etc. • • •
$1.00000023 \pm 0.00000042$	³ GABRIELSE 90	TRAP	Penning trap
² Equation (2) of GABRIE (G. Gabrielse, private comm ³ GABRIELSE 90 also meas = 1836.152680 \pm 0.000088 (COHEN 87) value for m_p values of the masses (they co constants) and don't try to masses.	LSE 95 should read <i>u</i> unication). ures $m_{\overline{p}}/m_{e^-} = 1836$. 3. Both are completely $/m_{e^-}$ of 1836.152701 : ome from an overall fit to take into account more	$M(\overline{p})/M(\mu$ 152660 \pm consisten \pm 0.00003 a variety recent m	p) = 0.9999999985(11) = 0.000083 and m_p/m_{e^-} t with the 1986 CODATA 37. We use the CODATA of data on the fundamental measurements involving the

 $(\left|\frac{q_{\overline{p}}}{m_{\overline{p}}}\right| - \frac{q_p}{m_p}) / \left|\frac{q}{m}\right|_{\mathrm{average}}$

A test of CPT invariance. Taken from the \overline{p}/p charge-to-mass ratio, above.

VALUE

DOCUMENT ID

 $(1.5\pm1.1) \times 10^{-9}$ OUR EVALUATION

 $|q_p + q_{\overline{p}}|/e$

A test of *CPT* invariance. Note that the \overline{p}/p charge-to-mass ratio, given above, is much better determined. See also a similar test involving the electron.

VALUE	DOCUMENT ID	TECN	
<2 × 10 ⁻⁵	⁴ HUGHES	92	RVUE

⁴ HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ratios.

 $|q_p + q_e|/e$

See DYLLA 73 for a summary of experiments on the neutrality of matter. See also "n CHARGE" in the neutron Listings.

VALUE	DOCUMENT ID		COMMENT
<1.0 × 10 ⁻²¹	⁵ DYLLA	73	Neutrality of SF ₆
\bullet \bullet \bullet We do not use the followin	g data for average	s, fits	, limits, etc. • • •
$< 0.8 imes 10^{-21}$	MARINELLI	84	Magnetic levitation
⁵ Assumes that $q_n = q_p + q_e$.			

p MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings.

VALUE (μ_N)	DOCUMENT ID		TECN	COMMENT	
2.792847386±0.00000063	COHEN	87	RVUE	1986 CODATA value	
\bullet \bullet \bullet We do not use the followi	ng data for average	es, fits	, limits,	etc. • • •	
2.7928456 ± 0.0000011	COHEN	73	RVUE	1973 CODATA value	

P MAGNETIC MOMENT

A few early results have been omitted.

VALUE (μ_N)	DOCUMENT ID		TECN	COMMENT
-2.800 ±0.008 OUR AVERAGE				
-2.8005 ± 0.0090	KREISSL	88	CNTR	$\overline{p} \ ^{208}$ Pb 11 $ ightarrow$ 10 X-ray
-2.817 ± 0.048	ROBERTS	78	CNTR	
-2.791 ± 0.021	HU	75	CNTR	Exotic atoms

HTTP://PDG.LBL.GOV

Created: 6/29/1998 12:15

 $(\mu_p + \mu_{\overline{p}}) / |\mu|_{\text{average}}$

A test of *CPT* invariance. Calculated from the p and \overline{p} magnetic moments, above.

VALUE DOCUMENT ID

$(-2.6\pm2.9) \times 10^{-3}$ OUR EVALUATION

P ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10 ⁻²³ ecm)	EVTS	DOCUMENT ID		TECN	COMMENT
- 3.7± 6.3		СНО	89	NMR	TI F molecules
$\bullet \bullet \bullet$ We do not us	se the following	data for average	s, fits	, limits,	etc. • • •
< 400		DZUBA	85	THEO	Uses ¹²⁹ Xe moment
$130~\pm~200$		⁶ WILKENING	84		
900 ± 1400		⁷ WILKENING	84		
$700~\pm~900$	1G	HARRISON	69	MBR	Molecular beam
			~~		

^o This WILKENING 84 value includes a finite-size effect and a magnetic effect.

⁷ This WILKENING 84 value is more cautious than the other and excludes the finite-size effect, which relies on uncertain nuclear integrals.

p ELECTRIC POLARIZABILITY $\overline{\alpha}_p$

$VALUE (10^{-4} \text{ fm}^3)$	DOCUMENT ID		TECN	COMMENT		
12.1 $\pm 0.8 \pm 0.5$	⁸ MACGIBBON	95	RVUE	global average		
\bullet \bullet \bullet We do not use the following	data for averages	, fits	, limits,	etc. • • •		
$\begin{array}{rrrr} 12.5 & \pm 0.6 & \pm 0.9 \\ 9.8 & \pm 0.4 & \pm 1.1 \end{array}$	MACGIBBON HALLIN	95 93	CNTR CNTR	γp Compton scattering γp Compton scattering		
$10.62^{+1.25+1.07}_{-1.19-1.03}$	ZIEGER	92	CNTR	$\gamma {\it p}$ Compton scattering		
$10.9 \ \pm 2.2 \ \pm 1.3$	⁹ FEDERSPIEL	91	CNTR	γp Compton scattering		
⁸ MACGIBBON 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own experiment to get a "global average" in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 95 for a discussion.						

⁹ FEDERSPIEL 91 obtains for the (static) electric polarizability α_p , defined in terms of the induced electric dipole moment by $\mathbf{D} = 4\pi\epsilon_0 \alpha_p \mathbf{E}$, the value $(7.0 \pm 2.2 \pm 1.3) \times 10^{-4}$ fm³.

p MAGNETIC POLARIZABILITY $\overline{\beta}_p$

The electric and magnetic polarizabilities are subject to a dispersion sumrule constraint $\overline{\alpha} + \overline{\beta} = (14.2 \pm 0.5) \times 10^{-4}$ fm³. Errors here are anticorrelated with those on $\overline{\alpha}_p$ due to this constraint.

$VALUE (10^{-4} \text{ fm}^3)$	DOCUMENT ID	TECN	COMMENT
2.1 ±0.8 ±0.5	¹⁰ MACGIBBON 95	RVUE	global average

• • • We do not use the following data for averages, fits, limits, etc. • • •

$1.7\ \pm 0.6\ \pm 0.9$	MACGIBBON	95	CNTR	γp Compton scattering
$4.4 \pm 0.4 \pm 1.1$	HALLIN	93	CNTR	γp Compton scattering
$3.58 \substack{+1.19 + 1.03 \\ -1.25 - 1.07}$	ZIEGER	92	CNTR	γp Compton scattering
$3.3 \pm 2.2 \pm 1.3$	FEDERSPIEL	91	CNTR	γp Compton scattering

¹⁰ MACGIBBON 95 combine the results of ZIEGER 92, FEDERSPIEL 91, and their own experiment to get a "global average" in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 95 for a discussion.

p MEAN LIFE

A test of baryon conservation. See the "p Partial Mean Lives" section below for limits that depend on decay modes. p = proton, n = bound neutron.

(years) PA	ARTICLE	DOCUMENT ID	TECN				
$>1.6 \times 10^{25}$ p,	, n 11,12	EVANS 77					
• • • We do not use the	e following data fo	or averages, fits, lin	nits, etc. • • •				
$>3 \times 10^{23}$ p	¹² I	DIX 70	CNTR				
$>3 \times 10^{23}$ p,	n ^{12,13} I	LEROV 58					
¹¹ Mean lifetime of nucleons in ¹³⁰ Te nuclei. ¹² Converted to mean life by dividing half-life by $\ln(2) = 0.693$.							

p MEAN LIFE

The best limit by far, that of GOLDEN 79, relies, however, on a number of astrophysical assumptions. The other limits come from direct observations of stored antiprotons. See also " \overline{p} Partial Mean Lives" after "p Partial Mean Lives," below.

LIMIT (years)	<u>CL%</u> E\	/ <u>TS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the follo	wing data	for averages, fi	ts, liı	mits, etc	. • • •
>0.28			GABRIELSE	90	TRAP	Penning trap
>0.08	90	1	BELL	79	CNTR	Storage ring
$>1 \times 10^7$			GOLDEN	79	SPEC	\overline{p}/p , cosmic rays
$>3.7 \times 10^{-3}$			BREGMAN	78	CNTR	Storage ring

p DECAY MODES

Below, for N decays, p and n distinguish proton and neutron partial lifetimes. See also the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1673) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question.

	Partial mean life	
Mode	(10 ³⁰ years)	Confidence level

```
HTTP://PDG.LBL.GOV
```

Antilepton + meson							
$ au_1$	$N ightarrow e^+ \pi$	$> 130 \ (n), \ > 550 \ (p)$	90%				
$ au_2$	$N \rightarrow \mu^+ \pi$	>100~(n),~>270~(p)	90%				
$ au_3$	$N \rightarrow \nu \pi$	>100~(n),~>25~(p)	90%				
$ au_4$	$ ho ightarrow ~e^+ \eta$	> 140	90%				
$ au_{5}$	${m ho} ightarrow \ \mu^+ \eta$	> 69	90%				
$ au_{6}$	$n \rightarrow \nu \eta$	> 54	90%				
$ au_{7}$	$N \rightarrow e^+ ho$	>58~(n),~>75~(p)	90%				
$ au_{8}$	$N \rightarrow \mu^+ \rho$	>23~(n),~>110~(p)	90%				
$ au_{9}$	$N \rightarrow \nu \rho$	> 19 (n), > 27 (p)	90%				
$ au_{10}$	$ ho ightarrow ~e^+ \omega$	> 45	90%				
$ au_{11}$	$ ho ightarrow \ \mu^+ \omega$	> 57	90%				
$ au_{12}$	$n \rightarrow \nu \omega$	> 43	90%				
$ au_{13}$	$N \rightarrow e^+ K$	> 1.3 (n), > 150 (p)	90%				
$ au_{14}$	$ ho ightarrow ~e^+ {K}^0_S$	> 76	90%				
$ au_{15}$	$p ightarrow ~e^+ {\cal K}^0_I$	> 44	90%				
$ au_{16}$	$N \rightarrow \mu^+ K$	$> 1.1 \ (n), > 120 \ (p)$	90%				
$ au_{17}$	$p \rightarrow \mu^+ K_S^0$	> 64	90%				
$ au_{18}$	$p \rightarrow \mu^+ K_I^0$	> 44	90%				
τ_{10}	$N \rightarrow \nu K$	> 86 (n), > 100 (p)	90%				
τ_{20}	$p \rightarrow e^+ K^* (892)^0$	> 52	90%				
τ_{21}	$N \rightarrow \nu K^*(892)$	> 22 (n), > 20 (p)	90%				
		Antilenton + mesons					
$ au_{nn}$	$n \rightarrow e^{+} \pi^{+} \pi^{-}$		0.0%				
722 ποο	$p \rightarrow e^{\pi} \pi^{0} \pi^{0}$	> 21	90 /0				
723 ποι	$p \rightarrow e^{\pi} \pi^{-} \pi^{0}$	> 30	90 /0				
724 705	$n \rightarrow u^+ \pi^+ \pi^-$	> 32	90%				
725 πος	$p \rightarrow \mu^{+} \pi^{0} \pi^{0}$ $p \rightarrow \mu^{+} \pi^{0} \pi^{0}$	> 33	90%				
726 Toz	$p \rightarrow \mu^{+} \pi^{-} \pi^{0}$ $p \rightarrow \mu^{+} \pi^{-} \pi^{0}$	> 33	90%				
'21 Tao	$n \rightarrow e^+ K^0 \pi^-$	> 18	90%				
. 20			5070				
		Lepton + meson					
$ au_{29}$	$n ightarrow e^{-} \pi^{+}$	> 65	90%				
$ au_{30}$	$n ightarrow \ \mu \ \pi^{ op} \ _{+}$	> 49	90%				
$ au_{31}$	$n ightarrow e_{-} ho_{+}^{ op}$	> 62	90%				
$ au_{32}$	$n ightarrow \ \mu \ ho^{ op}$	> 7	90%				
$ au_{33}$	$n \rightarrow e^- K^+$	> 32	90%				

HTTP://PDG.LBL.GOV

 $n \rightarrow \mu^- K^+$

 au_{34}

> 57

90%

	Leptor	n + mesons	
$ au_{35}$	$ ho ightarrow ~e^- \pi^+ \pi^+$	> 30	90%
$ au_{36}$	$n \rightarrow e^{-} \pi^{+} \pi^{0}$	> 29	90%
$ au_{37}$	$ ho ightarrow \ \mu^- \pi^+ \pi^+$	> 17	90%
$ au_{38}$	$n ightarrow \mu^- \pi^+ \pi^0$	> 34	90%
$ au_{39}$	$ ho ightarrow ~e^- \pi^+ K^+$	> 20	90%
$ au_{40}$	$ ho ightarrow \ \mu^- \pi^+ { m K}^+$	> 5	90%
	Antilepto	n + photon(s)	
$ au_{41}$	$p \rightarrow e^+ \gamma$	> 460	90%
$ au_{42}$	$ ho ightarrow \ \mu^+ \gamma$	> 380	90%
$ au_{43}$	$n \rightarrow \nu \gamma$	> 24	90%
$ au_{44}$	$p ightarrow e^+ \gamma \gamma$	> 100	90%
	Three (or	more) leptons	
$ au_{45}$	$p ightarrow ~e^+ e^+ e^-$	> 510	90%
$ au_{46}$	$ ho ightarrow ~e^+ \mu^+ \mu^-$	> 81	90%
$ au_{47}$	$p \rightarrow e^+ \nu \nu$	> 11	90%
$ au_{48}$	$n \rightarrow e^+ e^- \nu$	> 74	90%
$ au_{49}$	$n \rightarrow \mu^+ e^- \nu$	> 47	90%
$ au_{50}$	$n \rightarrow \mu^+ \mu^- \nu$	> 42	90%
$ au_{51}$	$ ho ightarrow \ \mu^+ e^+ e^-$	> 91	90%
$ au_{52}$	$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 190	90%
$ au_{53}$	$p \rightarrow \mu^+ \nu \nu$	> 21	90%
$ au_{54}$	$ ho ightarrow ~e^- \mu^+ \mu^+$	> 6	90%
$ au_{55}$	$n \rightarrow 3\nu$	> 0.0005	90%
$ au_{56}$	$n \rightarrow 5\nu$		
	Inclus	sive modes	
$ au_{57}$	$N \rightarrow e^+$ anything	> 0.6 (n, p)	90%
$ au_{58}$	$N ightarrow \ \mu^+$ anything	> 12 (n, p)	90%
$ au_{59}$	$N \rightarrow \nu$ anything		
$ au_{60}$	$N ightarrow ~e^+ \pi^{ extsf{0}}$ anything	> 0.6 (n, p)	90%

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

 $N \rightarrow 2$ bodies, ν -free

 au_{61}

$ au_{62}$	$pp \rightarrow$	$\pi^+\pi^+$	> 0.7	90%
$ au_{63}$	$pn \rightarrow$	$\pi^+\pi^0$	> 2	90%
$ au_{64}$	$n n \rightarrow$	$\pi^+\pi^-$	> 0.7	90%
$ au_{65}$	$n n \rightarrow$	$\pi^0 \pi^0$	> 3.4	90%
$ au_{66}$	pp ightarrow	e^+e^+	> 5.8	90%

$ au_{67}$	$p p \rightarrow$	$e^+\mu^+$	> 3.6	90%
$ au_{68}$	$pp \rightarrow$	$\mu^+\mu^+$	> 1.7	90%
$ au_{69}$	$pn \rightarrow$	$e^+\overline{ u}$	> 2.8	90%
$ au_{70}$	$pn \rightarrow$	$\mu^+\overline{\nu}$	> 1.6	90%
$ au_{71}$	$nn \rightarrow$	$\nu_e \overline{\nu}_e$	> 0.000012	90%
$ au_{72}$	$nn \rightarrow$	$ u_{\mu}\overline{ u}_{\mu}$	> 0.000006	90%

p DECAY MODES

	Mode	Partial mean life (years)	Confidence level
$ au_{73}$	$\overline{p} \rightarrow e^- \gamma$	> 1848	95%
$ au_{74}$	$\overline{ m p} ightarrow e^{-} \pi^{0}$	> 554	95%
$ au_{75}$	$\overline{p} \rightarrow e^- \eta$	> 171	95%
$ au_{76}$	$\overline{ ho} ightarrow ~e^- K^0_S$	> 29	95%
$ au_{77}$	$\overline{ ho} ightarrow ~e^- { m K}^0_L$	> 9	95%

p PARTIAL MEAN LIVES

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life for the proton and B_i is the branching fraction for the mode in question.

Decaying particle: p = proton, n = bound neutron. The same event may appear under more than one partial decay mode. Background estimates may be accurate to a factor of two.

$ au(\mathbf{N} ightarrow \mathbf{e}^+ \pi)$									
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	<u>CL%</u> EV	тs	BKGD EST	DOCUMENT ID		TECN		
>550	p	90	0	0.7	¹⁴ BECKER-SZ	90	IMB3		
>130	n	90	0	<0.2	HIRATA	89C	KAMI		
• • • We d	o not use the	following o	lata	a for averages, fits, l	imits, etc. • • •				
> 70	p	90	0	0.5	BERGER	91	FREJ		
> 70	n	90	0	\leq 0.1	BERGER	91	FREJ		
>260	р	90	0	<0.04	HIRATA	89C	KAMI		
>310	p	90	0	0.6	SEIDEL	88	IMB		
>100	n	90	0	1.6	SEIDEL	88	IMB		
> 1.3	n	90	0		BARTELT	87	SOUD		
> 1.3	р	90	0		BARTELT	87	SOUD		
>250	р	90	0	0.3	HAINES	86	IMB		
> 31	n	90	8	9	HAINES	86	IMB		
> 64	p	90	0	<0.4	ARISAKA	85	KAMI		

>	26	n	90	0	<0.7	ARISAKA	85	KAMI
>	82	p (free)	90	0	0.2	BLEWITT	85	IMB
>2	50	р	90	0	0.2	BLEWITT	85	IMB
>	25	п	90	4	4	PARK	85	IMB
>	15	p, n	90	0		BATTISTONI	84	NUSX
>	0.5	р	90	1	0.3	¹⁵ BARTELT	83	SOUD
>	0.5	п	90	1	0.3	¹⁵ BARTELT	83	SOUD
>	5.8	р	90	2		¹⁶ KRISHNA	82	KOLR
>	5.8	п	90	2		¹⁶ KRISHNA	82	KOLR
>	0.1	n	90			¹⁷ GURR	67	CNTR

 14 This BECKER-SZENDY 90 result includes data from SEIDEL 88. 15 Limit based on zero events. 16 We have calculated 90% CL limit from 1 confined event. 17 We have converted half-life to 90% CL mean life.

$\tau (N \rightarrow \mu)$	$(+\pi)$						τ <u>2</u>
LIMIT (10 ³⁰ years)	PARTICLE	<u>CL%</u>	тs	BKGD EST	DOCUMENT ID		TECN
>100	n	90	0	<0.2	HIRATA	89C	KAMI
>270	р	90	0	0.5	SEIDEL	88	IMB
• • • We d	o not use the	following o	lata	a for averages, fits, lin	nits, etc. 🔹 🔹 🔹		
> 81	p	90	0	0.2	BERGER	91	FREJ
> 35	n	90	1	1.0	BERGER	91	FREJ
>230	p	90	0	<0.07	HIRATA	89 C	KAMI
> 63	п	90	0	0.5	SEIDEL	88	IMB
> 76	р	90	2	1	HAINES	86	IMB
> 23	п	90	8	7	HAINES	86	IMB
> 46	р	90	0	<0.7	ARISAKA	85	KAMI
> 20	п	90	0	<0.4	ARISAKA	85	KAMI
> 59	p (free)	90	0	0.2	BLEWITT	85	IMB
>100	р	90	1	0.4	BLEWITT	85	IMB
> 38	п	90	1	4	PARK	85	IMB
> 10	р, п	90	0		BATTISTONI	84	NUSX
> 1.3	p, n	90	0		ALEKSEEV	81	BAKS

$\tau(N \rightarrow \nu \pi)$

 au_3

> 25 p 90 32 32.8 HIRATA 890 > 100 n 90 1 3 HIRATA 890 • • We do not use the following data for averages, fits, limits, etc. • • 90 1 3 HIRATA 890 > 13 n 90 1 1.2 BERGER 89	TECN
>100 n 9013HIRATA890• • We do not use the following data for averages, fits, limits, etc. • •>13 n 9011.2BERGER89	KAMI
• • We do not use the following data for averages, fits, limits, etc. • • > 13 n 90 1 1.2 BERGER 89	KAMI
> 13 n 90 1 1.2 BERGER 89	
	FREJ
> 10 p 90 11 14 BERGER 89	FREJ
> 6 n 90 73 60 HAINES 86	IMB
> 2 p 90 16 13 KAJITA 86	KAMI
> 40 n 90 0 1 KAJITA 86	KAMI
> 7 n 90 28 19 PARK 85	IMB
> 7 <i>n</i> 90 0 BATTISTONI 84	NUSX
$> 2 p 90 \leq 3$ BATTISTONI 84	NUSX
> 5.8 p 90 1 ¹⁸ KRISHNA 82	KOLR
> 0.3 p 90 2 ¹⁹ CHERRY 81	HOME
> 0.1 p 90 ²⁰ GURR 67	CNTR

HTTP://PDG.LBL.GOV

Created: 6/29/1998 12:15

 18 We have calculated 90% CL limit from 1 confined event. 19 We have converted 2 possible events to 90% CL limit. 20 We have converted half-life to 90% CL mean life.

$\tau(\mathbf{p} \to \mathbf{e}^{H})$	[⊢] η)						$ au_4$
LIMIT (10 ³⁰ years)	PARTICLE	<u>CL%</u> EV	<u>TS</u>	BKGD EST	DOCUMENT ID		TECN
>140	р	90	0	<0.04	HIRATA	89 C	KAMI
• • • We c	lo not use the	following c	lata	a for averages, fits,	limits, etc. $\bullet \bullet \bullet$		
> 44	р	90	0	0.1	BERGER	91	FREJ
>100	р	90	0	0.6	SEIDEL	88	IMB
>200	p	90	5	3.3	HAINES	86	IMB
> 64	р	90	0	<0.8	ARISAKA	85	KAMI
> 64	p (free)	90	5	6.5	BLEWITT	85	IMB
>200	p	90	5	4.7	BLEWITT	85	IMB
> 1.2	p	90	2		²¹ CHERRY	81	HOME
01							

 21 We have converted 2 possible events to 90% CL limit.

$\tau(\mathbf{p} \to \mu^+)$	-η)							75
(10^{30} years)	PARTICLE	CL%	<i>EVTS</i>	BKGD EST	DOCUMENT ID		TECN	
>69	p	90	1	<0.08	HIRATA	89C	KAMI	
• • • We d	o not use the	followin	ıg data	a for averages, fits,	limits, etc. $\bullet \bullet \bullet$			
>26	р	90	1	0.8	BERGER	91	FREJ	
> 1.3	p	90	0	0.7	PHILLIPS	89	HPW	
>34	p	90	1	1.5	SEIDEL	88	IMB	
>46	p	90	7	6	HAINES	86	IMB	
>26	p	90	1	<0.8	ARISAKA	85	KAMI	
>17	p (free)	90	6	6	BLEWITT	85	IMB	
>46	p	90	7	8	BLEWITT	85	IMB	
$\tau(\mathbf{n} \to \nu \eta$	i)							76
(10 ³⁰ years)	PARTICLE	<u>CL%</u>	EVTS	BKGD EST	DOCUMENT ID		TECN	
>54	n	90	2	0.9	HIRATA	89C	KAMI	
• • • We d	o not use the	followin	ıg data	a for averages, fits,	limits, etc. $\bullet \bullet \bullet$			
>29	n	90	0	0.9	BERGER	89	FREJ	
>16	n	90	3	2.1	SEIDEL	88	IMB	
>25	n	90	7	6	HAINES	86	IMB	
>30	n	90	0	0.4	KAJITA	86	KAMI	
>18	n	90	4	3	PARK	85	IMB	
> 0.6	n	90	2		²² CHERRY	81	HOME	
²² We have	e converted 2	possible	e event	s to 90% CL limit.				
$\tau(\mathbf{N} \to \mathbf{e}^{+})$	⁺ ρ)							77

LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>75	р	90	2	2.7	HIRATA	89C	KAMI
>58	n	90	0	1.9	HIRATA	89C	KAMI

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

>29	р	90	0	2.2	BERGER	91	FREJ
>41	п	90	0	1.4	BERGER	91	FREJ
>38	п	90	2	4.1	SEIDEL	88	IMB
> 1.2	р	90	0		BARTELT	87	SOUD
> 1.5	п	90	0		BARTELT	87	SOUD
>17	р	90	7	7	HAINES	86	IMB
>14	п	90	9	4	HAINES	86	IMB
>12	р	90	0	<1.2	ARISAKA	85	KAMI
> 6	п	90	2	$<\!\!1$	ARISAKA	85	KAMI
> 6.7	p (free)	90	6	6	BLEWITT	85	IMB
>17	p	90	7	7	BLEWITT	85	IMB
>12	п	90	4	2	PARK	85	IMB
> 0.6	п	90	1	0.3	²³ BARTELT	83	SOUD
> 0.5	р	90	1	0.3	²³ BARTELT	83	SOUD
> 9.8	р	90	1		²⁴ KRISHNA	82	KOLR
> 0.8	р	90	2		²⁵ CHERRY	81	HOME

 $^{23}_{4}$ Limit based on zero events. $^{24}_{24}$ We have calculated 90% CL limit from 0 confined events. $^{25}_{25}$ We have converted 2 possible events to 90% CL limit.

$\tau(\mathbf{N} \to \mu)$	$^{+} ho)$						$ au_{8}$
LIMI I (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>110	P	90	0	1.7	HIRATA	89C	KAMI
> 23	n	90	1	1.8	HIRATA	89C	KAMI
• • • We d	o not use the	followi	ng data	a for averages, fits, lir	nits, etc. • • •		
> 12	р	90	0	0.5	BERGER	91	FREJ
> 22	п	90	0	1.1	BERGER	91	FREJ
> 4.3	р	90	0	0.7	PHILLIPS	89	HPW
> 30	р	90	0	0.5	SEIDEL	88	IMB
> 11	п	90	1	1.1	SEIDEL	88	IMB
> 16	р	90	4	4.5	HAINES	86	IMB
> 7	п	90	6	5	HAINES	86	IMB
> 12	р	90	0	<0.7	ARISAKA	85	KAMI
> 5	п	90	1	<1.2	ARISAKA	85	KAMI
> 5.5	p (free)	90	4	5	BLEWITT	85	IMB
> 16	p	90	4	5	BLEWITT	85	IMB
> 9	n	90	1	2	PARK	85	IMB
$\tau(N \to \nu)$	ρ)						τg
(10 ³⁰ years)	PARTICLE	<u>CL%</u>	EVTS	BKGD EST	DOCUMENT ID		TECN

(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>27	p	90	5	1.5	HIRATA	89C	KAMI
>19	n	90	0	0.5	SEIDEL	88	IMB

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

> 9	п	90	4	2.4	BERGER 89 FREJ
>24	р	90	0	0.9	BERGER 89 FREJ
>13	п	90	4	3.6	HIRATA 89C KAMI
>13	р	90	1	1.1	SEIDEL 88 IMB
> 8	р	90	6	5	HAINES 86 IMB
> 2	п	90	15	10	HAINES 86 IMB
>11	р	90	2	1	KAJITA 86 KAMI
> 4	п	90	2	2	KAJITA 86 KAMI
> 4.1	p (free)	90	6	7	BLEWITT 85 IMB
> 8.4	р	90	6	5	BLEWITT 85 IMB
> 2	п	90	7	3	PARK 85 IMB
> 0.9	р	90	2		²⁶ CHERRY 81 HOME
> 0.6	п	90	2		²⁶ CHERRY 81 HOME

 26 We have converted 2 possible events to 90% CL limit.

$\tau(p \rightarrow e^{+})$	⁻ω)						$ au_{10}$
(10^{30} years)	PARTICLE	CL% E	/TS	BKGD EST	DOCUMENT ID		TECN
>45	P	90	2	1.45	HIRATA	89 C	KAMI
• • • We d	lo not use the	following	data	a for averages, fits,	limits, etc. • • •		
>17	р	90	0	1.1	BERGER	91	FREJ
>26	p	90	1	1.0	SEIDEL	88	IMB
> 1.5	р	90	0		BARTELT	87	SOUD
>37	p	90	6	5.3	HAINES	86	IMB
>25	р	90	1	<1.4	ARISAKA	85	KAMI
>12	p (free)	90	6	7.5	BLEWITT	85	IMB
>37	p	90	6	5.7	BLEWITT	85	IMB
> 0.6	p	90	1	0.3	²⁷ BARTELT	83	SOUD
> 9.8	р	90	1		²⁸ KRISHNA	82	KOLR
> 2.8	p	90	2		²⁹ CHERRY	81	HOME

 27 Limit based on zero events. 28 We have calculated 90% CL limit from 0 confined events. 29 We have converted 2 possible events to 90% CL limit.

$^{-}\omega)$						$ au_{11}$
PARTICLE	<u>CL%</u> EV	'TS	BKGD EST	DOCUMENT ID		TECN
P	90	2	1.9	HIRATA	89C	KAMI
o not use the	following o	data	a for averages, fits, lin	nits, etc. • • •		
р	90	0	1.0	BERGER	91	FREJ
р	90	0	0.7	PHILLIPS	89	HPW
р	90	2	1.3	SEIDEL	88	IMB
р	90	2	1	HAINES	86	IMB
p (free)	90	9	8.7	BLEWITT	85	IMB
p	90	8	7	BLEWITT	85	IMB
	$(-\omega)$ $\frac{PARTICLE}{p}$ o not use the p	$\begin{array}{c} \hline \boldsymbol{\mu} \\ \underline{PARTICLE} \\ \boldsymbol{p} \\ $	$\begin{array}{c c} \hline \mu \\ \hline PARTICLE \\ \hline p \\ \hline p \\ \hline 90 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ p \\ p \\ p \\ p \\ p \\ p$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$\tau(\mathbf{n} \rightarrow \nu \omega)$	<i>v</i>)						$ au_{12}$
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>43	<u>n</u>	90	3	2.7	HIRATA	89C	KAMI
• • • We d	o not use the	followi	ng data	for averages, fits,	limits, etc. • • •		
>17	n	90	1	0.7	BERGER	89	FREJ
> 6	n	90	2	1.3	SEIDEI	88	IMB
>12	n	90	6	6	HAINES	86	IMB
>18	n	90	2	2	KAJITA	86	KAMI
>16	п	90	1	2	PARK	85	IMB
> 2.0	п	90	2		³⁰ CHERRY	81	HOME
³⁰ We have	e converted 2	possibl	e event	s to 90% CL limit.			
$\tau(\mathbf{N} \to \mathbf{e}^{-})$	+ <i>К</i>)						$ au_{13}$
LIMIT	ρλρτιςι ε	C1%	EVTS	RKCD EST	DOCUMENT ID		TECN
<u>(10 years)</u>		00				<u>00c</u>	
>150	p	90	0	<0.27		09C	
> 1.3	n o not uso the	followi	U na data	for averages fits		01	DAKS
••• vve u	o not use the	TOHOWI	ing uata	a for averages, fits,			
> 60	р	90	0		BERGER	91	FREJ
> 70	р	90	0	1.8	SEIDEL	88	IMB
> //	р	90	5	4.5	HAINES	86	IMB
> 38	р (с.)	90	0	<0.8		85	KAMI
> 24	p (free)	90	7	8.5	BLEWITT	85	IMB
> //	p	90	5	4		85 01	
> 1.5	ρ	90	0		ALENSEEV	01	DANS
$\tau(p \rightarrow e^+)$	⁻ K ⁰ _S)						$ au_{14}$
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>76	p	90	0	0.5	BERGER	91	FREJ
$\tau(\mathbf{p} \rightarrow \mathbf{e}^+)$	⁻ K ⁰ _L)						$ au_{15}$
LIMIT (10 ³⁰ vears)	PARTICI F	CI%	FVTS	BKGD FST	DOCUMENT ID		TECN
		00				01	
/+ +	Ρ	90	U	<u>≥</u> 0.1	DENGEN	91	FREJ
$\tau(\mathbf{N}\to\mu)$	+к)						τ 16
LIMLI (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>120	p	90	1	0.4	HIRATA	89C	KAMI
> 1.1	n	90	0		BARTELT	87	SOUD
● ● ● We d	o not use the	followi	ng data	a for averages, fits,	limits, etc. • • •		
< 5 <i>1</i>	n	90	0		BERGER	01	EREI
> 30	r n	90	0	07	PHILLIPS	80	HPW
> 10	r D	90	े २	2.5	SEIDEI	88	IMR
> 15	r D	90	0	2.5	31 BARTFIT	87	SOUD
> 40	r D	90	7	6	HAINES	86	IMR
> 19	r D	90	1	<1.1	ARISAKA	85	KAMI
> 6.7	p (free)	90	11	13	BLEWITT	85	IMB
	. (-			-
HTTP://I	PDG.LBL.G	OV		Page 12	Created: 6/29	/199	98 12:15

>	40	р	90	7	8	BLEWITT 85 IMB
>	6	р	90	1		BATTISTONI 84 NUSX
>	0.6	р	90	0		³² BARTELT 83 SOUD
>	0.4	n	90	0		³² BARTELT 83 SOUD
>	5.8	р	90	2		³³ KRISHNA 82 KOLR
>	2.0	р	90	0		CHERRY 81 HOME
>	0.2	n	90			³⁴ GURR 67 CNTR

³¹ BARTELT 87 limit applies to $p \rightarrow \mu^+ \kappa_S^0$.

³² Limit based on zero events.
³³ We have calculated 90% CL limit from 1 confined event.
³⁴ We have converted half-life to 90% CL mean life.

$ ho ightarrow \mu^+$	⁼K ⁰ S)							$ au_{17}$
11T ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
64	P	90	0	1.2		BERGER	91	FREJ
$p \rightarrow \mu^+$	- K ⁰ _L)							$ au_{18}$
11T 30		<u>cu</u>						TECH
years)	PARTICLE	<u>CL%</u>	EVIS	BKGD EST		DOCUMENT ID		
14	P	90	0	≤ 0.1		BERGER	91	FREJ
$N \rightarrow \nu$	к)							$ au_{19}$
³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
100	p	90	9	7.3		HIRATA	89C	KAMI
86	n	90	0	2.4		HIRATA	89 C	KAMI
• We d	o not use the	followi	ng data	for averages, f	its, lin	nits, etc. • • •		
15	n	90	1	1.8		BERGER	89	FREJ
15	p	90	1	1.8		BERGER	89	FREJ
0.28	p	90	0	0.7		PHILLIPS	89	HPW
0.3	p	90	0			BARTELT	87	SOUD
0.75	n	90	0		35	BARTELT	87	SOUD
10	р	90	6	5		HAINES	86	IMB
15	n	90	3	5		HAINES	86	IMB
28	р	90	3	3		KAJITA	86	KAMI
32	n	90	0	1.4		KAJITA	86	KAMI
1.8	p (free)	90	6	11		BLEWITT	85	IMB
9.6	р	90	6	5		BLEWITT	85	IMB
10	n	90	2	2		PARK	85	IMB
5	n	90	0			BATTISTONI	84	NUSX
2	р	90	0			BATTISTONI	84	NUSX
0.3	n	90	0		36	BARTELT	83	SOUD
0.1	p	90	0		36	BARTELT	83	SOUD
5.8	p	90	1		37	KRISHNA	82	KOLR
0.3	n	90	2		38	CHERRY	81	HOME
	$P \rightarrow \mu^{+}$ $\frac{N}{30} \frac{1}{\text{ years}}$ 54 $P \rightarrow \mu^{+}$ $\frac{N}{30} \frac{1}{\text{ years}}$ 14 $N \rightarrow \nu \mu^{+}$ $\frac{N}{30} \frac{1}{\text{ years}}$ 10 86 $0 \cdot \text{ We d}$ 15 15 0.28 0.3 0.75 10 15 28 32 1.8 9.6 10 5 2 0.3 0.1 5.8 0.3	$\begin{array}{cccc} p \rightarrow \mu^{+} K_{S}^{0} \\ \hline p \rightarrow \mu^{+} K_{L}^{0} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

³⁵ BARTELT 87 limit applies to $n \rightarrow \nu K_{S}^{0}$.

³⁶ Limit based on zero events.
³⁷ We have calculated 90% CL limit from 1 confined event.
³⁸ We have converted 2 possible events to 90% CL limit.

$\tau(p \rightarrow e^+)$	⁻ K*(892) ⁰)					$ au_{20}$
LIMI I (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
>52	p	90	2	1.55	HIRATA 89	C KAMI
• • • We d	lo not use the	followi	ing data	a for averages, f	its, limits, etc. • • •	
>10	p	90	0	0.8	BERGER 91	FREJ
>10	p	90	1	<1	ARISAKA 85	KAMI
$\tau(N \to \nu)$	K*(892))					τ ₂₁
(10^{30} years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
>22	n	90	0	2.1	BERGER 89	FREJ
>20	P	90	5	2.1	HIRATA 89	C KAMI
• • • We d	lo not use the	followi	ing data	a for averages, f	ïts, limits, etc. ● ● ●	
>17	p	90	0	2.4	BERGER 89	FREJ
>21	n	90	4	2.4	HIRATA 89	C KAMI
>10	p	90	7	6	HAINES 86	
> 5	n	90	8 2	<i>I</i>		
> 0 > 6	р n	90 90	2	2	KAJITA 86	KAMI
> 5.8	p (free)	90	10	16	BLEWITT 85	IMB
> 9.6	p	90	7	6	BLEWITT 85	IMB
> 7	n	90	1	4	PARK 85	IMB
> 2.1	p	90	1		³⁹ BATTISTONI 82	NUSX
³⁹ We hav	e converted 1	possibl	le event	to 90% CL lim	it.	
$\tau(p \rightarrow e^+)$	$\pi^{+}\pi^{-})$					τ <u>22</u>
(10^{30} years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
>21	p	90	0	2.2	BERGER 91	FREJ
$\tau(p \rightarrow e^+)$	$\pi^0\pi^0)$					τ ₂₃
(10 ³⁰ years)	PARTICLE	<u>CL%</u>	EVTS	BKGD EST	DOCUMENT ID	TECN
>38	P	90	1	0.5	BERGER 91	FREJ
$\tau(n \rightarrow e^+)$	$\pi^{-}\pi^{0}$					<i>T</i> 24
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
>32	n	90	1	0.8	BERGER 91	FREJ
$ au(\mathbf{p} \rightarrow \mu^{+})$ LIMIT	$^{+}\pi^{+}\pi^{-})$					<i>T</i> 25
(10 ³⁰ years)	PARTICLE	<u>CL%</u>	EVTS	BKGD EST	DOCUMENT ID	TECN
>17	p	90	1	2.6	BERGER 91	FREJ
• • • We d	lo not use the	followi	ing data	a for averages, f	ïts, limits, etc. ● ● ●	
> 3.3	р	90	0	0.7	PHILLIPS 89	HPW

$\tau(\mathbf{p} \rightarrow \mu^{+})$	[⊢] π ⁰ π ⁰)						$ au_{26}$
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>33	p	90	1	0.9	BERGER	91	FREJ
/ +	= = 0)						
$\tau(\mathbf{n} \rightarrow \mu^{\gamma})$	$\pi^{-}\pi^{\circ})$						$ au_{27}$
<u>(10³⁰ years)</u>	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>33	n	90	0	1.1	BERGER	91	FREJ
-(n , a+	- k0_ =)						-
$(\mathbf{n} \rightarrow \mathbf{e})$	κ -π)						728
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>18	n	90	1	0.2	BERGER	91	FREJ
$\tau(\mathbf{n} \rightarrow \mathbf{e}^{-})$	$\pi^+)$						$ au_{29}$
LIMIT (10 ³⁰ years)	PARTICI F	CI%	FV/TS	BKGD EST	DOCUMENT ID		TECN
<u>(10 years)</u>	n	90	0	16	SEIDEL	88	IMB
• • • We d	o not use the	followi	ng data	a for averages, fits	, limits, etc. $\bullet \bullet \bullet$	00	inte
>55	n	90	0	1.09	BERGER	91 B	FREJ
>16	n	90	9	7	HAINES	86	IMB
>25	n	90	2	4	PARK	85	IMB
$\tau(\mathbf{n} \rightarrow \mu^{-})$	(π^{+})						$ au_{30}$
LIMIT (10 ³⁰ vears)	PARTICI F	CI %	EVTS	BKGD EST	DOCUMENT ID		TECN
>49	n	90	0	0.5	SEIDEL	88	IMB
• • • We d	o not use the	followi	ng data	a for averages, fits	, limits, etc. • • •		
>33	n	90	0	1.40	BERGER	91 B	FREJ
> 2.7	n	90	0	0.7	PHILLIPS	89	HPW
>25	п	90	7	6	HAINES	86	IMB
>27	n	90	2	3	PARK	85	IMB
$\tau(\mathbf{n} \rightarrow \mathbf{e}^{-})$	(ρ^+)						$ au_{31}$
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>62	n	90	2	4.1	SEIDEL	88	IMB
• • • We d	o not use the	followi	ng data	a for averages, fits	, limits, etc. • • •		
>12	n	90	13	6	HAINES	86	IMB
>12	n	90	5	3	PARK	85	IMB
$\tau(\mathbf{n} \rightarrow \mu^{-})$	- ρ ⁺)						τ 32
(10^{30} years)	PARTICLE	<u>CL%</u>	EVTS	BKGD EST	DOCUMENT ID		TECN
>7	n	90	1	1.1	SEIDEL	88	IMB
• • • We d	o not use the	followi	ng data	a for averages, fits	, limits, etc. • • •		
>2.6	n	90	0	0.7	PHILLIPS	89	HPW
>9	n	90	7	5	HAINES	86	IMB
>9	n	90	2	2	PARK	85	IMB
HTTP://I	PDG.LBL.G	OV		Page 15	Created: 6/29	/199	98 12:15

 $\tau(\mathbf{n} \rightarrow \mathbf{e}^{-}\mathbf{K}^{+})$ au_{33} (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN 3 2.96 >32 n 90 BERGER 91B FREJ • • • We do not use the following data for averages, fits, limits, etc. • • • > 0.23 90 0 0.7 PHILLIPS 89 HPW п $\tau(\mathbf{n} \rightarrow \mu^- \mathbf{K}^+)$ au_{34} LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN 0 2.18 >57 90 BERGER 91B FREJ n • • We do not use the following data for averages, fits, limits, etc. • • • > 4.7 90 0 0.7 п PHILLIPS 89 HPW $\tau(\mathbf{p} \rightarrow \mathbf{e}^- \pi^+ \pi^+)$ au_{35} LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN 90 1 2.50 BERGER 91B FREJ >30 р • • • We do not use the following data for averages, fits, limits, etc. • • • > 2.0 p 90 0 0.7 PHILLIPS 89 HPW $\tau(n \rightarrow e^- \pi^+ \pi^0)$ τ_{36} LIMIT (10³⁰ years) PARTICLE DOCUMENT ID CL% EVTS BKGD EST TECN >29 1 0.78 90 91B FREJ BERGER n $\tau(\mathbf{p} \rightarrow \mu^- \pi^+ \pi^+)$ τ_{37} LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN >17 р 90 1 1.72 BERGER 91B FREJ • • We do not use the following data for averages, fits, limits, etc. • • • > 7.8 90 0 0.7 PHILLIPS 89 HPW р $\tau(\mathbf{n} \rightarrow \mu^{-} \pi^{+} \pi^{0})$ au_{38} LIMIT <u>(10</u>³⁰ years) TECN PARTICLE CL% EVTS BKGD EST DOCUMENT ID >34 90 0 0.78 91B FREJ n BERGER $\tau(\mathbf{p} \rightarrow \mathbf{e}^- \pi^+ \mathbf{K}^+)$ au_{39} (10³⁰ years) PARTICLE CL% DOCUMENT ID TECN EVTS BKGD EST 90 3 2.50 91B FREJ >20 BERGER p $\tau(\mathbf{p} \rightarrow \mu^{-} \pi^{+} K^{+})$ au_{40} (10³⁰ years) EVTS BKGD EST PARTICLE CL% DOCUMENT ID TECN >5 90 2 0.78 BERGER 91B FREJ р

$ au(\mathbf{p} ightarrow \mathbf{e}^+)$	⁻ γ)							$ au_{41}$
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
>460	P	90	0	0.6		SEIDEL	88	IMB
• • • We d	o not use the	followi	ng data	a for averages,	, fits,	limits, etc. • • •		
>133	D	90	0	0.3		BERGER	91	FREJ
>360	p	90	0	0.3		HAINES	86	IMB
> 87	p (free)	90	0	0.2		BLEWITT	85	IMB
>360	p	90	0	0.2		BLEWITT	85	IMB
> 0.1	p	90				⁴⁰ GURR	67	CNTR
⁴⁰ We hav	e converted h	alf-life	to 90%	CL mean life.				
$\tau(p \rightarrow \mu^{\dashv})$	⁺ γ)							τ 42
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
>380	D	90	0	0.5	_	SEIDEL	88	IMB
• • • We d	o not use the	followi	ng data	a for averages,	, fits,	limits, etc. • • •		
>155	D	90	0	0.1		BERGER	91	FREJ
> 97	p	90	3	2		HAINES	86	IMB
> 61	p (free)	90	0	0.2		BLEWITT	85	IMB
>280	p	90	0	0.6		BLEWITT	85	IMB
> 0.3	p	90				⁴¹ GURR	67	CNTR
⁴¹ We hav	e converted h	alf-life	to 90%	CL mean life.				
$\tau(n \rightarrow u)$	<u>л</u>							Tio
	")							/43
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
>24	n	90	10	6.86		BERGER	91 B	FREJ
• • • We d	o not use the	followi	ng data	a for averages,	, fits,	limits, etc. • • •		
> 9	n	90	73	60		HAINES	86	IMB
>11	n	90	28	19		PARK	85	IMB
L /	- \							
$\tau(\mathbf{p} \rightarrow \mathbf{e})$	$\gamma\gamma)$							<i>T</i> 44
(10^{30} years)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
>100	P	90	1	0.8		BERGER	91	FREJ
$ au(\mathbf{p} ightarrow \mathbf{e}^+)$	- e+ e-)							$ au_{45}$
LIMIT (10 ³⁰ vears)	PARTICLE	CL%	EVTS	BKGD EST		DOCUMENT ID		TECN
>510	<i>n</i>	90	0	0.3	_	HAINES	86	IMB
• • • We d	o not use the	followi	ng data	a for averages,	, fits,	limits, etc. • • •		
>147	D	90	- 0	0.1		BERGFR	91	FREI
> 89	p (free)	90	0	0.5		BLEWITT	85	IMB
>510	p	90	0	0.7		BLEWITT	85	IMB
	-							

 $\tau(\mathbf{p} \rightarrow \mathbf{e}^+ \mu^+ \mu^-)$ 746 (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN 0 0.16 >81 90 BERGER 91 FREJ р • • • We do not use the following data for averages, fits, limits, etc. • • • > 5.0 90 0 0.7 PHILLIPS 89 HPW р $\tau(\mathbf{p} \rightarrow \mathbf{e}^+ \nu \nu)$ τ47 LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN >11 90 11 6.08 BERGER 91B FREJ p $\tau(\mathbf{n} \rightarrow \mathbf{e}^+ \mathbf{e}^- \mathbf{\nu})$ au_{48} *LIMIT* (10³⁰ years) EVTS TECN PARTICLE CL% BKGD EST DOCUMENT ID 0 < 0.1 >74 90 91B FREJ BERGER n • • We do not use the following data for averages, fits, limits, etc. • • • 55 >45 90 HAINES 86 IMB п >26 90 43 PARK IMB п 85 $\tau(\mathbf{n} \rightarrow \mu^+ e^- \nu)$ τ49 LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN >47 90 0 < 0.1 91B FREJ n BERGER $\tau(\mathbf{n} \rightarrow \mu^+ \mu^- \nu)$ τ_{50} (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN 0 1.4 90 91B FREJ >42 BERGER n • • • We do not use the following data for averages, fits, limits, etc. • • • > 5.1 п 90 0 0.7 PHILLIPS 89 HPW 90 HAINES 86 IMB > 1614 7 п >19 п 90 47 PARK 85 IMB $\tau(\mathbf{p} \rightarrow \mu^+ \mathbf{e}^+ \mathbf{e}^-)$ au_{51} LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN < 0.1 >91 90 0 91 FREJ BERGER р $\tau(\mathbf{p} \rightarrow \mu^+ \mu^+ \mu^-)$ τ_{52} LIMIT (10³⁰ years) CL% PARTICLE EVTS BKGD EST DOCUMENT ID TECN 1 0.1 >190 р 90 HAINES 86 IMB • • • We do not use the following data for averages, fits, limits, etc. • • • >119 90 0 0.2 91 FREJ BERGER р > 10.5 90 0 0.7 PHILLIPS 89 HPW р > 44 p (free) 90 1 0.7 BLEWITT 85 IMB >190 BLEWITT 90 1 0.9 85 IMB р ⁴² BATTISTONI 82 NUSX > 2.1 р 90 1 42 We have converted 1 possible event to 90% CL limit.

HTTP://PDG.LBL.GOV

Page 18

Created: 6/29/1998 12:15

$\tau(\mathbf{p} \rightarrow \mu^+)$	<i>νν</i>)					$ au_{53}$
LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
>21	P	90	7	11.23	BERGER	91B FREJ
$\tau(\mathbf{p} \rightarrow \mathbf{e}^{-})$	$(\mu^+\mu^+)$					$ au_{54}$
(10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID	TECN
>6.0	P	90	0	0.7	PHILLIPS	89 HPW
1 0	`					
$\tau(\mathbf{n}\rightarrow 3\nu)$)					$ au_{55}$
$\frac{\tau(\mathbf{n} \rightarrow 3\nu)}{LIMIT}$ (10 ³⁰ years)) PARTICLE	<u>CL%</u>	EVTS	BKGD EST	DOCUMENT ID	755
$ \begin{aligned} \tau (n \rightarrow 3\nu) \\ LIMIT \\ (10^{30} \text{ years}) \\ \hline > 0.00049 \end{aligned} $) PARTICLE n	<u>CL%</u> 90	<u>EVTS</u> 2	<u>BKGD EST</u>	<u>DOCUMENT ID</u> 43 SUZUKI	755 <u>тесл</u> 93в камі
$\tau(\mathbf{n} \rightarrow 3\nu)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ $\mathbf{>0.00049}$ $\mathbf{\cdot} \mathbf{\cdot} \mathbf{\cdot} \mathbf{We d}$) <u>PARTICLE</u> n o not use the	<u>CL%</u> 90 followir	<u>EVTS</u> 2 ng data	BKGD EST 2 a for averages, fits	DOCUMENT ID 43 SUZUKI , limits, etc. • • •	755 <u>тесм</u> 93в КАМІ
$\tau(\mathbf{n} \rightarrow 3\nu)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ $\mathbf{>0.00049}$ $\mathbf{\cdot} \mathbf{\cdot} \mathbf{We d}$ $\mathbf{>0.0023}$) <u>PARTICLE</u> n o not use the n	<u>CL%</u> 90 followin 90	<u>EVTS</u> 2 ng data	<u>BKGD EST</u> 2 a for averages, fits	$\frac{DOCUMENT \ ID}{43}$ SUZUKI 5, limits, etc. • • • 44 GLICENSTEIN	755 <u>тесм</u> 93в КАМІ 97 КАМІ
$\tau(n \to 3\nu)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ >0.00049 ••• We develop >0.0023 >0.00003) <u>PARTICLE</u> n o not use the n n	<u>CL%</u> 90 followin 90 90	<u>EVTS</u> 2 ng data 11	<u>BKGD EST</u> 2 6.1	DOCUMENT ID 43 SUZUKI 44 GLICENSTEIN 45 BERGER	755 <u>755</u> 93в КАМІ 97 КАМІ 91в FREJ
$\tau (n \rightarrow 3\nu)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ >0.00049 ••• We develop 20.00023 >0.00003 >0.00012) <u>PARTICLE</u> n o not use the n n n	<u>CL%</u> 90 followin 90 90 90	<u>EVTS</u> 2 ng data 11 7	BKGD EST 2 a for averages, fits 6.1 11.2	DOCUMENT ID 43 SUZUKI , limits, etc. • • • 44 GLICENSTEIN 45 BERGER 45 BERGER	755 <u>755</u> 93в КАМІ 97 КАМІ 91в FREJ 91в FREJ
$\tau (n \rightarrow 3\nu)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ >0.00049 ••• We develop 20.0003 >0.00003 >0.00012 >0.0005) <u>PARTICLE</u> n o not use the n n n n	<u>CL%</u> 90 followin 90 90 90 90	<u>EVTS</u> 2 ng data 11 7 0	BKGD EST 2 a for averages, fits 6.1 11.2	43 SUZUKI 43 SUZUKI 5, limits, etc. • • • 44 GLICENSTEIN 45 BERGER 45 BERGER LEARNED	755 <u>7255</u> 938 КАМІ 978 КАМІ 918 FREJ 918 FREJ 79 RVUE

⁴⁴ GLICENSTEIN 97 uses Kamioka data and the idea that the disappearance of the neutron's magnetic moment should produce radiation. ⁴⁵ The first BERGER 91B limit is for $n \rightarrow \nu_e \nu_e \overline{\nu}_e$, the second is for $n \rightarrow \nu_\mu \nu_\mu \overline{\nu}_\mu$.

$\tau(\mathbf{n} \rightarrow 5\nu)$)				$ au_{56}$
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	<u>CL%</u> EVTS	BKGD EST	DOCUMENT ID	TECN
• • • We de	o not use the	following data	a for averages, fits,	limits, etc. • • •	
>0.0017	n	90		⁴⁶ GLICENSTEIN 97	KAMI

⁴⁶ GLICENSTEIN 97 uses Kamioka data and the idea that the disappearance of the neutron's magnetic moment should produce radiation.

$\tau (N \rightarrow e^{-})$	⁺ anything)							$ au_5$	7
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	<u>EVTS</u>	BKGD EST		DOCUMENT ID		TECN	
>0.6	p, n	90			47	LEARNED	79	RVUE	
47 -									

The electron may be primary or secondary.

$\tau(N \to \mu^{-})$	⁺ anything)						$ au_{58}$
<i>LIMIT</i> (10 ³⁰ years)	PARTICLE	CL%	EVTS	BKGD EST	DOCUMENT ID		TECN
>12	р, п	90	2		^{48,49} CHERRY	81	HOME
• • • We de	o not use the	followi	ng data	for averages,	fits, limits, etc. $\bullet \bullet \bullet$		
> 1.8 > 6	р, п р, п	90 90			⁴⁹ COWSIK ⁴⁹ LEARNED	80 79	CNTR RVUE

 $^{48}\,\rm We$ have converted 2 possible events to 90% CL limit. $^{49}\,\rm The$ muon may be primary or secondary.

HTTP://PDG.LBL.GOV

 $\tau(N \rightarrow \nu \text{ anything})$ au_{59} Anything = π , ρ , K, etc. LIMIT <u>(1</u>0³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • >0.0002 р, п 90 0 LEARNED 79 RVUE $\tau (N \rightarrow e^+ \pi^0 \text{anything})$ τ_{60} LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN 0 79 RVUE >0.6 p, n 90 LEARNED τ (N \rightarrow 2 bodies, ν -free) au_{61} LIMIT (10³⁰ years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • >1.3 90 0 ALEKSEEV 81 BAKS p, n $\tau(pp \rightarrow \pi^+\pi^+)$ τ_{62} LIMIT (10³⁰ years) <u>CL%</u> <u>EVTS</u> <u>BKGD EST</u> DOCUMENT ID TECN COMMENT >0.7 90 4 2.34 BERGER 91B FREJ τ per iron nucleus $\tau(pn \rightarrow \pi^+ \pi^0)$ au_{63} LIMIT (10³⁰ years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT 90 >2.0 0 0.31 BERGER 91B FREJ τ per iron nucleus $\tau(nn \rightarrow \pi^+\pi^-)$ au_{64} LIMIT (10³⁰ years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT 90 >0.7 4 2.18 BERGER 91B FREJ τ per iron nucleus $\tau(nn \rightarrow \pi^0 \pi^0)$ au_{65} *LIMIT* (10³⁰ years) <u>CL%</u> EVTS BKGD EST <u>COMMENT</u> DOCUMENT ID TECN 0 0.78 >3.4 90 BERGER 91B FREJ τ per iron nucleus $\tau(pp \rightarrow e^+e^+)$ τ_{66} LIMIT (10³⁰ years) <u>CL%</u> COMMENT EVTS BKGD EST DOCUMENT ID TECN >5.8 90 0 < 0.1 BERGER 91B FREJ τ per iron nucleus $\tau(pp \rightarrow e^+\mu^+)$ τ_{67} LIMIT (10³⁰ years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT >3.6 90 0 < 0.1 BERGER 91B FREJ τ per iron nucleus $\tau(pp \rightarrow \mu^+ \mu^+)$ τ_{68} (10³⁰ years) <u>CL%</u> EVTS BKGD EST DOCUMENT ID TECN COMMENT 90 0 0.62 BERGER 91B FREJ τ per iron nucleus >1.7 HTTP://PDG.LBL.GOV Page 20 Created: 6/29/1998 12:15

$\tau(pn \rightarrow \epsilon)$	$(\mathbf{v}^+ \overline{\mathbf{v}})$							$ au_{69}$
(10 ³⁰ years)	CL%	EVTS	BKGD EST	<u> </u>	DOCUMENT ID		TECN	COMMENT
>2.8	90	5	9.67	E	BERGER	91 B	FREJ	au per iron nucleus
$\tau(pn \rightarrow \mu)$	$\iota^+\overline{\nu})$							$ au_{70}$
(10^{30} years)	CL%	EVTS	BKGD EST	<u> </u>	DOCUMENT ID		TECN	COMMENT
>1.6	90	4	4.37	I	BERGER	91 B	FREJ	au per iron nucleus
$\tau(nn \rightarrow \nu)$	$v_e \overline{v}_e$							$ au_{71}$
(10 ³⁰ years)	CL%	EVTS	BKGD EST	<u>l</u>	DOCUMENT ID		TECN	COMMENT
>0.00012	90	5	9.7	I	BERGER	91 B	FREJ	au per iron nucleus
$\tau(nn \rightarrow \nu)$	$(\mu \overline{\nu}_{\mu})$							772
(10^{30} years)	CL%	EVTS	BKGD EST	<u> </u>	DOCUMENT ID		TECN	COMMENT
>0.00006	90	4	4.4	I	BERGER	91 B	FREJ	au per iron nucleus

PARTIAL MEAN LIVES

The "partial mean life" limits tabulated here are the limits on $\overline{\tau}/B_i$, where $\overline{\tau}$ is the total mean life for the antiproton and B_i is the branching fraction for the mode in question.

$\tau(\overline{p} \rightarrow e^- \gamma)$						au73
VALUE (years)	CL%	DOCUMENT ID		TECN	COMMENT	
>1848	95	GEER	94	CALO	8.9 GeV/ $c \ \overline{p}$ beam	
$\tau(\overline{p} \rightarrow e^{-}\pi^{0})$						7 74
VALUE (years)	CL%	DOCUMENT ID		TECN	COMMENT	
>554	95	GEER	94	CALO	8.9 GeV/ $c \ \overline{p}$ beam	
$\tau(\overline{p} \rightarrow e^- \eta)$						775
VALUE (years)	CL%	DOCUMENT ID		TECN	COMMENT	
>171	95	GEER	94	CALO	8.9 GeV/ $c \ \overline{p}$ beam	
$\tau(\overline{p} \rightarrow e^- K_S^0)$						$ au_{76}$
VALUE (years)	CL%	DOCUMENT ID		TECN	COMMENT	
>29	95	GEER	94	CALO	8.9 GeV/ $c \ \overline{p}$ beam	
$ au(\overline{p} ightarrow e^- K_I^0)$						777
VALUE (years)	CL%	DOCUMENT ID		TECN	COMMENT	
>9	95	GEER	94	CALO	8.9 GeV/ <i>c p</i> beam	

p REFERENCES

GLICENSTEIN	97	PL B411 326	LE Glicenstein	(SACL)
GABRIELSE	95	PRL 74 3544	+Phillips. Quint+	(HARV. MANZ. SEOUL)
MACGIBBON	95	PR C52 2097	+Garino, Lucas, Nathan+	(ILL. SASK. INRM)
GEER	94	PRL 72 1596	+Marriner, Ray+	(FNAL, UCLA, PSU)
HALLIN	93	PR C48 1497	+Amendt, Bergstrom+	(SASK, BOST, ILL)
SUZUKI	93B	PL B311 357	+Fukuda, Hirata, Inoue+	(KAMIOKANDE Collab.)
HUGHES	92	PRL 69 578	+Deutch	LANL, AARH)
ZIEGER	92	PL B278 34	+Van de Vyver, Christmann, DeGr	aeve+ (MPCM)
Also	92B	PL B281 417 (erratum)	Zieger,, Van den Abeele, Zieg	ler (MPCM)
BERGER	91	ZPHY C50 385	+Froehlich, Moench, Nisius+	(FREJUS Collab.)
BERGER	91B	PL B269 227	+Froehlich, Moench, Nisius+	(FREJUS Collab.)
FEDERSPIEL	91	PRL 67 1511	+Eisenstein, Lucas, MacGibbon+	(ILL)
BECKER-SZ	90	PR D42 2974	Becker-Szendy, Bratton, Cady, Ca	asper+ (IMB-3 Collab.)
ERICSON	90	EPL 11 295	+Richter	(CERN, DARM)
GABRIELSE	90	PRL 65 1317	+Fei, Orozco, I joelker+ (HA	RV, MANZ, WASH, IBS)
BERGER	89	NP B313 509	+Froehlich, Moench+	(FREJUS Collab.)
	89	PRL 63 2559	+Sangster, Hinds	(YALE)
	89C	PL B220 308	+Kajita, Kitune, Kinara+	(Kamiokande Collab.)
PHILLIPS	89	PL B224 348	+Matthews, Aprile, Cline+	(CEDN DC176 Callab.)
KREISSL SEIDEI	00 00	ZPHY C37 557	+Hancock, Koch, Koenier, Poth+	(CERN PS170 Collab.)
BARTELT	87	PR D36 1000	\pm Courant Heller \pm	(Soudan Collab.)
Also	89	PR D40 1701 erratum	Bartelt Courant Heller+	(Soudan Collab.)
COHEN	87	RMP 59 1121	+Taylor	(BISC NBS)
HAINES	86	PRI 57 1986	+Bionta Blewitt Bratton Casper-	+ (IMB Collab)
KAJITA	86	JPSJ 55 711	+Arisaka, Koshiba, Nakahata+	(Kamiokande Collab.)
ARISAKA	85	JPSJ 54 3213	+Kaiita, Koshiba, Nakahata+	(Kamiokande Collab.)
BLEWITT	85	PRL 55 2114	+LoSecco. Bionta. Bratton+	(IMB Collab.)
DZUBA	85	PL 154B 93	+Flambaum, Silvestrov	(NOVO)
PARK	85	PRL 54 22	+Blewitt, Cortez, Foster+	(IMB Collab.)
BATTISTONI	84	PL 133B 454	+Bellotti, Bologna, Campana+	(NÙSEX Collab.)
MARINELLI	84	PL 137B 439	+Morpurgo	(GENO)
WILKENING	84	PR A29 425	+Ramsey, Larson	(HARV, VIRG)
BARTELT	83	PRL 50 651	+Courant, Heller, Joyce, Marshak+	- (MINN, ANL)
BATTISTONI	82	PL 118B 461	+Bellotti, Bologna, Campana+	(NUSEX Collab.)
KRISHNA	82	PL 115B 349	Krishnaswamy, Menon+	(TATA, OSKC, INUS)
ALEKSEEV	81	JETPL 33 651	+Bakatanov, Butkevich, Voevodski	i+ (PNPI)
	01	Iranslated from ZEIFF	' 33 004.	
	81 81	PRL 47 1507	+Deakyne, Lande, Lee, Steinberg+	(PENN, BNL)
RELI	70	PL 86R 215	+ Narasilliali	(TATA)
	79	PE 00B 213 PPI 43 1106	+Carvetti, Carron, Charley, Cittonin	
	70	PRI /3 007	+Reines Soni	
BREGMAN	78	PL 78B 174	+Calvetti Carron Cittolin Hauer	Herr (CERN)
ROBERTS	78	PR D17 358	- Calvetti, Califon, Cittolini, Hauer,	
FVANS	77	Science 107 989	+ Steinberg	(BNI PENN)
ROBERSON	77	PR C16 1945	+King Kunselman+ (WYOM	
HU	75	NP A254 403	+Asano Chen Cheng Dugan+	
COHEN	73	JPCRD 2 663	+Tavlor	(RISC. NBS)
DYLLA	73	PR A7 1224	+King	(MIT)
BAMBERGER	70	PL 33B 233	+Lvnen. Piekarz+	(MPIH. CERN. KARL)
DIX	70	Thesis Case		(CASE)
HARRISON	69	PRL 22 1263	+Sandars, Wright	(OXF)
GURR	67	PR 158 1321	+Kropp, Reines, Meyer	(CASE, ŴITW)
FLEROV	58	DOKL 3 79	+Klochkov, Skobkin, Terentev	(ASCI)
				. ,