Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L^{\pm}) MASS LIMITS

These experiments assumed that a fourth generation L^{\pm} decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^{\pm} decays to a light ν_ℓ via mixing.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, *i.e.* $\ell^* \rightarrow \ell \gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>81.5	95	ACKERSTAFF	98C OPAL	Assumed $m_{L^{\pm}} - m_{L^0} > 8.4$ GeV
>80.2	95	ACKERSTAFF	98c OPAL	$m_{L^0} > m_{L^{\pm}}$ and $L^{\pm} \rightarrow \nu W$
>72	95	ACCIARRI	97P L3	Assumed $m_{l^{\pm}} - m_{\nu_{l}} > 10 \text{ GeV}$
>81	95	ACCIARRI	97P L3	Assumed $m_{l^{\pm}} - m_{\nu_{l}} > 20 \text{ GeV}$
>78.7	95	ACCIARRI	97P L3	Light ν , $\sqrt{s}=161$, 172 GeV
< 48 or $>$ 61	95	¹ ACCIARRI	96G L3	
>64.5	95	ALEXANDER	96p OPAL	$m_L - m_{10} > 10 { m GeV}$
>63.5	95	BUSKULIC	96s ALEP	$m_L^2 - m_{10}^2 > 7 \text{ GeV}$
>42.8	95	ADEVA	90s L3	Decay to Dirac ν_I
>44.3	95	AKRAWY	90g OPAL	-
• • • We do no	t use the	e following data for	averages, fits	s, limits, etc. • • •
>73.5	95	ACKERSTAFF	97d OPAL	Assumed $m_{L^\pm}^{}-m_{ u_I}^{}>$ 13 GeV
>76.7	95	ACKERSTAFF	97d OPAL	$m_{\nu_I} > m_{I^{\pm}}$ and $L^{\pm} \rightarrow \nu W^*$
>63.9	95	ALEXANDER	96p OPAL	Decay to massless ν 's
>65	95	BUSKULIC	96s ALEP	Decay to massless ν 's
none 10–225		² AHMED	94 CNTR	H1 Collab. at HERA
none 12.6-29.6	95	KIM	91b AMY	Massless $ u$ assumed
>42.7	95	DECAMP	90F ALEP	
none 0.5–10	95	³ RILES	90 MRK2	For $(m_{10} - m_{10}) > 0.25 - 0.4 \text{GeV}$
> 8		⁴ STOKER		For $(m_{l^+} - m_{l^0}) = 0.4$ GeV
>12		⁴ STOKER		For $m_{10} = 0.9$ GeV
none 18.4–27.6	95	⁵ ABE	88 VNS	L
>25.5	95	⁶ ADACHI	88b TOPZ	
none 1.5–22.0	95	BEHREND	88C CELL	
>41	90	⁷ ALBAJAR	87b UA1	
>22.5	95	⁸ ADEVA	85 MRKJ	
>18.0	95	⁹ BARTEL	83 JADE	
none 4–14.5	95	¹⁰ BERGER	81b PLUT	
>15.5	95	¹¹ BRANDELIK	81 TASS	
>13.		¹² AZIMOV	80	
>16.	95	¹³ BARBER	80B CNTR	
> 0.490		¹⁴ ROTHE	69 RVUE	

HTTP://PDG.LBL.GOV

¹ACCIARRI 96G assumes LEP result that the associated neutral heavy lepton mass > 40 GeV.

- ² The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^- \rightarrow e\gamma$, $L^- \rightarrow \nu W^-$, $L^- \rightarrow eZ$; and $L^0 \rightarrow \nu \gamma$, $L^0 \rightarrow e^- W^+$, $L^- \rightarrow \nu Z$, where the *W* decays to $\ell \nu_{\ell}$, or to jets, and *Z* decays to $\ell^+ \ell^-$ or jets.
- ³ RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^-} m_{L^0}$ was allowed to be quite small, where L^0 denotes the neutrino into which the sequential charged lepton decays. With a slightly reduced $m_{L^{\pm}}$ range, the mass difference extends to about 4 GeV.
- ⁴ STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^+) mass for the generalized case in which the corresponding neutral heavy lepton (L^0) in the SU(2) doublet is not of negligible mass.
- ⁵ABE 88 search for L^+ and $L^- \rightarrow$ hadrons looking for acoplanar jets. The bound is valid for $m_{\nu} < 10$ GeV.
- ⁶ ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. $E_{cm}^{ee} = 52$ GeV.
- ⁷Assumes associated neutrino is approximately massless.
- ⁸ ADEVA 85 analyze one-isolated-muon data and sensitive to τ <10 nanosec. Assume B(lepton) = 0.30. $E_{\rm cm}$ = 40–47 GeV.
- ⁹BARTEL 83 limit is from PETRA e^+e^- experiment with average $E_{cm} = 34.2$ GeV.
- ¹⁰ BERGER 81B is DESY DORIS and PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$. ¹¹ BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹² AZIMOV 80 estimated probabilities for M + N type events in $e^+e^- \rightarrow L^+L^-$ deducing semi-hadronic decay multiplicities of L from e^+e^- annihilation data at $E_{\rm cm} = (2/3)m_L$. Obtained above limit comparing these with e^+e^- data (BRANDELIK 80).
- ¹³BARBER 80B looked for $e^+e^- \rightarrow L^+L^-$, $L \rightarrow \nu_L^+X$ with MARK-J at DESY-PETRA.
- $^{14}\,{\rm ROTHE}$ 69 examines previous data on μ pair production and π and K decays.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN
>84.2	95	ACCIARRI	97 P	L3
$\bullet \bullet \bullet$ We do not use the	following d	lata for averages	, fits,	limits, etc. • • •
>28.2	95 15	ADACHI	90 C	TOPZ
none 18.5-42.8	95	AKRAWY	900	OPAL
>26.5	95	DECAMP	90F	ALEP
none m_{μ} –36.3	95	SODERSTROM	/190	MRK2

¹⁵ ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the	following	data for averages	, fits,	, limits,	etc. •	• •
>0.1	0	¹⁶ ANSORGE	73 B	HBC	_	Long-lived
none 0.55–4.5		¹⁷ BUSHNIN	73	CNTR	_	Long-lived
none 0.2–0.92		¹⁸ BARNA	68	CNTR	_	Long-lived
none 0.97-1.03		¹⁸ BARNA	68	CNTR	_	Long-lived
10						

¹⁰ ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung.

HTTP://PDG.LBL.GOV

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

 17 BUSHNIN 73 is SERPUKOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.

¹⁸ BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS								
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	CHG			
$\bullet \bullet \bullet$ We do not use the	e followin	g data for average	s, fits	s, limits,	etc. •			
none 1–9 GeV	90	¹⁹ CLARK	81	SPEC	++			

 19 CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_P which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Produciton Cross Section."

Doubly-Charged Lepton Production Cross Section $(\mu N \text{ Scattering})$

VALUE (cm ²)	EVTS	DOCUMENT	ID	TECN	CHG
$\bullet \bullet \bullet$ We do not use the	e following	data for avera	ges, fits	, limits,	etc. • • •
$< 6. \times 10^{-38}$	0 2	²⁰ CLARK	81	SPEC	++
²⁰ CLARK 81 is FNAL	experiment	t with 209 Ge\	/ muon.	Looked	I for μ^+ nucleon $\rightarrow \overline{\mu}_P^0 X$,
$\overline{\mu}_{P}^{0} ightarrow \ \mu^{+} \mu^{-} \overline{ u}_{\mu}$ and	nd μ^+ n $ ightarrow$	μ_P^{++} X, μ_P^{+-}	$^+ \rightarrow 2\mu$	$\mu^{+}\nu_{\mu}$.	Above limits are for $\sigma imes BR$
taken from their mas	ss-depende	nce plot figure	2.	,	

REFERENCES FOR Heavy Charged Lepton Searches

ACKERSTAFF ACCIARRI	98C 97P	EPJ C1 45 PL B412 189	K. Ackerstaff+ +Adriani, Aguilar-Benitez, Ahlen+	(OPAL Collab.) (L3 Collab.)
ACKERSTAFF	97D	PL B393 217	+Allexander, Allison, Altekamp+	(OPAL Collab.)
ACCIARRI	96G	PL B377 304	+Adam, Adriani, Aguilar-Benitez+	(L3 Collab.)
ALEXANDER	96P	PL B385 433	+Allison, Altekamp, Ametewee+	(OPAL Collab.)
BUSKULIC	96S	PL B384 439	+De Bonis, Decamp, Ghez+	(ALEPH Collab.)
AHMED	94	PL B340 205	+	(H1 Collab.)
KIM	91B	IJMP A6 2583	+Smith, Breedon, Ko+	(AMY Collab.)
ADACHI	90C	PL B244 352	+Aihara, Doser, Enomoto+	(TOPAZ Collab.)
ADEVA	90S	PL B251 321	+Adriani, Aguilar-Benitez, Akbari+	(L3 Collab.)
AKRAWY	90G	PL B240 250	+Alexander, Allison, Allport+	(OPAL Collab.)
AKRAWY	90O	PL B252 290	+Alexander, Allison, Allport, Anderson+	(OPAL Collab.)
DECAMP	90F	PL B236 511	+Deschizeaux, Lees, Minard+	(ÀLEPH Collab.)
RILES	90	PR D42 1	+Perl, Barklow+	(Mark II Collab.)
SODERSTROM	190	PRL 64 2980	+McKenna, Abrams, Adolphsen, Averill+	(Mark II Collab.)
STOKER	89	PR D39 1811	+Perl, Abrams+	(Mark II Collab.)
ABE	88	PRL 61 915	+Amako, Arai, Asano, Chiba	(VENUS Collab.)
ADACHI	88B	PR D37 1339	+ Aihara, Dijkstra, Enomoto+	(TOPAZ Collab.)
BEHREND	88C	ZPHY C41 7	+Buerger, Criegee, Dainton $+$	(CELLO Collab.)
ALBAJAR	87B	PL B185 241	+Albrow, Allkofer, Arnison+	(UA1 Collab.)
ADEVA	85	PL 152B 439	+Becker, Becker-Szendy $+$	(Mark-J Collab.)
Also	84C	PRPL 109 131	Adeva, Barber, Becker $+$	(Mark-J Collab.)
BARTEL	83	PL 123B 353	+Cords, Dietrich, Eichler+	(JADE Collab.)
BERGER	81B	PL 99B 489	+Genzel, Grigull, Lackas $+$	(PLUTO Collab.)
BRANDELIK	81	PL 99B 163	+Braunschweig, Gather+	(TASSO Collab.)
CLARK	81	PRL 46 299		BL, FNAL, PRIN)
Also	82	PR D25 2762		BL, FNAL, PRIN)
AZIMOV	80	JETPL 32 664	+Khoze	(PNPI)
		Translated from ZETF	P 32 0/7.	

HTTP://PDG.LBL.GOV

• •

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

BARBER BRANDELIK ANSORGE	80B 80 73B	PRL 45 1904 PL 92B 199 PR D7 26	+Becker, Bei, Berghoff+ +Braunschweig, Gather+ +Baker, Krzesinski, Neale, Rushbrooke+	(Mark-J Collab.) (TASSO Collab.) (CAVE)			
BUSHNIN Also ROTHE BARNA	73 72 69 68	NP B58 476 PL 42B 136 NP B10 241 PB 173 1301	+Dunaitzev, Golovkin, Kubarovsky+ Golovkin, Grachev, Shodyrev+ +Wolsky	(SERP) (SERP) (PENN) (SLAC STAN)			
BARNA 68 PR 173 1391 +Cox, Martin, Perl, Tan, Toner, Zipf+ (SLAC, STAN) OTHER RELATED PAPERS							
PERL Physics in	81 Collisi	SLAC-PUB-2752 on Conference.		(SLAC)			

HTTP://PDG.LBL.GOV