Quark and Lepton Compositeness, Searches for

SEARCHES FOR QUARK AND LEPTON COMPOSITENESS

Written 1994 by K. Hagiwara (KEK) and K. Hikasa (Tohoku Univ.).

If quarks and leptons are made of constituents, then at the scale of constituent binding energies, there should appear new interactions among quarks and leptons. At energies much below the compositeness scale (Λ), these interactions are suppressed by inverse powers of Λ . The dominant effect should come from the lowest dimensional interactions with four fermions (contact terms), whose most general chirally invariant form reads [1]

$$L = \frac{g^2}{2\Lambda^2} \left[\eta_{LL} \,\overline{\psi}_L \,\gamma_\mu \,\psi_L \,\overline{\psi}_L \,\gamma^\mu \,\psi_L + \eta_{RR} \,\overline{\psi}_R \,\gamma_\mu \,\psi_R \,\overline{\psi}_R \,\gamma^\mu \,\psi_R \right] + 2\eta_{LR} \,\overline{\psi}_L \,\gamma_\mu \,\psi_L \,\overline{\psi}_R \,\gamma^\mu \,\psi_R \right] \,. \tag{1}$$

Chiral invariance provides a natural explanation why quark and lepton masses are much smaller than their inverse size Λ . We may determine the scale Λ unambiguously by using the above form of the effective interactions; the conventional method [1] is to fix its scale by setting $g^2/4\pi = g^2(\Lambda)/4\pi = 1$ for the new strong interaction coupling and by setting the largest magnitude of the coefficients $\eta_{\alpha\beta}$ to be unity. In the following, we denote

$$\begin{split} \Lambda &= \Lambda_{LL}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (\pm 1, \ 0, \ 0) \ , \\ \Lambda &= \Lambda_{RR}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (0, \ \pm 1, \ 0) \ , \\ \Lambda &= \Lambda_{VV}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (\pm 1, \ \pm 1, \ \pm 1) \ , \\ \Lambda &= \Lambda_{AA}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (\pm 1, \ \pm 1, \ \pm 1) \ , \end{split} \tag{2}$$

HTTP://PDG.LBL.GOV Page 1 Created: 6/29/1998 12:37

as typical examples. Such interactions can arise by constituent interchange (when the fermions have common constituents, e.g., for $ee \rightarrow ee$) and/or by exchange of the binding quanta (whenever binding quanta couple to constituents of both particles).

Another typical consequence of compositeness is the appearance of excited leptons and quarks (ℓ^* and q^*). Phenomenologically, an excited lepton is defined to be a heavy lepton which shares leptonic quantum number with one of the existing leptons (an excited quark is defined similarly). For example, an excited electron e^* is characterized by a nonzero transitionmagnetic coupling with electrons. Smallness of the lepton mass and the success of QED prediction for g-2 suggest chirality conservation, *i.e.*, an excited lepton should not couple to both left- and right-handed components of the corresponding lepton.

Excited leptons may be classified by $SU(2) \times U(1)$ quantum numbers. Typical examples are:

1. Sequential type

$$egin{pmatrix}
u^* \\
\ell^* \end{pmatrix}_L, \qquad [
u^*_R], \qquad \ell^*_R \ .$$

 ν_R^* is necessary unless ν^* has a Majorana mass.

2. Mirror type

$$[
u_L^*] \ , \qquad \ell_L^* \ , \qquad \left(egin{array}{c}
u^* \ \ell^* \end{array}
ight)_R \ .$$

3. Homodoublet type

$$\begin{pmatrix} \nu^* \\ \ell^* \end{pmatrix}_L , \qquad \begin{pmatrix} \nu^* \\ \ell^* \end{pmatrix}_R$$

Similar classification can be made for excited quarks.

Excited fermions can be pair produced via their gauge couplings. The couplings of excited leptons with Z are listed

HTTP://PDG.LBL.GOV

Page 2

Created: 6/29/1998 12:37

	Sequential type	Mirror type	Homodoublet type
$V^{\ell^{*}} A^{\ell^{*}} A^{\ell^{*}} V^{ u^{*}_{D}} A^{ u^{*}_{D}} V^{ u^{*}_{M}} A^{ u^{*}_{M}}$	$-\frac{1}{2} + 2\sin^2\theta_W \\ -\frac{1}{2} \\ +\frac{1}{2} \\ +\frac{1}{2} \\ 0 \\ +1$	$ \begin{array}{r} -\frac{1}{2} + 2\sin^2\theta_W \\ +\frac{1}{2} \\ +\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ -1 \end{array} $	$\begin{array}{c} -1+2\sin^2\theta_W \\ 0 \\ +1 \\ 0 \\ \\ \end{array}$

Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

in the following table (for notation see Eq. (1) in "Standard Model of Electroweak Interactions"):

Here ν_D^* (ν_M^*) stands for Dirac (Majorana) excited neutrino. The corresponding couplings of excited quarks can be easily obtained. Although form factor effects can be present for the gauge couplings at $q^2 \neq 0$, they are usually neglected.

In addition, transition magnetic type couplings with a gauge boson are expected. These couplings can be generally parametrized as follows:

$$\mathcal{L} = \frac{\lambda_{\gamma}^{(f^{*})} e}{2m_{f^{*}}} \overline{f}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) f F_{\mu\nu} + \frac{\lambda_{Z}^{(f^{*})} e}{2m_{f^{*}}} \overline{f}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) f Z_{\mu\nu} + \frac{\lambda_{W}^{(\ell^{*})} g}{2m_{\ell^{*}}} \overline{\ell}^{*} \sigma^{\mu\nu} \frac{1-\gamma_{5}}{2} \nu W_{\mu\nu} + \frac{\lambda_{W}^{(\nu^{*})} g}{2m_{\nu^{*}}} \overline{\nu}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) \ell W_{\mu\nu}^{\dagger} + \text{h.c.}, \qquad (3)$$

HTTP://PDG.LBL.GOV

Created: 6/29/1998 12:37

where $g = e/\sin\theta_W$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the photon field strength, $Z_{\mu\nu} = \partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}$, etc. The normalization of the coupling is chosen such that

$$\max(|\eta_L|, |\eta_R|) = 1$$
 .

Chirality conservation requires

$$\eta_L \eta_R = 0 . (4)$$

These couplings can arise from $SU(2) \times U(1)$ -invariant higher-dimensional interactions. A well-studied model is the interaction of homodoublet type ℓ^* with the Lagrangian [2,3]

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{L}^* (g f \frac{\tau^a}{2} W^a_{\mu\nu} + g' f' Y B_{\mu\nu}) \frac{1 - \gamma_5}{2} L + \text{h.c.} , \qquad (5)$$

where L denotes the lepton doublet (ν, ℓ) , Λ is the compositeness scale, g, g' are SU(2) and U(1)_Y gauge couplings, and $W^a_{\mu\nu}$ and $B_{\mu\nu}$ are the field strengths for SU(2) and U(1)_Y gauge fields. The same interaction occurs for mirror-type excited leptons. For sequential-type excited leptons, the ℓ^* and ν^* couplings become unrelated, and the couplings receive the extra suppression of (250 GeV)/ Λ or m_{L^*}/Λ . In any case, these couplings satisfy the relation

$$\lambda_W = -\sqrt{2}\sin^2\theta_W(\lambda_Z \cot\theta_W + \lambda_\gamma) . \tag{6}$$

Additional coupling with gluons is possible for excited quarks:

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{Q}^* \sigma^{\mu\nu} \left(g_s f_s \frac{\lambda^a}{2} G^a_{\mu\nu} + g f \frac{\tau^a}{2} W^a_{\mu\nu} + g' f' Y B_{\mu\nu} \right) \\ \times \frac{1 - \gamma_5}{2} Q + \text{h.c.} , \qquad (7)$$

where Q denotes a quark doublet, g_s is the QCD gauge coupling, and $G^a_{\mu\nu}$ the gluon field strength.

HTTP://PDG.LBL.GOV Page 4 Created: 6/29/1998 12:37

Some experimental analyses assume the relation $\eta_L = \eta_R =$ 1, which violates chiral symmetry. We encode the results of such analyses if the crucial part of the cross section is proportional to the factor $\eta_L^2 + \eta_R^2$ and the limits can be reinterpreted as those for chirality conserving cases $(\eta_L, \eta_R) =$ (1, 0) or (0, 1) after rescaling λ .

Several different conventions are used by LEP experiments to express the transition magnetic couplings. To facilitate comparison, we reexpress these in terms of λ_Z and λ_{γ} using the following relations and taking $\sin^2\theta_W = 0.23$. We assume chiral couplings, *i.e.*, |c| = |d| in the notation of Ref. 2.

1. ALEPH (charged lepton and neutrino)

$$\lambda_Z^{\text{ALEPH}} = \frac{1}{2} \lambda_Z \quad (1990 \text{ papers}) \tag{8a}$$

$$\frac{2c}{\Lambda} = \frac{\lambda_Z}{m_{\ell^*} [\text{or } m_{\nu^*}]} \quad (\text{for } |c| = |d|)$$
(8b)

2. ALEPH (quark)

$$\lambda_u^{\text{ALEPH}} = \frac{\sin \theta_W \cos \theta_W}{\sqrt{\frac{1}{4} - \frac{2}{3} \sin^2 \theta_W + \frac{8}{9} \sin^4 \theta_W}} \lambda_Z = 1.11 \lambda_Z \quad (9)$$

3. L3 and DELPHI (charged lepton)

$$\lambda^{\text{L3}} = \lambda_Z^{\text{DELPHI}} = -\frac{\sqrt{2}}{\cot \theta_W - \tan \theta_W} \ \lambda_Z = -1.10\lambda_Z \ (10)$$

4. L3 (neutrino)

$$f_Z^{\rm L3} = \sqrt{2\lambda_Z} \tag{11}$$

5. OPAL (charged lepton)

$$\frac{f^{\text{OPAL}}}{\Lambda} = -\frac{2}{\cot \theta_W - \tan \theta_W} \frac{\lambda_Z}{m_{\ell^*}} = -1.56 \frac{\lambda_Z}{m_{\ell^*}} \qquad (12)$$

HTTP://PDG.LBL.GOV Page 5 Created: 6/29/1998 12:37

6. OPAL (quark)

$$\frac{f^{\text{OPAL}}c}{\Lambda} = \frac{\lambda_Z}{2m_{q^*}} \quad (\text{for } |c| = |d|) \tag{13}$$

7. DELPHI (charged lepton)

$$\lambda_{\gamma}^{\text{DELPHI}} = -\frac{1}{\sqrt{2}} \lambda_{\gamma} \tag{14}$$

If leptons are made of color triplet and antitriplet constituents, we may expect their color-octet partners. Transitions between the octet leptons (ℓ_8) and the ordinary lepton (ℓ) may take place via the dimension-five interactions

$$\mathcal{L} = \frac{1}{2\Lambda} \sum_{\ell} \left\{ \overline{\ell}_8^{\alpha} g_S F^{\alpha}_{\mu\nu} \sigma^{\mu\nu} \left(\eta_L \ell_L + \eta_R \ell_R \right) + h.c. \right\}$$
(15)

where the summation is over charged leptons and neutrinos. The leptonic chiral invariance implies $\eta_L \ \eta_R = 0$ as before.

References

- E.J. Eichten, K.D. Lane, and M.E. Peskin, Phys. Rev. Lett. 50, 811 (1983).
- K. Hagiwara, S. Komamiya, and D. Zeppenfeld, Z. Phys. C29, 115 (1985).
- N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett. 139B, 459 (1984).

SCALE LIMITS for Contact Interactions: A(eeee)

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID	 TECN	COMMENT	_
> 2.4	/	95 95	ACKERSTAFF ¹ KROHA		$E_{\rm cm} = 130 - 136$, 161 GeV	

• • • We do not use the following data for averages, fits, limits, etc. • • •

>1.7	>2.3	95	² ARIMA	97 VNS	E _{cm} = 57.77 GeV
>1.6	>2.0	95	³ BUSKULIC	93Q ALEP	$E_{\rm cm} = 88.25 - 94.25 {\rm GeV}$
>1.6		95	^{3,4} BUSKULIC	93Q RVUE	
	>2.2	95	BUSKULIC	93Q RVUE	
>1.3		95	¹ KROHA	92 RVUE	
>0.7	>2.8	95	BEHREND	91C CELL	E _{cm} =35 GeV
>1.3	>1.3	95	KIM	89 AMY	E _{cm} =50–57 GeV
>1.4	>3.3	95	⁵ BRAUNSCH		$E_{\rm cm} = 12 - 46.8 {\rm GeV}$
>1.0	>0.7	95	⁶ FERNANDEZ	87b MAC	$E_{\rm cm}$ =29 GeV
>1.1	>1.4	95	⁷ BARTEL	86c JADE	$E_{\rm cm} = 12 - 46.8 {\rm GeV}$
>1.17	>0.87	95	⁸ DERRICK	86 HRS	$E_{\rm cm}$ =29 GeV
> 1.1	>0.76	95	⁹ BERGER	85b PLUT	$E_{\rm cm}$ =34.7 GeV

¹ KROHA 92 limit is from fit to BERGER 85B, BARTEL 86C, DERRICK 86B, FERNAN-DEZ 87B, BRAUNSCHWEIG 88, BEHREND 91B, and BEHREND 91C. The fit gives $\eta/\Lambda_{II}^2 = +0.230 \pm 0.206 \text{ TeV}^{-2}$.

 ${}^{2}Z-Z'$ mixing is assumed to be zero.

³ BUSKULIC 93Q uses the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

⁴ This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

⁵ BRAUNSCHWEIG 88 assumed $m_Z = 92$ GeV and $\sin^2 \theta_W = 0.23$.

⁶FERNANDEZ 87B assumed $\sin^2 \theta_W = 0.22$.

⁷BARTEL 86C assumed $m_Z = 93$ GeV and $\sin^2 \theta_W = 0.217$.

⁸ DERRICK 86 assumed $m_Z^2 = 93$ GeV and $g_V^2 = (-1/2 + 2\sin^2\theta_W)^2 = 0.004$.

⁹BERGER 85B assumed $m_Z = 93$ GeV and $\sin^2 \theta_W = 0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	$\Lambda^{LL}({\rm TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>2.4	> 2.9	95		97 C	OPAL	E _{cm} = 130–136, 161 GeV
> 2.6	>1.9	95 10 ,1	¹¹ BUSKULIC	93Q	RVUE	
• • • We	e do not use	the follow	ving data for aver	ages,	fits, lim	its, etc. ● ● ●
>1.7	>2.2		¹¹ VELISSARIS	94	AMY	E _{cm} =57.8 GeV
>1.3	>1.5	95	¹¹ BUSKULIC	93Q	ALEP	E _{cm} =88.25–94.25 GeV
>2.3	>2.0	95	HOWELL	92	TOPZ	E _{cm} =52-61.4 GeV
	>1.7	95	¹² KROHA	92	RVUE	
>2.5	>1.5	95	BEHREND	91 C	CELL	E _{cm} =35–43 GeV
>1.6	>2.0	95	¹³ ABE	901	VNS	$E_{\rm cm} = 50 - 60.8 {\rm GeV}$
>1.9	>1.0	95	KIM	89	AMY	$E_{\rm cm} = 50 - 57 \text{GeV}$
>2.3	>1.3	95	BRAUNSCH	88D	TASS	$E_{\rm cm} = 30 - 46.8 {\rm GeV}$
>4.4	>2.1	95	¹⁴ BARTEL	86 C	JADE	$E_{\rm cm} = 12 - 46.8 {\rm GeV}$
>2.9	>0.86	95	¹⁵ BERGER			$E_{\rm cm}$ =34.7 GeV

¹⁰ This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

¹¹BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

12 KROHA 92 limit is from fit to BARTEL 86C, BEHREND 87C, BRAUNSCHWEIG 88D, BRAUNSCHWEIG 89C, ABE 90I, and BEHREND 91C. The fit gives $\eta/\Lambda_{II}^2 = -0.155 \pm$ 0.095 TeV⁻². ¹³ ABE 901 assumed m_Z =91.163 GeV and $\sin^2\theta_W$ = 0.231.

¹⁴ BARTEL 86C assumed $m_Z = 93$ GeV and $\sin^2 \theta_W = 0.217$.

¹⁵ BERGER 85 assumed $m_Z = 93$ GeV and $\sin^2\theta_W = 0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1.9	>3.0	95	ACKERSTAFF	9 7C	OPAL	E _{cm} = 130–136, 161 GeV
• • • We	do not use	the followi	ng data for aver	ages,	fits, lim	its, etc. ● ● ●
>1.4	>2.0	95 16	VELISSARIS	94	AMY	<i>E</i> _{cm} =57.8 GeV
>1.0	>1.5		BUSKULIC	93Q	ALEP	<i>E</i> _{cm} =88.25–94.25 GeV
>1.8	>2.3	95 16,17	BUSKULIC		RVUE	
>1.9	>1.7	95	HOWELL	92	TOPZ	E _{cm} =52–61.4 GeV
>1.9	>2.9	95 18	³ KROHA	92	RVUE	
>1.6	>2.3	95	BEHREND	91 C	CELL	E _{cm} =35–43 GeV
>1.8	>1.3		ABE	901	VNS	$E_{\rm cm} = 50 - 60.8 {\rm GeV}$
>2.2	>3.2	95 20	BARTEL	86	JADE	$E_{\rm cm} = 12 - 46.8 {\rm GeV}$

 16 BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

 17 This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

¹⁸ KROHA 92 limit is from fit to BARTEL 86C BEHREND 89B, BRAUNSCHWEIG 89C, ABE 90I, and BEHREND 91C. The fit gives $\eta/\Lambda_{LL}^2 = +0.095 \pm 0.120 \text{ TeV}^{-2}$.

¹⁹ABE 901 assumed m_Z =91.163 GeV and $\sin^2 \theta_W = 0.231$.

²⁰ BARTEL 86 assumed $m_Z = 93$ GeV and $\sin^2 \theta_W = 0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>2.7	> 3.8	95	ACKERSTAFF	97 C	OPAL	E _{cm} = 130–136, 161 GeV
> 3.5	>2.8	95	^{21,22} BUSKULIC	93Q	RVUE	
• • • We	do not use	the f	following data for aver	ages,	fits, lim	iits, etc. • • •
>3.0	>2.3	95	^{22,23} BUSKULIC	93Q	ALEP	E _{cm} =88.25–94.25 GeV
>2.5	>2.2	95				$E_{\rm cm} = 52 - 61.4 {\rm GeV}$
>3.4	>2.7	95	²⁵ KROHA	92	RVUE	
21						

 21 This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

 22 BUSKULIC 93Q uses the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

²³ From $e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$, and $\tau^+\tau^-$.

²⁴ HOWELL 92 limit is from $e^+e^- \rightarrow \mu^+\mu^-$ and $\tau^+\tau^-$.

 25 KROHA 92 limit is from fit to most PEP/PETRA/TRISTAN data. The fit gives η/Λ_{11}^2

 $= -0.0200 \pm 0.0666 \text{ TeV}^{-2}.$

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>2.5	>3.7	95	²⁶ ABE	97T	CDF	(eeqq) (isosinglet)
>3.1	>2.9	95	²⁷ ACKERSTAFF			
• • • We	do not use	the follo	owing data for avera	ages,	fits, lim	its, etc. ● ● ●
>2.5	>2.1	95	²⁸ ACKERSTAFF	97 C	OPAL	(eeqq)
>7.4	>11.7	95	²⁹ DEANDREA			<i>eeuu</i> , atomic parity viola- tion
>2.3	>1.0	95	³⁰ AID	95	H1	(eeqq) (<i>u</i> , <i>d</i> quarks)
1.7	>2.2	95	³¹ ABE			(eeqq) $(u, d quarks)$
>1.2		95	³² ADACHI	91	TOPZ	(eeqq) (flavor-universal)
	>1.6	95	³² ADACHI	91	TOPZ	(e e q q) (flavor-universal)
>0.6	>1.7	95	³³ BEHREND	91 C	CELL	(eecc)
> 1.1	>1.0	95	³³ BEHREND	91 C	CELL	(eebb)
>0.9		95	³⁴ ABE	89L	VNS	(e e q q) (flavor-universal)
	>1.7	95	³⁴ ABE	89L	VNS	(e e q q) (flavor-universal)
>1.05	>1.61	95	³⁵ HAGIWARA	89	RVUE	(eecc)
>1.21	>0.53	95	³⁶ HAGIWARA	89	RVUE	(eebb)

²⁶ ABE 97T limits are from e^+e^- mass distribution in $\overline{p}p \rightarrow e^+e^-$ X at E_{cm} =1.8 TeV. ²⁷ ACKERSTAFF 97C limits are R_b measurements at $E_{\rm cm} = 133$ GeV and 161 GeV.

²⁸ ACKERSTAFF 97C limits are from $e^+e^- \rightarrow q\overline{q}$ cross section at $E_{\rm cm} = 130-136$ GeV and 161 GeV. ²⁹ DEANDREA 97 limit is from atomic parity violation of cesium. The limit is eluded if the

contact interactions are parity conserving.

³⁰ AID 95 limits are from the Q^2 spectrum measurement of $ep \rightarrow eX$. ³¹ ABE 91D limits are from e^+e^- mass distribution in $p\overline{p} \rightarrow e^+e^-X$ at $E_{\rm cm} = 1.8$ TeV. ³² ADACHI 91 limits are from differential jet cross section. Universality of $\Lambda(eeqq)$ for five flavors is assumed.

³³BEHREND 91C is from data at $E_{\rm cm} = 35-43$ GeV.

³⁴ABE 89L limits are from jet charge asymmetry. Universality of $\Lambda(eeqq)$ for five flavors is assumed. ³⁵ The HAGIWARA 89 limit is derived from forward-backward asymmetry measurements of

 D/D^* mesons by ALTHOFF 83C, BARTEL 84E, and BARINGER 88.

³⁶ The HAGIWARA 89 limit is derived from forward-backward asymmetry measurement of b hadrons by BARTEL 84D.

SCALE	LIMITS fo	or Contac	t Interactions	: ^(µ	μ μqq)		
Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>2.9	>4.2	95 3	⁷ ABE	97T	CDF	$(\mu \mu q q)$ (isosinglet)	
• • • We	do not use	e the follow	ing data for ave	rages,	fits, lim	nits, etc. • • •	
>1.4	>1.6	95	ABE	92 B	CDF	$(\mu \mu q q)$ (isosinglet)	
³⁷ ABE 9	97⊤ limits a	re from μ^+	μ^- mass distrib	oution	in	$\rightarrow \mu^+ \mu^- X$ at $E_{\rm cm} = 1.8$ TeV.	I

SCALE LIMITS for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.10	90	³⁸ JODIDIO	86	SPEC	$\Lambda^{\pm}_{LR}(u_{\mu} u_{e}\mu e)$
$\bullet \bullet \bullet$ We do not use the	ie followi	ng data for averages	s, fits	, limits,	etc. • • •
>3.8		³⁹ DIAZCRUZ	94	RVUE	$\Lambda^+_{LL}(au u_ au e u_e)$
>8.1		³⁹ DIAZCRUZ	94	RVUE	$\Lambda_{II}^{-}(\tau \nu_{\tau} e \nu_{e})$
>4.1		⁴⁰ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{}(\tau \nu_{\tau} \mu \nu_{\mu})$
>6.5		⁴⁰ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau \nu_{\tau} \mu \nu_{\mu})$

³⁸ JODIDIO 86 limit is from $\mu^+ \rightarrow \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $\left[\eta_{LL} \left(\overline{\nu}_{\mu L} \gamma^{\alpha} \mu_{L}\right) \left(\overline{e}_{L} \gamma_{\alpha} \nu_{e L}\right) + \eta_{LR} \left(\overline{\nu}_{\mu L} \gamma^{\alpha} \nu_{e L} \left(\overline{e}_{R} \gamma_{\alpha} \mu_{R}\right)\right] \text{ with } g^{2}/4\pi = 1 \text{ and } g^{2}/4\pi = 1 \text{$ $(\eta_{LL},\eta_{LR}) = (0,\pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL},\eta_{LR}) = (\pm 1,0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

 39 DIAZCRUZ 94 limits are from $\Gamma(au
ightarrow e
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

 40 DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow ~\mu \nu \, \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Limits are for Λ_{LL}^{\pm} with color-singlet isoscalar exchanges among u_L 's and d_L 's only. See EICHTEN 84 for details.

VALUE (TeV)	<u>CL%</u>	DOCUMENT ID	TEG	CN COMMENT	
		⁴¹ ABE	96 CD	$F p\overline{p} \to \text{jets inclusive}$	_
>1.6	95	⁴² ABE	96s CD	$F p \overline{p} \to dijet angl.; \Lambda^+_{LL}$	
• • • We do not use t	he follow	ing data for average	s, fits, lin	nits, etc. • • •	
>1.3	95	⁴³ ABE	93G CD	$F p\overline{p} \to dijet \ mass$	
>1.4	95	⁴⁴ ABE	92d CD	F $p\overline{p} \rightarrow \text{jets inclusive}$	
>1.0	99	⁴⁵ ABE	92м CD	$F p \overline{p} \to dijet angl.$	
>0.825	95	⁴⁶ ALITTI	91b UA	2 $p\overline{p} \rightarrow \text{jets inclusive}$	
>0.700	95	⁴⁴ ABE	89 CD	$F p \overline{p} \to jets \text{ inclusive}$	
>0.330	95	⁴⁷ ABE	89н CD	$F p \overline{p} \to dijet angl.$	
>0.400	95	⁴⁸ ARNISON	86C UA	1 $p\overline{p} \rightarrow \text{jets inclusive}$	
>0.415	95	⁴⁹ ARNISON	86d UA	$1 \qquad p \overline{p} \rightarrow \text{dijet angl.}$	
>0.370	95	⁵⁰ APPEL	85 UA	2 $p\overline{p} \rightarrow \text{jets inclusive}$	
>0.275	95	⁵¹ BAGNAIA	84C UA	2 Repl. by APPEL 85	

- ⁴¹ ABE 96 finds that the inclusive jet cross section for $E_T > 200$ GeV is significantly higher than the $\mathcal{O}(\alpha_s^3)$ perturbative QCD prediction. This could be interpreted as the effect of a contact interaction with $\Lambda_{LL} \sim 1.6$ TeV. However, ABE 96 state that uncertainty in the parton distribution functions, higher-order QCD corrections, and the detector calibration may possibly account for the effect.
- ⁴² ABE 96S limit is from dijet angular distribution in $p\overline{p}$ collisions at $E_{cm} = 1.8$ TeV. The limit for Λ_{LL}^- is > 1.4 TeV. ABE 96S also obtain limits for flavor symmetric contact interactions among all quark flavors: $\Lambda_{LL}^+ > 1.8$ TeV and $\Lambda_{LL}^- > 1.6$ TeV.
- ⁴³ABE 93G limit is from dijet mass distribution in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The limit is the weakest from several choices of structure functions and renormalization scale.
- ⁴⁴ Limit is from inclusive jet cross-section data in $p\overline{p}$ collisions at $E_{cm} = 1.8$ TeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.
- ⁴⁵ABE 92M limit is from dijet angular distribution for $m_{\text{dijet}} > 550$ GeV in $p\overline{p}$ collisions at $E_{\text{cm}} = 1.8$ TeV.
- ⁴⁶ ALITTI 91B limit is from inclusive jet cross section in $p\overline{p}$ collisions at $E_{\rm cm} = 630$ GeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.
- ⁴⁷ ABE 89H limit is from dijet angular distribution for $m_{\text{dijet}} > 200$ GeV at the Fermilab Tevatron Collider with $E_{\text{cm}} = 1.8$ TeV. The QCD prediction is quite insensitive to choice of structure functions and choice of process scale.
- ⁴⁸ ARNISON 86C limit is from the study of inclusive high- p_T jet distributions at the CERN $\overline{p}p$ collider ($E_{cm} = 546$ and 630 GeV). The QCD prediction renormalized to the low- p_T region gives a good fit to the data.

⁴⁹ ARNISON 86D limit is from the study of dijet angular distribution in the range 240 < m(dijet) < 300 GeV at the CERN $\overline{p}p$ collider ($E_{\rm cm} = 630$ GeV). QCD prediction using EHLQ structure function (EICHTEN 84) with $\Lambda_{\rm QCD} = 0.2$ GeV for the choice of $Q^2 = n^{-2}$ gives the best fit to the data

 p_T^2 gives the best fit to the data.

- ⁵⁰ APPEL 85 limit is from the study of inclusive high- p_T jet distributions at the CERN $\overline{p}p$ collider ($E_{\rm cm} = 630$ GeV). The QCD prediction renormalized to the low- p_T region gives a good description of the data.
- ⁵¹ BAGNAIA 84C limit is from the study of jet p_T and dijet mass distributions at the CERN $\overline{p}p$ collider ($E_{cm} = 540$ GeV). The limit suffers from the uncertainties in comparing the data with the QCD prediction.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating ($\eta_L = \eta_R$). However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited $e(e^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case

HTTP://PDG.LBL.GOV Page 11 Created: 6/29/1998 12:37

of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

(200-))		DOCUMENT ID	TECN	COMMENT
VALUE (GeV)	<u>CL%</u>			
>85.0	95			$e^+e^- ightarrow e^*e^*$ Homodoublet type
• • • We do	not u	ise the following data f	for averages	s, fits, limits, etc. ● ● ●
>79.6	95	^{53,54} ABREU		$e^+e^- ightarrow e^*e^*$ Homodoublet type
>77.9	95	^{53,55} ABREU	97B DLPH	$e^+e^- ightarrow e^*e^*$ Sequential type
>79.7	95	⁵³ ACCIARRI	97G L3	$e^+e^- ightarrow \; e^*e^*$ Sequential type
>79.9	95	^{53,56} ACKERSTAFF	97 OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
>62.5	95	⁵⁷ ABREU	96K DLPH	$e^+e^- ightarrow e^*e^*$ Homodoublet type
>64.7	95	⁵⁸ ACCIARRI	96d L3	$e^+e^- ightarrow \; e^*e^*$ Sequential type
>66.5	95	⁵⁸ ALEXANDER	96Q OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
>65.2	95	⁵⁸ BUSKULIC	96W ALEP	$e^+e^- ightarrow e^*e^*$ Sequential type
>45.6	95	ADRIANI	93M L3	$Z \rightarrow e^* e^*$
>45.6	95	ABREU	92C DLPH	$I Z \rightarrow e^* e^*$
>29.8	95	⁵⁹ BARDADIN	92 RVUE	Ε Γ(Ζ)
>26.1	95	⁶⁰ DECAMP	92 ALEP	$Z \rightarrow e^* e^*; \Gamma(Z)$
>46.1	95	DECAMP	92 ALEP	$Z \rightarrow e^* e^*$
>33	95	⁶⁰ ABREU	91F DLPH	$I Z \rightarrow e^* e^*; \Gamma(Z)$
>45.0	95	⁶¹ ADEVA	90F L3	$Z \rightarrow e^* e^*$
>44.9	95	AKRAWY	901 OPAL	$Z \rightarrow e^* e^*$
>44.6	95	⁶² DECAMP	90G ALEP	$e^+e^- \rightarrow e^*e^*$
>30.2	95	ADACHI	89в тора	$2 e^+e^- \rightarrow e^*e^*$
>28.3	95	KIM	89 AMY	$e^+e^- \rightarrow e^*e^*$
>27.9	95	⁶³ ABE	88B VNS	$e^+e^- \rightarrow e^*e^*$
52 From at	o c	ollisions at $\sqrt{c} = 170 - 17$	72 CAV AC	KERSTAFE 086 also obtain limit from

⁵² From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $e^* \rightarrow \ \nu \, W$ decay mode: $m_{
ho^*} >$ 81.3 GeV.

⁵³ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.

 54 ABREU 97B also obtain limit from charged current decay mode $e^*
ightarrow
u W$, $m_{a^*} > 70.9$ GeV.

⁵⁵ABREU 97B also obtain limit from charged current decay mode $e^* \rightarrow \nu W$, $m_{a^*} > 44.6$ GeV.

⁵⁶ ACKERSTAFF 97 also obtain limit from charged current decay mode $e^* \rightarrow \nu W$, $m_{\nu^*} >$ 77.1 GeV.

⁵⁷ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.

⁵⁸ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.

- ⁵⁹BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z)$ <36 MeV.
- ⁶⁰Limit is independent of e^* decay mode.
- ⁶¹ ADEVA 90F is superseded by ADRIANI 93M.

⁶² Superseded by DECAMP 92.

⁶³ABE 88B limits assume $e^+e^- \rightarrow e^{*+}e^{*-}$ with one photon exchange only and $e^* \rightarrow$ $e\gamma$ giving $ee\gamma\gamma$.

Limits for Excited $e(e^*)$ from Single Production

These limits are from $e^+e^- \rightarrow e^*e$, $W \rightarrow e^*\nu$, or $ep \rightarrow e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \rightarrow e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L=\eta_R=$ 1. In most papers, the limit is papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

(1992))	· ·				
VALUE (GeV)	CL%	DOCUI	MENT ID	TECN	COMMENT
none 30–200	95	⁶⁴ BREI ⁻	TWEG 97c	ZEUS	$e p \rightarrow e^* X$
>89	95	ADRI	ANI 93M	L3	$Z ightarrow ~ee^{st}$, $\lambda_Z ~> 0.5$
>88	95	ABRE	U 92C	DLPH	$Z \rightarrow ee^*$, $\lambda_Z^- > 0.5$
> 91	95	DECA	MP 92	ALEP	$Z ightarrow ee^*$, $\lambda_Z^- > 1$
>87	95	AKRA	WY 901	OPAL	$Z ightarrow$ ee*, λ_Z > 0.5
$\bullet \bullet \bullet$ We do	not u	se the follow	ing data for av	verages, t	fits, limits, etc. • • •
	95	⁶⁵ ACKE	RSTAFF 98C	OPAL	$e^+e^- \rightarrow ee^*$
		66,67 ABRE	:U 97в	DLPH	$e^+e^- \rightarrow ee^*$
		66,68 ACCI/	ARRI 97G	-	$e^+e^- \rightarrow ee^*$
		⁶⁹ ACKE	RSTAFF 97	OPAL	$e^+e^- \rightarrow ee^*$
		⁷⁰ ADLC			Lepton-flavor violation
		⁷¹ ABRE			
		⁷² ACCI/	ARRI 96D		$e^+e^- \rightarrow ee^*$
				-	
		⁷⁴ BUSK			$e^+e^- \rightarrow ee^*$
		75 DERF		ZEUS	•
	05	⁷⁶ ABT	93		$e p \rightarrow e^* X$
>86	95	ADRI. 77			$\lambda_\gamma > 0.04$
	05	77 DERF			
>86	95	ABRE			$e^+e^- ightarrow e e^*$, $\lambda_\gamma \ > 0.1$
>88	95	⁷⁸ ADEV			$Z \rightarrow ee^*, \lambda_Z > 0.5$
>86	95	⁷⁸ ADEV			$Z \rightarrow ee^*, \lambda_Z > 0.04$
>81	95	⁷⁹ DECA			$Z \rightarrow ee^*, \lambda_Z > 1$
>50	95	ADAC			$e^+e^- ightarrow ~ee^*$, $\lambda_\gamma > 0.04$
>56	95	KIM	89	AMY	$e^+e^- ightarrow~ee^*$, $\lambda_\gamma >$ 0.03
none 23–54	95	⁸⁰ ABE	88 B	VNS	$e^+e^- ightarrow e e^* \lambda_\gamma > 0.04$
>75	95	⁸¹ ANSA	RI 87 D		$W \rightarrow e^* \nu; \lambda_W > 0.7$
>63	95	⁸¹ ANSA	RI 87D		$W \rightarrow e^* \nu; \lambda_W > 0.2$
>40	95	⁸¹ ANSA	RI 87D	UA2	$W \rightarrow e^* \nu; \lambda_W > 0.09$
C A					

 64 BREITWEG 97C search for single e^* production in ep collisions with the decays $e^*
ightarrow$ $e\gamma$, eZ, νW . $f=-f'=2\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.

 65 ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.

⁶⁶ From e^+e^- collisions at $\sqrt{s}=161$ GeV. ⁶⁷ See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane. ⁶⁸See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.

- ⁶⁹ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ⁷⁰ ADLOFF 97 search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio into a specific decay channel.
- ⁷¹ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ⁷² ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ⁷³ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ⁷⁴ BUSKULIC 96W result is from e^+e^- collisions at $\sqrt{s}=$ 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ⁷⁵ DERRICK 95B search for single e^* production via $e^* e\gamma$ coupling in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . See their Fig. 13 for the exclusion plot in the $m_{e^*} \lambda \gamma$ plane.
- ⁷⁶ABT 93 search for single e^* production via $e^* e \gamma$ coupling in e p collisions with the decays $e^* \rightarrow e \gamma$, e Z, νW . See their Fig. 4 for exclusion plot in the $m_{e^*} \lambda_{\gamma}$ plane.
- ⁷⁷ DERRICK 93B search for single e^* production via $e^* e\gamma$ coupling in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . See their Fig. 3 for exclusion plot in the $m_{\rho^*} \lambda_{\gamma}$ plane.

⁷⁸ Superseded by ADRIANI 93M.

⁷⁹ Superseded by DECAMP 92.

- ⁸⁰ABE 88B limits use $e^+e^- \rightarrow ee^*$ where t-channel photon exchange dominates giving $e\gamma(e)$ (quasi-real compton scattering).
- 81 ANSARI 87D is at $E_{\rm cm} = 546-630$ GeV.

Limits for Excited e (e^*) from $e^+e^- \rightarrow \gamma \gamma$

These limits are derived from indirect effects due to e^* exchange in the *t* channel and depend on transition magnetic coupling between *e* and e^* . All limits are for $\lambda_{\gamma} = 1$. All limits except ABE 89J are for nonchiral coupling with $\eta_L = \eta_R = 1$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>194	95		ACKERSTAFF	98	OPAL	\sqrt{s} =130–172 GeV
$\bullet \bullet \bullet$ We do not use the	following	g da	ata for averages,	, fits,	, limits,	etc. • • •
>129	95		ACCIARRI	96L	L3	\sqrt{s} =133 GeV
>147	95		ALEXANDER	96K	OPAL	
>136	95		BUSKULIC	96Z	ALEP	\sqrt{s} =130, 136 GeV
>146	95		ACCIARRI	95 G	L3	
				93Q	ALEP	
>127			ADRIANI	9 2B	-	
>114	95	84	BARDADIN	92	RVUE	
> 99	95		DECAMP	92	ALEP	
		85	SHIMOZAWA	92	TOPZ	
>100	95		ABREU	91e	DLPH	
>116	95		AKRAWY	91F	OPAL	
> 83	95		ADEVA	90ĸ	L3	
> 82	95		AKRAWY	90F	OPAL	
> 68	95	86	ABE	89J	VNS	$\eta_I = 1, \ \eta_R = 0$
> 90.2	95		ADACHI	89 B	TOPZ	
> 65	95		KIM	89	AMY	

 82 BUSKULIC 93Q obtain Λ^+ >121 GeV (95%CL) from ALEPH experiment and Λ^+ >135 GeV from combined TRISTAN and ALEPH data. These limits roughly correspond to limits on m_{e^*} .

⁸³ ADRIANI 92B superseded by ACCIARRI 95G.

⁸⁴BARDADIN-OTWINOWSKA 92 limit from fit to the combined data of DECAMP 92, ABREU 91E, ADEVA 90κ, AKRAWY 91F.

- ⁸⁵ SHIMOZAWA 92 fit the data to the limiting form of the cross section with $m_{e^*} \gg E_{\rm cm}$ and obtain $m_{e^*} > 168$ GeV at 95%CL. Use of the full form would reduce this limit by a few GeV. The statistically unexpected large value is due to fluctuation in the data.
- 86 The ABE 89J limit assumes chiral coupling. This corresponds to $\lambda_{\gamma}=$ 0.7 for nonchiral coupling.

Indirect Limits for Excited $e(e^*)$

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

- $\begin{array}{c|c} \underline{VALUE (GeV)} & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet \bullet & We \text{ do not use the following data for averages, fits, limits, etc. } \bullet \bullet \\ & & 87 \text{ DORENBOS... 89} & \text{CHRM } \overline{\nu}_{\mu} \begin{array}{c} e \rightarrow \overline{\nu}_{\mu} e \text{ and} \\ & \nu_{\mu} e \rightarrow \nu_{\mu} e \end{array} \\ & & & 88 \text{ GRIFOLS} & 86 & \text{THEO } \nu_{\mu} e \rightarrow \nu_{\mu} e \\ & & 89 \text{ RENARD} & 82 & \text{THEO } g-2 \text{ of electron} \end{array}$
- ⁸⁷ DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{\text{cut}}^2 / m_{e^*}^2 < 2.6$ (95% CL), where Λ_{cut} is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\text{cut}} = 1$ TeV and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620$ GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{\text{cut}}$ in composite models.

⁸⁸ GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

⁸⁹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ^*)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume $\mu^* \rightarrow \mu\gamma$ decay except for the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV) CL% DOCUMENT ID TECN COMMENT 90 ACKERSTAFF 98C OPAL $e^+e^-
ightarrow \mu^*\mu^*$ Homodoublet type >85.3 95 • • • We do not use the following data for averages, fits, limits, etc. • • • ^{91,92} ABREU 97B DLPH $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type 95 >79.6 ^{91,93} ABREU 97B DLPH $e^+e^- \rightarrow \mu^*\mu^*$ Sequential type >78.4 95 ⁹¹ ACCIARRI 97G L3 $e^+e^- \rightarrow \mu^*\mu^*$ Sequential type >79.9 95 ^{91,94} ACKERSTAFF 97 OPAL $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type 95 >80.0 ⁹⁵ ABREU 95 96К DLPH $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type >62.6 ⁹⁶ ACCIARRI 96D L3 $e^+e^- \rightarrow \mu^*\mu^*$ Sequential type 95 >64.9 HTTP://PDG.LBL.GOV Page 15 Created: 6/29/1998 12:37

>66.8	95	⁹⁶ ALEXANDER	96Q OPAL	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
>65.4	95	⁹⁶ BUSKULIC	96W ALEP	$e^+e^- ightarrow\mu^*\mu^*$ Sequential type
>45.6	95	ADRIANI	93M L3	$Z ightarrow \mu^* \mu^*$
>45.6	95	ABREU		$Z ightarrow \ \mu^* \mu^*$
>29.8	95	⁹⁷ BARDADIN	92 RVUE	$\Gamma(Z)$
>26.1	95	⁹⁸ DECAMP	92 ALEP	$Z ightarrow \mu^* \mu^*; \ \Gamma(Z)$
>46.1	95	DECAMP	92 ALEP	$Z \rightarrow \mu^* \mu^*$
>33	95	⁹⁸ ABREU	91F DLPH	$Z ightarrow \ \mu^{st} \mu^{st}; F(Z)$
>45.3	95	⁹⁹ ADEVA	90F L3	$Z \rightarrow \mu^* \mu^*$
>44.9	95	AKRAWY	901 OPAL	$Z ightarrow \mu^* \mu^*$
>44.6	95	¹⁰⁰ DECAMP	90g ALEP	$e^+e^- ightarrow \mu^*\mu^*$
>29.9	95	ADACHI	89b TOPZ	$e^+e^- ightarrow \mu^*\mu^*$
>28.3	95	KIM	89 AMY	$e^+e^- ightarrow \ \mu^*\mu^*$

⁹⁰ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $\mu^* \rightarrow \nu W$ decay mode: $m_{\mu^*} > 81.3$ GeV.

 $^{91}\,{\rm From}\,\,e^+\,e^-$ collisions at $\sqrt{s}{=}$ 161 GeV.

⁹² ABREU 97B also obtain limit from charged current decay mode $\mu^* \rightarrow \nu W$, $m_{\mu^*} > 70.9$ GeV

GeV. 93 ABREU 97B also obtain limit from charged current decay mode $\mu^* \rightarrow \nu W$, $m_{\mu^*} > 44.6$, GeV.

⁹⁴ ACKERSTAFF 97 also obtain limit from charged current decay mode $\mu^* \rightarrow \nu W$, $m_{\nu_{\mu}^*} > 77.1 \text{ GeV}.$

- ⁹⁵ From e^+e^- collisions at $\sqrt{s}=$ 130–136 GeV.
- ⁹⁶ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.
- 97 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.

⁹⁸Limit is independent of μ^* decay mode.

⁹⁹ Superseded by ADRIANI 93M.

¹⁰⁰ Superseded by DECAMP 92.

Limits for Excited μ (μ^*) from Single Production

These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>89	95	ADRIANI	93M L3	$\overline{Z ightarrow \mu \mu^{st}}$, $\lambda_{\overline{Z}} > 0.5$
>88	95	ABREU	92c DLPH	$Z ightarrow \mu \mu^*$, $\lambda_{\overline{Z}}^- > 0.5$
>91	95	DECAMP	92 ALEP	$Z \rightarrow \mu \mu^*$, $\lambda_{\overline{Z}} > 1$
>87	95	AKRAWY	901 OPAL	$Z ightarrow ~\mu \mu^{st}$, $\lambda_{Z}^{-} > 1$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

	95 1	⁰¹ ACKERSTAFF	98c OPAL	$e^+e^- ightarrow \mu\mu^*$
	102,1		97b DLPH	$e^+e^- \rightarrow \mu\mu^*$
		⁰⁴ ACCIARRI	97G L3	$e^+e^- \rightarrow \mu\mu^*$
		⁰⁵ ACKERSTAFF	97 OPAL	$e^+e^- ightarrow \mu\mu^*$
		⁰⁶ ABREU	96k DLPH	$e^+e^- ightarrow \mu\mu^*$
		⁰⁷ ACCIARRI	96D L3	$e^+e^- ightarrow \ \mu\mu^*$
		⁰⁸ ALEXANDER	96Q OPAL	$e^+e^- ightarrow \mu\mu^*$
		⁰⁹ BUSKULIC	96W ALEP	$e^+e^- ightarrow \ \mu\mu^*$
>85		¹⁰ ADEVA	90F L3	$Z ightarrow ~\mu \mu^{st}$, $\lambda_{Z} > 1$
>75		¹⁰ ADEVA	90F L3	$Z ightarrow ~\mu \mu^{st}$, $\lambda_Z ~>$ 0.1
>80	95 1	¹¹ DECAMP	90g ALEP	$e^+e^- ightarrow ~\mu \mu^*$, $\lambda_Z{=}1$
>50	95	ADACHI	89b TOPZ	$e^+e^- ightarrow \mu\mu^*$, $\lambda_\gamma^-=$ 0.7
>46	95	KIM		$e^+e^- ightarrow \mu\mu^*$, $\lambda_{\gamma}^{'}=$ 0.2

¹⁰¹ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.

¹⁰² From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.

103 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.

¹⁰⁴ See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.

¹⁰⁵ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.

¹⁰⁶ ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.

¹⁰⁷ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.

¹⁰⁸ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.

¹⁰⁹ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.

¹¹⁰ Superseded by ADRIANI 93M.

¹¹¹ Superseded by DECAMP 92.

Indirect Limits for Excited μ (μ^*)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)

/E (GeV)	DOCUMENTID	TECN	COMMENT	
			-	

 $\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$

¹¹² RENARD 82 THEO g-2 of muon

 $^{112}\,\rm RENARD$ 82 derived from g-2 data limits on mass and couplings of e^* and $\mu^*.$ See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^-
ightarrow au^{*+} au^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume $\tau^* \to \tau \gamma$ decay except for the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

(1991) <u>VALUE (GeV)</u>			DOCUMENT ID		TECN	COMMENT
>84.6	95	113	ACKERSTAFF	98 C	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
$\bullet \bullet \bullet$ We do	not use	the	following data f	or av	verages,	fits, limits, etc. • • •
>79.4			ABREU	97 B	DLPH	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
>77.4			ABREU	97 B	DLPH	$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>79.3	95	114	ACCIARRI	97 G		$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>79.1	95 ¹¹⁴	,117	ACKERSTAFF			
>62.2	95	118	ABREU	96 K	DLPH	$e^+e^- ightarrow ~ au^* au^*$ Homodoublet type
>64.2	95	119	ACCIARRI	96 D	L3	$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>65.3	95	119	ALEXANDER	96Q	OPAL	51
>64.8	95	119	BUSKULIC	96W	ALEP	$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>45.6	95		ADRIANI	9 3M		$Z \rightarrow \tau^* \tau^*$
>45.3	95		ABREU			$Z \rightarrow \tau^* \tau^*$
>29.8	95	120	BARDADIN	92	RVUE	$\Gamma(Z)$
>26.1	95	121	DECAMP			$Z ightarrow au^* au^*; \ \Gamma(Z)$
>46.0	95		DECAMP			$Z \rightarrow \tau^* \tau^*$
>33	95		ABREU			$Z \rightarrow \tau^* \tau^*; \Gamma(Z)$
>45.5	95	122	ADEVA			$Z \rightarrow \tau^* \tau^*$
>44.9	95		AKRAWY			$Z \rightarrow \tau^* \tau^*$
>41.2	95	123	DECAMP			$e^+e^- \rightarrow \tau^*\tau^*$
>29.0	95		ADACHI	89 B	TOPZ	$e^+e^- \rightarrow \tau^*\tau^*$
113 From e^+	e [—] colli	sion	s at $\sqrt{s}{=}170{-}17$	72 Ge	eV. ACK	ERSTAFF 98C also obtain limit from
$\tau^* \rightarrow \nu V$	<i>V</i> decay	/ mo	de: $m_{ au^*}^{} > 81.3$	3 Ge\	/.	
114 From e^+	e [—] colli	sion	s at $\sqrt{s}=161~{ m G}$	ieV.		
					current	decay mode $ au^* ightarrow ~ u$ W, $m^{}_{ au^*} >$ 70.9
GeV.						,
GeV.	I B also	obta	in limit from cha	argeo	current	decay mode $ au^* ightarrow ~ u$ W, $m_{ au^*}^{} >$ 44.6
¹¹⁷ ACKERS1	TAFF 9	7 als	so obtain limit	from	charge	d current decay mode $ au^* o u W$,
$m_{\nu_{-}^{*}}^{*} > 77$	7.1 GeV			nom	charge	a cancile accay mode (
7			s at $\sqrt{s}=$ 130–1	36 C	<u>م</u> \/	
			s at \sqrt{s} = 130 1 s at \sqrt{s} = 130–1			
						ndent of decay modes. Based on
$\Delta\Gamma(Z) < 3$	6 MeV.	VIIV		111 15	muepe	indent of decay modes. Dased off
			of $ au^*$ decay mod	de.		
¹²² Supersede	d by Al	DRIA	NI 93M.	-		
122 -		21(1)				

¹²³Superseded by DECAMP 92.

HTTP://PDG.LBL.GOV Page 18

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \rightarrow \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TEC	CN	COMMENT
>88	95	ADRIANI	93M L3		$Z ightarrow ~ au au^*$, $\lambda_{\mathcal{T}} > 0.5$
>87	95	ABREU	92C DLI	PH	$Z \rightarrow \tau \tau^*$, $\lambda_Z^- > 0.5$
>90	95	DECAMP	92 AL	EP	$Z ightarrow au au^*$, $\lambda_Z^- > 0.18$
>86.5	95	AKRAWY	901 OP/	AL	$Z ightarrow ~ au au^*$, $\lambda_Z > 1$
\bullet \bullet \bullet We do	not use	the following data f	or average	ges, f	ïts, limits, etc. ● ● ●
	95	¹²⁴ ACKERSTAFF	98C OP	AL	$e^+e^- \rightarrow \tau \tau^*$
		^{,126} ABREU	978 DLI	PH	$e^+e^- \rightarrow \tau \tau^*$
	125				$e^+e^- \rightarrow \tau \tau^*$
		¹²⁸ ACKERSTAFF			
					$e^+e^- \rightarrow \tau \tau^*$
					$e^+e^- \rightarrow \tau \tau^*$
		¹³¹ ALEXANDER			
					$e^+e^- \rightarrow \tau \tau^*$
>88	95	¹³³ ADEVA	90L L3		$Z ightarrow ~ au au^*$, $\lambda_Z > 1$
>59	95	¹³⁴ DECAMP			$Z ightarrow au au^*$, $\lambda_Z \!=\! 1$
>40	95	¹³⁵ BARTEL	86 JAE	DE	$e^+e^- ightarrow au au^*$, $\lambda_\gamma{=}1$
>41.4	95	¹³⁶ BEHREND	86 CEI	LL	$e^+e^- ightarrow au au^*$, $\lambda_\gamma^{}=\!1$
>40.8	95	¹³⁶ BEHREND			$e^+e^- ightarrow au au^*$, $\lambda_{\gamma}^{'}=$ 0.7
					7

¹²⁴ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.

¹²⁵ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.

 126 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.

¹²⁷ See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane. ¹²⁸ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.

- ¹²⁹ABREU 96K result is from e^+e^- collisions at $\sqrt{s}=$ 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹³⁰ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹³¹ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ¹³² BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹³³ Superseded by ADRIANI 93M.
- ¹³⁴ Superseded by DECAMP 92.
- ¹³⁵ BARTEL 86 is at $E_{\rm cm} = 30-46.78$ GeV.

 136 BEHREND 86 limit is at $E_{\rm cm}=$ 33–46.8 GeV.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. Limits assume $\nu^* \rightarrow \nu \gamma$ decay except for the $\Gamma(Z)$ measurement which makes no assumption about decay mode.

				·····
VALUE (GeV) <u>CL%</u> <u>DOC</u>	UMENT ID	TECN	COMMENT
>84.9	95 ¹³⁷ ACK	ERSTAFF 98C	OPAL	$e^+e^- ightarrow u^* u^*$ Homodoublet type
• • • We	do not use the follow	wing data for av	/erages,	fits, limits, etc. • • •
>77.6	95 ^{138,139} ABR		DLPH	$e^+e^- ightarrow u^* u^*$ Homodoublet type
>64.4	95 ^{138,140} ABR		DLPH	$e^+e^- ightarrow \ u^* u^*$ Sequential type
>71.2	95 ^{138,141} ACC			$e^+e^- ightarrow \ u^* u^*$ Sequential type
>77.8	95 ^{138,142} ACK	ERSTAFF 97	OPAL	$e^+e^- \rightarrow \ u^* u^*$ Homodoublet type
>61.4	95 ^{143,144} ACC		L3	$e^+e^- ightarrow \ u^* u^*$ Sequential type
>65.0	95 ^{145,146} ALE		OPAL	$e^+e^- \rightarrow \ \nu^* \nu^*$ Homodoublet type
>63.6	95 ¹⁴³ BUS		/ ALEP	$e^+e^- ightarrow \ u^* u^*$ Sequential type
>43.7	95 ¹⁴⁷ BAR	2 NDADIN 92	RVUE	$\Gamma(Z)$
>47	95 ¹⁴⁸ DEC		ALEP	
>42.6	95 ¹⁴⁹ DEC	AMP 92	ALEP	$\Gamma(Z)$
>35.4	95 ^{150,151} DEC	AMP 900	ALEP	$\Gamma(Z)$
>46	95 ^{151,152} DEC	AMP 900	ALEP	
137 –	+	- 170 170 C		

¹³⁷ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from charged decay modes: $m_{\nu_e^*}$ > 84.1 GeV, $m_{\nu_u^*}$ > 83.9 GeV, and $m_{\nu_\tau^*}$ > 79.4 GeV.

¹³⁸ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.

 139 ABREU 97B also obtain limits from charged current decay modes, $m_{\nu^*} > 56.4$ GeV.

¹⁴⁰ABREU 97B also obtain limits from charged current decay modes, $m_{\chi^*} > 44.9$ GeV.

 $^{141}\,{\rm ACCIARRI}$ 97G also obtain limits from charged current decay mode $\nu_e^* \rightarrow ~e\,W$, $m_{\nu^*}^{} >$

 $^{64.5}$ GeV. $^{142}\rm ACKERSTAFF$ 97 also obtain limits from charged current decay modes $m_{\nu_e^*} >$ 78.3

GeV, $m_{\nu_{\mu}^{*}}^{}>$ 78.9 GeV, $m_{\nu_{\tau}^{*}}^{}>$ 76.2 GeV.

¹⁴³ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.

¹⁴⁴ ACCIARRI 96D also obtain limit from $\nu^* \rightarrow eW$ decay mode: $m_{\nu^*} > 57.3$ GeV.

¹⁴⁵ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.

 146 ALEXANDER 96Q also obtain limits from charged current decay modes: $m_{\mu^*}^{} > 66.2$ GeV, $m_{\nu_{\mu}^{*}}^{} > 66.5$ GeV, $m_{\nu_{-}^{*}}^{} > 64.7$ GeV.

¹⁴⁷ BARDADIN-OTWINOWSKA 92 limit is for Dirac ν^* . Based on $\Delta\Gamma(Z)$ <36 MeV. The

limit is 36.4 GeV for Majorana ν^* , 45.4 GeV for homodoublet ν^* . ¹⁴⁸Limit is based on B($Z \rightarrow \nu^* \overline{\nu}^*$)×B($\nu^* \rightarrow \nu \gamma$)² < 5 × 10⁻⁵ (95%CL) assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.

¹⁴⁹Limit is for Dirac ν^* . The limit is 34.6 GeV for Majorana ν^* , 45.4 GeV for homodoublet ν^*

¹⁵⁰ DECAMP 900 limit is from excess $\Delta\Gamma(Z) < 89$ MeV. The above value is for Dirac ν^* ; 26.6 GeV for Majorana u^* ; 44.8 GeV for homodoublet u^* .

¹⁵¹Superseded by DECAMP 92.

¹⁵²DECAMP 900 limit based on B($Z \rightarrow \nu^* \nu^*$)·B($\nu^* \rightarrow \nu \gamma$)² < 7 × 10⁻⁵ (95%CL), assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.

Limits for Excited ν (ν^*) from Single Production

These limits are from $Z \rightarrow \nu \nu^*$ or $ep \rightarrow \nu^* X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
none 40–96	95	153	BREITWEG	97C	ZEUS	$ep \rightarrow \nu^* X$
>91	95		ADRIANI			$\lambda_{7} > 1, \nu^{*} \rightarrow \nu \gamma$
>89	95		ADRIANI	9 3M	L3	$\lambda_Z > 1, \nu_e^* \rightarrow eW$
>91	95	154	DECAMP			$\lambda_{7} > 1$
• • We do not use the	e followi	ng d	ata for averages			
	95	155	ACKERSTAFF	98C	OPAL	$e p \rightarrow \nu^* \nu^*$
	156	6,157	ABREU			$e^+e^- \rightarrow \nu \nu^*$
		158	ABREU	97ı	DLPH	$\nu^* \rightarrow \ell W, \nu Z$
		159	ABREU	97J	DLPH	$\nu^* \rightarrow \nu \gamma$
	156	6,160	ACCIARRI	97 G	L3	$e^+e^- \rightarrow \nu \nu^*$
		161	ACKERSTAFF	97	OPAL	$e^+e^- \rightarrow \nu \nu^*$
		162	ADLOFF			Lepton-flavor violation
		163	ACCIARRI	96 D	L3	$e^+e^- \rightarrow \nu \nu^*$
		164	ALEXANDER			$e^+e^- \rightarrow \nu \nu^*$
		165	BUSKULIC	96W	ALEP	$e^+e^- \rightarrow \nu \nu^*$
		166	DERRICK	95 B	ZEUS	$ep \rightarrow \nu^* X$
		167	ABT	93	H1	$ep \rightarrow \nu^* X$
>87	95		ADRIANI	9 3M	L3	$\lambda_Z >$ 0.1, $\nu^* \rightarrow \nu \gamma$
>74	95		ADRIANI	9 3M	L3	$\lambda_Z > 0.1, \ \nu_e^* \rightarrow e W$
		168	BARDADIN	92	RVUE	_ 0
>74	95	154	DECAMP	92	ALEP	$\lambda_Z > 0.034$
>91	95 ¹⁶⁹		ADEVA	90 0	L3	$\lambda_Z^- > 1$
>83	95	170	ADEVA	90 0	L3	λ_{Z} > 0.1, $ u^{*} ightarrow u \gamma$
>74	95		ADEVA	90 0	L3	$\lambda_Z^- > 0.1, \nu_e^* \rightarrow eW$
>90	95 171	,172	DECAMP			$\lambda_{Z} > 1$
>74.7	95 171	.,172	DECAMP			$\lambda_Z > 0.06$
53						

¹⁵³ BREITWEG 97C search for single ν^* production in *ep* collisions with the decay $\nu^* \rightarrow \nu\gamma$. $f=-f'=2\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 10 for the exclusion plot in the mass-coupling plane.

¹⁵⁴ DECAMP 92 limit is based on B($Z \rightarrow \nu^* \overline{\nu}$)×B($\nu^* \rightarrow \nu \gamma$) < 2.7 × 10⁻⁵ (95%CL) assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.

¹⁵⁵ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.

¹⁵⁶ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.

¹⁵⁷ See Fig. 4b and Fig. 5b of ABREU 97B for the exclusion limit in the mass-coupling plane.

¹⁵⁸ABREU 971 limit is from $Z \rightarrow \nu \nu^*$. See their Fig. 12 for the exclusion limit in the mass-coupling plane.

¹⁵⁹ABREU 97J limit is from $Z \rightarrow \nu \nu^*$. See their Fig. 5 for the exclusion limit in the mass-coupling plane.

 160 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.

¹⁶¹ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV, for homodoublet ν^* . See their Fig. 3 for the exclusion limit in the mass-coupling plane.

¹⁶² ADLOFF 97 search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio.

- ¹⁶³ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹⁶⁴ ALEXANDER 96Q result is from e^+e^- collisions at $\sqrt{s}=$ 130–140 GeV for homedoublet ν^* . See their Fig. 3b and Fig. 3c for the exclusion limit in the mass-coupling plane.
- ¹⁶⁵ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹⁶⁶ DERRICK 95B search for single ν^* production via $\nu^* e W$ coupling in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , e W. See their Fig. 14 for the exclusion plot in the $m_{\nu^*} \lambda \gamma$ plane.
- ¹⁶⁷ ABT 93 search for single ν^* production via $\nu^* eW$ coupling in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. See their Fig. 4 for exclusion plot in the $m_{\nu^*} \lambda_W$ plane.
- ¹⁶⁸See Fig. 5 of BARDADIN-OTWINOWSKA 92 for combined limit of ADEVA 900, DE-CAMP 900, and DECAMP 92.
- ¹⁶⁹Limit is either for $\nu^* \rightarrow \nu \gamma$ or $\nu^* \rightarrow eW$.
- ¹⁷⁰ Superseded by ADRIANI 93M.
- ¹⁷¹DECAMP 900 limit based on B($Z \rightarrow \nu \nu^*$)·B($\nu^* \rightarrow \nu \gamma$) < 6 × 10⁻⁵ (95%CL),
- assuming $B(\nu^* \rightarrow \nu \gamma) = 1$.
- ¹⁷² Superseded by DECAMP 92.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow q^* \overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>45.6	95	¹⁷³ ADRIANI	9 3M	L3	$u \text{ or } d$ type, $Z ightarrow q^* q^*$
$\bullet \bullet \bullet$ We do not use the	followi	ng data for averages	, fits,	limits,	etc. • • •
		¹⁷⁴ ADRIANI	92F	L3	$Z \rightarrow q^* q^*$
>41.7	95	¹⁷⁵ BARDADIN	92	RVUE	u -type, $\Gamma(Z)$
>44.7	95	¹⁷⁵ BARDADIN	92	RVUE	d -type, $\Gamma(Z)$
>40.6	95	¹⁷⁶ DECAMP	92	ALEP	u-type, $\Gamma(Z)$
>44.2	95	¹⁷⁶ DECAMP	92	ALEP	d-type, $\Gamma(Z)$
>45	95	¹⁷⁷ DECAMP	92	ALEP	<i>u</i> or <i>d</i> type,
					$Z \rightarrow q^* q^*$
>45	95	¹⁷⁶ ABREU	91F	DLPH	<i>u</i> -type, $\Gamma(Z)$
>45	95	¹⁷⁶ ABREU	91F	DLPH	d-type, $\Gamma(Z)$
>21.1	95	¹⁷⁸ BEHREND	86 C	CELL	$e(q^*) = -1/3, \ q^* \rightarrow$
		170			qg
>22.3	95	178 BEHREND	86C	CELL	$e(q^*)=2/3, q^* ightarrow qg$
>22.5	95	¹⁷⁸ BEHREND	86C	CELL	$e(q^*)=-1/3,~q^* ightarrow$
>23.2	95	¹⁷⁸ BEHREND			$e(q^*)=2/3, q^* ightarrow q\gamma$
173 ADDIANILO2M (1	a stallad a	(0 17) f.	

¹⁷³ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

¹⁷⁴ ADRIANI 92F search for Z → q* q̄* followed with q* → qγ decays and give the limit σ_Z · B(Z → q* q̄*) · B²(q* → qγ) <2 pb at 95%CL. Assuming five flavors of degenerate q* of homodoublet type, B(q* → qγ) <4% is obtained for m_{q*} <45 GeV.
¹⁷⁵ BARDADIN-OTWINOWSKA 92 limit based on ΔΓ(Z)<36 MeV.
¹⁷⁶ These limits are independent of decay modes.

¹⁷⁷Limit is for $B(q^* \rightarrow qg) + B(q^* \rightarrow q\gamma) = 1$.

¹⁷⁸ BEHREND 86C search for $e^+e^- \rightarrow q^* \overline{q}^*$ for $m_{q^*} > 5$ GeV. But m < 5 GeV excluded by total hadronic cross section. The limits are for point-like photon couplings of excited quarks.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \rightarrow q^*\overline{q}$ or $p\overline{p} \rightarrow q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments

in the foothotes ar									
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT				
>570 (CL = 95%) OUR EVALUATION									
none 200–520 and 580–760	95	¹⁷⁹ ABE	97 G	CDF	$p \overline{p} \rightarrow q^* X, q^* \rightarrow 2$ jets				
none 40–169	95	¹⁸⁰ BREITWEG	97 C	ZEUS	$e p \rightarrow q^* X$				
none 80–570	95	¹⁸¹ ABE	95N	CDF	$p \overline{p} ightarrow q^* X, q^* ightarrow qg$ $q \gamma, qW$				
>288	90	¹⁸² ALITTI	93	UA2	$p\overline{p} \rightarrow q^* X, q^* \rightarrow qg$				
> 88	95	¹⁸³ DECAMP	92	ALEP	$Z ightarrow ~qq^{st}$, λ_{Z} > 1				
> 86	95	¹⁸³ AKRAWY	90J	OPAL	$Z ightarrow ~qq^{st}$, $\lambda_{Z} ~> 1.2$				
$\bullet \bullet \bullet$ We do not use the	followi	ng data for averages	, fits,	limits,	etc. • • •				
		¹⁸⁴ ADLOFF	97	H1	Lepton-flavor violation				
		¹⁸⁵ DERRICK	95 B	ZEUS	$ep \rightarrow q^*X$				
none 80–540	95	¹⁸⁶ ABE	94	CDF	$p \overline{p} o q^* X, \ q^* o q \gamma, \ q W$				
> 79	95	¹⁸⁷ ADRIANI	9 3M	L3	$\lambda_{Z}(L3) > 0.06$				
		¹⁸⁸ ABREU	92 D	DLPH	$Z \rightarrow q q^*$				
		¹⁸⁹ ADRIANI			$Z \rightarrow q q^*$				
> 75	95	¹⁸⁷ DECAMP	92	ALEP	$Z ightarrow ~q q^*$, $\lambda_Z > 1$				
		¹⁹⁰ ALBAJAR	89	UA1	$p\overline{p} ightarrow q^* X$,				
> 39	95	¹⁹¹ BEHREND	86C	CELL	$egin{aligned} q^{*} & ightarrow qW \ e^{+}e^{-} & ightarrow q^{*}\overline{q} (q^{*} ightarrow qg, q\gamma), \lambda_{\gamma} = 1 \end{aligned}$				

¹⁷⁹ABE 97G search for new particle decaying to dijets.

 13 ABE 97G search for new particle decaying to dijets. 180 BREITWEG 97C search for single q^* production in ep collisions with the decays $q^* \rightarrow$

 $q\gamma$, qW. $f_s=0$, and $f=-f'=2\Lambda/m_{q^*}$ is assumed for the q^* coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.

- ¹⁸¹ABE 95N assume a degenerate u^* and d^* with $f_s = f = f' = \Lambda/m_{a^*}$. See their Fig. 4 for the excluded region in $m_{a^*} - f$ plane.
- 182 ALITTI 93 search for resonances in the two-jet invariant mass. The limit is for $f_{\rm s}=f$ $f' = \Lambda/m_{q^*}$. u^* and d^* are assumed to be degenerate. If not, the limit for $u^*(d^*)$ is 277 (247) GeV if $m_{d^*} \gg m_{\mu^*} (m_{\mu^*} \gg m_{d^*})$.

¹⁸³Assumes B($q^* \rightarrow q\gamma$) = 0.1.

¹⁸⁴ ADLOFF 97 search for single q^* production in ep collisions with the decay $q^* \rightarrow q\gamma$. See their Fig. 6 for the rejection limits on the product of the production cross section and the branching ratio.

¹⁸⁵ DERRICK 95B search for single q^* production via $q^* q \gamma$ coupling in ep collisions with the decays $q^* \rightarrow qW$, qZ, qg, $q\gamma$. See their Fig. 15 for the exclusion plot in the $m_{a^*}^{-\lambda\gamma}$ plane.

¹⁸⁶ ABE 94 search for resonances in jet- γ and jet-W invariant mass in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.8 TeV. The limit is for $f_s = f = f' = \Lambda/m_{q^*}$ and u^* and d^* are assumed to be degenerate. See their Fig. 4 for the excluded region in m_{q^*} -f plane. ¹⁸⁷ Assumes B($q^* \rightarrow qg$) = 1.

188 ABREU 92D give $\sigma(e^+e^- \rightarrow Z \rightarrow q^*\overline{q} \text{ or } q\overline{q}^*) \times B(q^* \rightarrow q\gamma) < 15 \text{ pb } (95\% \text{ CL})$ for $m_{q^*} < 80 \text{ GeV}$. 189 ADRIANI 92F search for $Z \rightarrow qq^*$ with $q^* \rightarrow q\gamma$ and give the limit $\sigma_Z \cdot B(Z \rightarrow qq^*) \cdot B(q^* \rightarrow q\gamma) < (2-10) \text{ pb } (95\% \text{ CL})$ for $m_{q^*} = (46-82) \text{ GeV}$. 190 ALBAJAR 89 give $\sigma(q^* \rightarrow W + \text{jet})/\sigma(W) < 0.019 (90\% \text{ CL})$ for $m_{q^*} > 220 \text{ GeV}$. 191 DELIDEND, 266 here $\overline{z} = -425 \cdot 46.9 \text{ CeV}$. See their \overline{z} is a related matrix in the

¹⁹¹ BEHREND 86C has $E_{\rm cm} = 42.5$ –46.8 GeV. See their Fig. 3 for excluded region in the $m_{q^*} - (\lambda_\gamma/m_{q^*})^2$ plane. The limit is for $\lambda_\gamma = 1$ with $\eta_L = \eta_R = 1$.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>84	95	¹⁹² ABE	89D CDF	$p\overline{p} \rightarrow q_6 \overline{q}_6$

¹⁹² ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

 $\lambda \equiv m_{\ell_0}/\Lambda$

$\ell = \ell_8 / \ell_8$							
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>86	95	¹⁹³ ABE	89 D	CDF	Stable $\ell_8: \ p \overline{p} \rightarrow \ \ell_8 \overline{\ell}_8$		
• • • We do not use the following data for averages, fits, limits, etc. • •							
		¹⁹⁴ АВТ	93	H1	$e_8: e_p \rightarrow e_8 X$		
none 3.0-30.3	95	¹⁹⁵ KIM	90	AMY	$e_8: e^+e^- \rightarrow ee^+$		
none 3.5–30.3	95	¹⁹⁵ KIM	90	AMY	jets $\mu_8: e^+e^- \rightarrow \mu\mu +$ jets		
		¹⁹⁶ KIM	90	AMY	$e_8: e^+e^- \rightarrow gg; R$		
>19.8	95	¹⁹⁷ BARTEL	87 B	JADE	e ₈ , μ ₈ , τ ₈ : e ⁺ e ⁻ ; R		
none 5–23.2	95	¹⁹⁷ BARTEL	87 B	JADE	$\mu_8: e^+e^- \rightarrow \mu\mu +$		
		¹⁹⁸ BARTEL			jets $e_8: e^+e^- \rightarrow gg; R$		

¹⁹³ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

¹⁹⁴ ABT 93 search for e_8 production via *e*-gluon fusion in *e p* collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} - Λ plane for $m_{e_8} = 35-220$ GeV.

¹⁹⁵ KIM 90 is at $E_{\rm cm} = 50$ –60.8 GeV. The same assumptions as in BARTEL 87B are used. ¹⁹⁶ KIM 90 result $(m_{e_8} \Lambda_M)^{1/2} > 178.4$ GeV (95%CL, $\alpha_s = 0.16$ used) is subject to the same restriction as for BARTEL 85K.

¹⁹⁷ BARTEL 87B is at $E_{\rm cm} = 46.3$ –46.78 GeV. The limits assume ℓ_8 pair production cross sections to be eight times larger than those of the corresponding heavy lepton pair production.

¹⁹⁸ In BARTEL 85K, R can be affected by $e^+e^- \rightarrow gg$ via e_q exchange. Their limit $m_{e_8} >$ 173 GeV (CL=95%) at $\lambda = m_{e_8}/\Lambda_M = 1$ ($\eta_L = \eta_R = 1$) is not listed above because the cross section is sensitive to the product $\eta_L \eta_R$, which should be absent in ordinary theory with electronic chiral invariance.

MASS LIMITS for Color Octet Neutrinos (ν_8)

$\lambda \equiv m_{\ell_8}/\Lambda$							
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>110	90	¹⁹⁹ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow$	$\nu_8 \overline{\nu}_8$	
• • • We do not use the following data for averages, fits, limits, etc. • • •							
none 3.8–29.8	95	²⁰⁰ KIM	90	AMY	$\nu_8: e^+e^-$	\rightarrow acoplanar	
none 9–21.9	95	²⁰¹ BARTEL	87 B	JADE	$\nu_8: e^+e^-$ jets	\rightarrow acoplanar	

 $^{199}\,{\rm BARGER}$ 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \rightarrow \ \nu g$ is assumed.

²⁰⁰ KIM 90 is at $E_{\rm cm} = 50-60.8$ GeV. The same assumptions as in BARTEL 87B are used. ²⁰¹ BARTEL 87B is at $E_{\rm cm} = 46.3-46.78$ GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)₁ × U(1)_Y quantum numbers.

MASS LIMITS for W₈ (Color Octet W Boson)

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ing data for averages, fits	s, limits,	etc. • • •
	²⁰² ALBAJAR 89	UA1	$p\overline{p} \xrightarrow{\longrightarrow} W_8 X, W_8 \xrightarrow{\longrightarrow} Wg$
202 ALBAJAR 89 give $\sigma(W_8 ightarrow$	$W+ ext{jet})/\sigma(W) < 0.01$.9 (90%	CL) for m_{W_8} > 220 GeV.

Limits on $ZZ\gamma$ Coupling

Limits are for the electric dipole transition form factor for $Z \rightarrow \gamma Z^*$ parametrized as $f(s') = \beta(s'/m_Z^2 - 1)$, where s' is the virtual Z mass. In the Standard Model $\beta \sim 10^{-5}$. <u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • • <0.80 95 ADRIANI 92J L3 $Z \rightarrow \gamma \nu \overline{\nu}$

REFERENCES FOR Searches for Quark and Lepton Compositeness

ACKERSTAFF 90C EPJ C1 21 K. Ackerstäft+ (OPAL Collab.) ACKERSTAFF 90C PIZ 145 K. Ackerstäft+ (OPC Collab.) ABE 97T PRL 79 2198 +Akimoto, Akopian, Albrow, Amendola+ (CDF Collab.) ABREU 97B PL 8393 245 +Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ABREU 971 ZPHY C74 57 PAtam. Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ABREU 971 ZPHY C74 577 P. Abreu+ (DELPHI Collab.) ACKERSTAFF 97 PL 8391 127 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab.) ACKERSTAFF 97 PL 8391 1221 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab.) ACKERSTAFF 97 PL 8309 277 (CPF Collab.) CEVEY V76 6 631 +Adian, Aguian-Benitze, Allenn (IEC Collab.) ABRE 96 PRL 77 438 +Akimoto, Akopian, Albrow, Amendolai+ (CDF Collab.) ABRE 960 PL 77 438 +Adam, Adriani, Aguian-Benitze, Allenn + (IS Collab.) ACKARRA 90D PL B383 433						
ACKERSTAFF 98C EPJ C1 45 K. Ackerstaff+ (CDF Collab.) ABRE 977 PR D55 R5263 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABREU 971 ZPHY C75 550 +Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ABREU 971 ZPHY C75 550 +Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ARECLU 971 ZPHY C75 550 +Adam, Adye, Ajinenko, Hekseev+ (DELPHI Collab.) ACKLART 976 PL B391 197 +Abraunder, Allison, Altekamp, Ametewee+ (OPAL Collab.) ACKERSTAFF 97 PL B391 191 +Abraunder, Allison, Altekamp, Ametewee+ (OPAL Collab.) ADLOFF 97 NP B483 4 +Ada, Adgewa, Shirai, Tsuboyama+ (VENUS Collab.) ARIMA 97 PR D53 91 +Odaka, Ogawa, Shirai, Tsuboyama+ (VENUS Collab.) ABE 965 PRI. 77 438 +Akimoto, Akopian, Albrow, Amendola+ (DELPHI Collab.) ABE 965 PRI. 77 438 +Akimoto, Akopian, Albrow, Amendola+ (DELPHI Collab.)	ACKERSTAFF	98	EPJ C1 21	K. Ackerstaff+	(OPAL	Collab.)
ABE 97C PR D55 R5283 +Akimoto, Akopian, Albrow, Amendolia, + (CDF Collab.) ABREU 97D PL B393 245 +Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ABREU 971 ZPHY C74 57 PAtreu+ (DELPHI Collab.) ABREU 971 ZPHY C74 577 P. Abreu+ (DELPHI Collab.) ABREU 972 ZPHY C74 577 P. Abreu+ (DELPHI Collab.) ACKARRI 970 PL B401 139 +Adriani, Aguilar-Benitez, Ahlen, Alpat+ (VELDEL Collab.) ACKERSTAFF 97C PL B301 221 +Alexander, Allison, Attekamp, Ametewee+ (OPAL Collab.) ARIMA 97 NP B483 4+ -Adramo, Akopian, Albrow- (VENUS Collab.) RETI'WEG 972 PLP V76 631 +Adramoto, Akopian, Albrow- (VENUS Collab.) ABRE 96 PRL 77 336 +Akimoto, Akopian, Albrow- (DELPHI Collab.) ACLARRI 960 PL B330 237 +Adam, Adriani, Aguilar-Benitez, Ahlen. (CDF Collab					<u>}</u> .	
ABEE 97T PRL 79 2198 +Akim. Akepian, Albrow, Amendolia+ (CDF Collab.) ABREU 97B PL B393 245 +Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ABREU 971 ZPHY C75 580 Frankam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ARE 971 ZPHY C75 580 Frankam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ACKLERSTAFF 97 PL B391 197 +Akexander, Allison, Altekamp, Ametewee+ (OPAL Collab.) ACKERSTAFF 97 PL B391 197 +Akexander, Allison, Altekamp, Ametewee+ (OPAL Collab.) ARIMA 97 PR D5 19 +Odaka, Ogawa, Shirai, Tsuboyama+ (VENUS Collab.) ARIMA 97 PL B409 277 CPHY C76 631 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABE 965 PRL 77 438 +Akimoto, Akopian, Albrow, Amendolia+ (DELPHI Collab.) ACCIARRI 90D PL B330 201 +Adam, Adriani, Aguila-Benitze, Alhen+ (IS Collab.) ACCIARRI 90D PL B353 136 +Alam, Adriani, Aguila-Benitze, Alhen+ (IS Collab.) ACCIARRI					·	
ABREU 971 PH B 303 245 +Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) ABREU 971 ZPHY C74 57 P. Abreu- (DELPHI Collab.) ABREU 971 ZPHY C75 580 erratum Abreu, Adam, Adye, Ajinenko, Alekseev+ (DELPHI Collab.) AGCIARRI 970 P. B301 197 P. Abreu-t (DELPHI Collab.) ACKERSTAFF 977 P. B391 1291 +Alexander, Allison, Alrekamp, Ametswee+ (OPAL Collab.) ACKERSTAFF 977 P. B391 1291 +Alexander, Allison, Alrekamp, Ametswee+ (OPAL Collab.) ARIMA 97 P. D5 19 +Odraka, Ogawa, Shirai, Tsuboyama+ (WENUS Collab.) DEANDREA 97 P. B409 277 +Akimoto, Akopian, Albrow+ (CDF Collab.) ABE 96 PRL 77 438 +Akimoto, Akopian, Albrow, Amedolia+ (DF Collab.) ACCIARRI 960 P. B380 430 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 960 P. B385 445 +De Bonis, Decamp, Chez, Goy, Leest + (ALEPH Collab.) ACCIARRI 960 P. B335 578 +Adam, Adriani, Aguilar-Benitez						
ABREU 97L ZPHY C74 57 +Adam, Adye, Ajinenko, Alekseev-+ (DELPHI Collab) ABREU 97L ZPHY C75 580 PAbreu+ (DELPHI Collab) ACCLARRI 976 PL B391 197 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab) ACKERSTAFF 97 PL B391 127 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab) ACKERSTAFF 97 PL B483 44 +Aid, Anderson, Andrex, Andrieu, Andt+ (H1 Collab) ACKERSTAFF 97 PL B493 277 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab) BREITWEG 97 PL B409 277 (MARS) (DEC Collab) ABBE 96 PL T7 5336 +Akimoto, Akopian, Albrow+ (DE CD Collab) ABREU 90K PL B370 221 +Adam, Adriani, Aguilar-Benitez, Alhen+ (L3 Collab) ACCLARRI 90L PL B34 323 +Adam, Adriani, Aguilar-Benitez, Alhen+ (DPA Collab) ACCLARRI 90C PL B385 435 +De Bonis, Decamp, Ghez, Goy, Lese+ (ALEPH Collab) ALEXANDER 96K PL B333 356 +Adam, Adriani, Aguilar-Benitez,	ABE	97T	PRL 79 2198	+Akimoto, Akopian, Albrow, Amendolia+	(CDF	Collab.)
ABREU 97L ZPHY C74 57 +Adam, Adye, Ajinenko, Alekseev-+ (DELPHI Collab) ABREU 97L ZPHY C75 580 PAbreu+ (DELPHI Collab) ACCLARRI 976 PL B391 197 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab) ACKERSTAFF 97 PL B391 127 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab) ACKERSTAFF 97 PL B483 44 +Aid, Anderson, Andrex, Andrieu, Andt+ (H1 Collab) ACKERSTAFF 97 PL B493 277 +Alexander, Allison, Altekamp, Ametewee+ (OPAL Collab) BREITWEG 97 PL B409 277 (MARS) (DEC Collab) ABBE 96 PL T7 5336 +Akimoto, Akopian, Albrow+ (DE CD Collab) ABREU 90K PL B370 221 +Adam, Adriani, Aguilar-Benitez, Alhen+ (L3 Collab) ACCLARRI 90L PL B34 323 +Adam, Adriani, Aguilar-Benitez, Alhen+ (DPA Collab) ACCLARRI 90C PL B385 435 +De Bonis, Decamp, Ghez, Goy, Lese+ (ALEPH Collab) ALEXANDER 96K PL B333 356 +Adam, Adriani, Aguilar-Benitez,	ABREU	97B	PL B393 245	+Adam, Adve, Aiinenko, Alekseev+	(DELPHI	Collab.)
Also 97L ZPHY C75 850 eratum Adrain, Aguiar-Benitez, Ahlen, Alpat+ (DELPHI Collab.) ACKLRSTAFF 97C PL B301 197 +Adrain, Aguiar-Benitez, Ahlen, Alpext+ (J S Collab.) ACKERSTAFF 97C PL B301 121 +Alexander, Allison, Attekamp, Ametewee+ (OPAL Collab.) ACKERSTAFF 97C PL B391 121 +Alexander, Allison, Attekamp, Ametewee+ (VENUS Collab.) ARIMA 97 PL B409 277 +Odaka, Ogawa, Shirai, Tsuboyam+ (VENUS Collab.) DEANDREA 97 PL B409 277 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABE 96 PRL 77 433 +Akimoto, Akopian, Albrow, Amendolia- (CDF Collab.) ABERU 96K PL B370 211 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 96K PL B385 445 +DE Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) ALEXANDER 96K PL B385 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) DUSKULC 96Z PL B385 445 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L12 Collab.) DESKUL					2	
ABREU 970 PL P401 237 PL Abreu+ (DELPHI Collab) ACCLARRI 970 PL B301 197 +Adriani, Aguilar-Benitez, Ahlen, Apat+ (U3 Collab) ACKERSTAFF 97 PL B301 221 +Adriani, Aguilar-Benitez, Ahlen, Ametewee+ (OPAL Collab) ACKERSTAFF 97 PP B483 +Aid, Anderson, Antekamp, Ametewee+ (OPAL Collab) ARIMA 97 PP B483 +Aid, Anderson, Antekamp, Ametewee+ (OPAL Collab) ARIMA 97 PP B483 +Aidmot, Aguilar-Benitez, Ahlen, Ametewee+ (DEVIS Collab) BRETIVEG 970 PP H209 277 +Akimoto, Akopian, Albrow+ (CDF Collab) ABE 965 PRL 77 336 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (DE Collab) ACCLARRI 906 PL B370 221 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (DE Collab) ALEXANDER 960 PL B386 433 +Alamo, Adriani, Aguilar-Benitez, Ahlen+ (DE Collab) AUSUNULC 960 PL B384 338 +Allrow, Amedola, Amide, Antes+ (DE Col					2	
ACCLARRI 970 PL E401 139 +Adriani, Águila-Benitez, Ahlen, Alpat+ (13 Collab) ACKERSTAFF 970 PL B391 121 +Alexander, Allison, Altrekamp, Ametewee+ (OPAL Collab) ARIMA 97 PR D55 19 +Odtaka, Ogawa, Shirai, Tsuboyama+ (VENUS Collab) BREITWEG 970 CZHY C76 631 +Odtaka, Ogawa, Shirai, Tsuboyama+ (VENUS Collab) DEANDRA 97 PL B30 211 +Akimoto, Akopian, Albrow+ (DDF Collab) ABE 960 PRL 77 5336 +Akimoto, Akopian, Albrow, Amendolia+ (DDF Collab) ABE 965 PRL 77 5336 +Akimoto, Akopian, Albrow, Amendolia+ (DDF Collab) ACCLARRI 960 PL B384 323 +Adam, Adriani, Aguila-Benitez, Ahlen+ (L3 Collab) ACCLARRI 966 PL B386 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab) BUSKULIC 9607 PL B333 336 +De Bonis, Decamp, Ghez+ (ALEPH Collab) ACCLARRI 961 PL B333 336 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab) ADSKULIC 9607 PL B333 336 <t< td=""><td></td><td></td><td></td><td></td><td>2</td><td></td></t<>					2	
ACKERSTAFF97PLB391+Alexander, Allison, Altekamp, Ametewee+(OPAL Collab.)ACKERSTAFF97NPB48344+Aid, Anderson, Andrew, Andrieu, Andrit-(H1Collab.)ARIMA97PRD5519+Derrick, Krakauer, Magill+(ZEUS Collab.)BREITWEG9727HYC76631+Derrick, Krakauer, Magill+(ZEUS Collab.)DEANDREA97PLB409277+Akimoto, Akopian, Albrow+(CDFCollab.)ABE96PRI. 77438+Akimoto, Akopian, Albrow+, Manedolia+(DFCollab.)ABE965PRI. 775336+Adiam, Adriani, Aguilar-Benitez, Ahlen+(L3Collab.)ACCLARRI960PLB38422+(OPALCollab.)ACCLARRI960PLB38442+DeBonis, Decamp, Chez.+(ALEPHCollab.)ALEXANDER960PLB383438+DeBonis, Decamp, Chez.+(ALEPHCollab.)AUSKULIC960PLB35318+Adam, Adriani, Aguilar-Benitez, Ahlen+(L3Collab.)ADCLARRI956PLB35318+Adamo, Amidia, Anway-Wiese, Apollinari+(CDFCollab.)ADRIANI956PLB35318+Adamo, Admidia, Anway-Wiese, Apollinari+(CDFCollab.)ADRIANI956PLB35318+Adamo, Admidia, Anway-Wiese, Apollinari+(CDFCollab.)ADRIANI958PLPL230	ABREU	97 J	ZPHY C74 577	P. Abreu+	(DELPHI	Collab.)
ACKERSTAFF97PLB391+Alexander, Allison, Altekamp, Ametewee+(OPAL Collab.)ACKERSTAFF97NPB48344+Aid, Anderson, Andrew, Andrieu, Andrit-(H1Collab.)ARIMA97PRD5519+Derrick, Krakauer, Magill+(ZEUS Collab.)BREITWEG9727HYC76631+Derrick, Krakauer, Magill+(ZEUS Collab.)DEANDREA97PLB409277+Akimoto, Akopian, Albrow+(CDFCollab.)ABE96PRI. 77438+Akimoto, Akopian, Albrow+, Manedolia+(DFCollab.)ABE965PRI. 775336+Adiam, Adriani, Aguilar-Benitez, Ahlen+(L3Collab.)ACCLARRI960PLB38422+(OPALCollab.)ACCLARRI960PLB38442+DeBonis, Decamp, Chez.+(ALEPHCollab.)ALEXANDER960PLB383438+DeBonis, Decamp, Chez.+(ALEPHCollab.)AUSKULIC960PLB35318+Adam, Adriani, Aguilar-Benitez, Ahlen+(L3Collab.)ADCLARRI956PLB35318+Adamo, Amidia, Anway-Wiese, Apollinari+(CDFCollab.)ADRIANI956PLB35318+Adamo, Admidia, Anway-Wiese, Apollinari+(CDFCollab.)ADRIANI956PLB35318+Adamo, Admidia, Anway-Wiese, Apollinari+(CDFCollab.)ADRIANI958PLPL230	ACCIARRI	97G	PL B401 139	+Adriani, Aguilar-Benitez, Ahlen, Alpat+) (L3	Collab.)
ACKERSTAFF97PD 8483 44+Aid, Anderson, Antekamp, Ameteweet, (OPAL Collab.)ADLOFF97NP B483 44+Aid, Anderson, Anterew, Andrieu, Amdt+(HI Collab.)BREITWEG97PL B409 277+Darick, Krakauer, Magill+(ZEUS Collab.)ABE96PRL 77 438+Akimoto, Akopian, Albrow+(CDF Collab.)ABE965PRL 77 536+Akimoto, Akopian, Albrow, Amendolia+(CDF Collab.)ABREU966PRL 77 536+Akimoto, Akopian, Albrow, Amendolia+(CDF Collab.)ACCIARRI961PL B370 221+Adam, Adriani, Aguilar-Benitez, Ahlen+(LI Collab.)ACCIARRI966PL B384 323+Adam, Adriani, Aguilar-Benitez, Ahlen+(LI Collab.)ALEXANDER960PL B385 435+De Bonis, Decarmo, Chez, Goy, Les+(ALEPH Collab.)BUSKULIC960PL B385 436+Albrow, Amendolia, Antos+(CDF Collab.)ABE950PRL 74 3538+Aldrew, Adriani, Aguilar-Benitez, Ahlen+(LI Collab.)ADD95PL B353 578+Adam, Adriani, Aguilar-Benitez, Ahlen+(LI Collab.)ADI 25PL B353 578+Andrew, Andrieu, Appuhn, Arpagaus+(CDF Collab.)ABE94PRL 72 3004+Albrow, Amidei, Anway-Wiese, Apollinari, (CDF Collab.)ABE93PRL 72 3004+Abrow, Amidei, Anway-Wiese, Apollinari, Atas'ABE94PRL 72 525+Andrew, Andrieu, Appuhn, Arpagaus+(CDF Collab.)ABE93PRL 236 1+Adam, Adami, Aday, Akoes, Aloraor+(LEPH Collab.)ABE94 </td <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td>				· · · · · · · · · · · · · · · · · · ·		
ADLOFF 97 NP B483 44 +Aid, Anderson, Andreev, Andrieu, Amdt+ (H1 Collab.) BREITWEG 97C ZPHY C76 631 +Derrick, Krakauer, Magill+ (ZEUS Collab.) BRE 96 PR. 77 438 +Akimoto, Akopian, Albrow+ (CDF Collab.) ABE 96 PR. 77 438 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABRE 966 PR. 77 438 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ACIARRI 960 PL B380 430 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 960 PL B384 323 +Adam, Adriani, Aguilar-Benitez, Hore+ (OPAL Collab.) ALEXANDER 960 PL B386 433 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) BUSKULIC 960 PL B335 376 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ALEXANDER 951 PR 174 3338 +Albrow, Ameidolia, Antos+ (CDF Collab.) ACIARRI 952 PL B335 376 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ADI 959 PL B335 376 +Adam, A					2	
ARIMA 97 PR D55 19 + Odaka, Ogawa, Shirai, Tsuboyama+ (ZENZ Collab.) BREITWEG 97 PL B409 277 - (ZEVS Collab.) ABE 96 PRI. 77 438 + Akimoto, Akopian, Albrow+ (CDF Collab.) ABE 965 PRI. 77 533 + Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ACCLARRI 960 PL B370 211 + Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCLARRI 960 PL B370 221 + (DPA Collab.) ALEXANDER 960 PL B384 333 + De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) ALEXANDER 960 PL B383 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) BUSKULIC 960 PL B353 378 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ADI 95 PL B353 378 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ADR 94 PL 331 227 +trakauer, Magill, Musgrave, Repond+ (ZEUS Collab.) ADRAN 95 PL B331 257 +trakauer, Magill, Anway-Wiese, Apolinari+ (CDF				+Alexander, Allison, Altekamp, Ametewee-		- /
BREITWEG 97 ZUPY C76 631 +Derrick, Krakauer, Magill+ (ZEUS Collab.) ABE 96 PRL 77 438 +Akimoto, Akopian, Albrow,+ (CDF Collab.) ABRE 965 PRL 77 5336 +Akimoto, Akopian, Albrow,- (DELPHI Collab.) ABREU 966 PL B380 480 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (LD Collab.) ACCIARRI 960 PL B384 323 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ALEXANDER 960 PL B386 445 +De Bonis, Decamp, Ghez, (OPAL Collab.) ALEXANDER 95N PRL 74 3538 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) BUSKULIC 960 PL B385 3578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L2 Collab.) ACCIARRI 95 PL B353 578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L2 Collab.) ACIARRI 957 PL 353 578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L2 Collab.) ACIARRI 958 ZPHY C56 627 +Krakauer, Magil, Musgrave, Repond+ (CDF Collab.) ACIARRI 93 NP B409 82149 +Lan	ADLOFF	97	NP B483 44	+Aid, Anderson, Andreev, Andrieu, Arndt-	+ (H1	Collab.)
BREITWEG 97 ZUPY C76 631 +Derrick, Krakauer, Magill+ (ZEUS Collab.) ABE 96 PRL 77 438 +Akimoto, Akopian, Albrow,+ (CDF Collab.) ABRE 965 PRL 77 5336 +Akimoto, Akopian, Albrow,- (DELPHI Collab.) ABREU 966 PL B380 480 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (LD Collab.) ACCIARRI 960 PL B384 323 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ALEXANDER 960 PL B386 445 +De Bonis, Decamp, Ghez, (OPAL Collab.) ALEXANDER 95N PRL 74 3538 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) BUSKULIC 960 PL B385 3578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L2 Collab.) ACCIARRI 95 PL B353 578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L2 Collab.) ACIARRI 957 PL 353 578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L2 Collab.) ACIARRI 958 ZPHY C56 627 +Krakauer, Magil, Musgrave, Repond+ (CDF Collab.) ACIARRI 93 NP B409 82149 +Lan	ARIMA	97	PR D55 19	+Odaka Ogawa Shirai Tsuboyama $+$	(VENUS	Collab)
DEANDREA 97 PL B409 277 (MARS) ABE 96 PRL 77 438 +Akimoto, Akopian, Albrow+ (CDF Collab.) ABREU 96K PL B300 480 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (DELPHI Collab.) ACCIARRI 96L PL B370 211 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (DAL Collab.) ACCIARRI 96L PL B383 432 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (DAL Collab.) ALEXANDER 96K PL B385 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) BUSKULIC 96Z PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (LS Collab.) ACCIARRI 95G PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (LS Collab.) ADB 95 PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (LS Collab.) ADRAN 95G PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (LS Collab.) ADRAN 95G PL B353 136 +Adarew, Andrieu, Appuhn, Arpagus+ (HI Collab.) ADRAN 95G PL 77 2004 +Abrow, Amidei, Anway-Wiese, Apolinari+						
ABE 96 PRL 77 438 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABREU 96K PL B380 480 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABREU 96K PL B380 1211 +Adam, Adriani, Aguian-Benitez, Ahlen+ (DELPHI Collab.) ACCIARRI 96L PL B372 222 + (OPAL Collab.) ALEXANDER 96K PL B384 432 +Adam, Adriani, Aguian-Benitez, Ahlen+ (I3 Collab.) BUSKULIC 96W PL B385 445 +De Bonis, Decamp, Ghez+ (OPAL Collab.) BUSKULIC 96W PL B335 378 +Adam, Adriani, Aguian-Benitez, Ahlen+ (13 Collab.) ACIARRI 95 PL B333 378 +Adam, Adriani, Aguian-Benitez, Ahlen+ (12 COF Collab.) ABE 94 PR 17 23004 +Abrow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) DIAZCRUZ 94 PR 1236 1 +Aguian-Benitez, Ahlen+ (2EUS Collab.) ABE 93 PRL 71 2542 +Abrow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) ABE 93 PRPL 236 1 +Aguian-Benitez, Ahlen, Akraz, Alosio				Denick, Makader, Magin	· ·	
ABE 965 PRL 77 5336 +Akimoto, Akopian, Albrow, Amendolia+ (CDF Collab.) ABREU 96K PL B380 480 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 96D PL B370 211 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ALEXANDER 96K PL B383 432 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (CPAL Collab.) ALEXANDER 96K PL B385 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) BUSKULIC 96Z PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 95G PL B353 578 +Andreev, Andrieu, Appuhn, Arpagaus+ (H1 Collab.) ADERNCY 95B PLHY C56 627 +Krakauer, Magil, Musgrave, Repond+ (ZEU S Collab.) ABE 94 PRL 72 3004 +Albrow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) ABE 93 PR 2361 +Aguilar-Benitez, Ahlen, Alcaraz, Alosio+ (CDF Collab.) ABT 93 PR 2361 +Aguilar-Benitez, Ahlen, Alcaraz, Alosio+ (L3 Collab.) ADRIANI 93M PRL 631 160						
ABREU 96K PL B370 211 +Adam, Adrani, Aguilar-Benitez, Ahlen,+ (DELPHI Collab.) ACCIARRI 96L PL B384 323 +Adam, Adriani, Aguilar-Benitez, Ahlen,+ (DAL Collab.) ALEXANDER 96K PL B384 433 +De Bons, Decamp, Ghez, Goy, Less+ (OPAL Collab.) BUSKULIC 96W PL B384 433 +De Bons, Decamp, Ghez, Goy, Less+ (ALEPH Collab.) BUSKULIC 96Z PL B383 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 95R PRL 74 553 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 95B PHY C56 627 +Krakauer, Magill, Musgrave, Repond+ (ZEUS Collab.) DAZCRUZ 94 PR D49 P212 +Lusin, Chung, Park, Cho, Bodek, Kim+ (CDF Collab.) VELSSRIS 94 PR D4331 227 +Lusin, Chung, Park, Cho, Bodek, Kim+ (LDF Collab.) ABE <	ABE	96	PRL 77 438	+Akimoto, Akopian, Albrow+	(CDF	Collab.)
ABREU 96K PL B370 211 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (DELPHI Collab.) ACCIARRI 96L PL B370 211 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ALEXANDER 96K PL B384 433 +De Bons, Decamp, Ghez, Goy, Less+ (OPAL Collab.) BUSKULIC 96W PL B384 433 +De Bons, Decamp, Ghez, Goy, Less+ (ALEPH Collab.) ABE 95N PRL 74 3538 +Albrow, Amendolia, Amidei, Antos+ (CDF Collab.) ACCIARRI 95G PL B333 356 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 95G PL B333 126 Horow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) DERRICK 95B ZPHY C56 627 +Krakauer, Magill, Musgrave, Repond+ (ZEUS Collab.) DAZCRUZ 94 PR D49 PL 224 +Albrow, Ahimoto, Animoto, Animota, Anway-Wiese+ (CDF Collab.) ABE 93G PR D4	ABE	96S	PRL 77 5336	+Akimoto, Akopian, Albrow, Amendolia+	(CDF	Collab.)
ACCIARRI 96D PL B370 211 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 96L PL B384 323 +Adam, Adriani, Aguilar-Benitez, Helen+ (DPAL Collab.) ALEXANDER 96Q PL B385 463 +Allison, Altekamp, Ametewee+ (OPAL Collab.) ALEXANDER 96Q PL B385 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) BUSKULC 96Z PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ACCIARRI 95G PL B353 378 +Andreev, Andrieu, Appuhn, Arpagaus+ (HI Collab.) ACCIARRI 95G PL B353 126 +Ahdreev, Andrieu, Appuhn, Arpagaus+ (L1 Collab.) DERRICK 95B PRL 72 3004 +Abrow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) DIAZCRUZ 94 PRL 72 3004 +Abrow, Akimoto, Amidei, Anway-Wiese+ (CDF Collab.) ABE 93 PR D49 82149 Diaz Cruz, Sampayo (CINV) VELISSARIS 94 PRL 72 301 +Aguilar-Benitez, Ahlen, Alcaraz, Aloisic+ (L2 Collab.) ADRIANI 93 NP B400 3	ABRELL					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					· .	
ALEXANDER 96K PL B377 222 + (OPAL Collab.) ALEXANDER 960 PL B385 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) BUSKULIC 96V PL B385 445 +De Bonis, Decamp, Ghez, Goy, Lees+ (ALEPH Collab.) ABE 95N PRI 74 353 +Adbrow, Amedolia, Amidei, Antos+ (CDF Collab.) ADD 95 PL B353 578 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) ABE 94 PRI 72 3004 +Albrow, Amidei, Anway-Wiese, Apolliari+ (CDF Collab.) ABE 93G PRI 72 3004 +Audreev, Andrieu, Appuhn, Arpagaus+ (H1 Collab.) ABE 93G PRI 72 303 +Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+ (L3 Collab.) ABT 93 NP B400 3 +Amirosin, Anarcia, Autrino, Bareyre+ (UA2 Collab.) ADRIANI 93M PRE 292 215 +Decamp, Goy, Lees, Minard, Mo						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ACCIARRI	96L	PL B384 323	+Adam, Adriani, Aguilar-Benitez+	(L3	Collab.)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ALEXANDER	96K	PL B377 222	+	(OPAL	Collab.)
BUSKULIC96WPL B385 445+De Bonis, Decamp, Ghez, Goy, Lees,+(ALEPH Collab.)BUSKULIC96ZPL B383 136+De Bonis, Decamp, Ghez,+(ALEPH Collab.)ABE95NPRL 74 3538+Albrow, Amendolia, Antoiei, Antos,+(CDF Collab.)AID95PL B353 578+Andreev, Anguilar-Benitez, Ahlen,+(L3 Collab.)ABE94PRL 72 3004+Krakauer, Magill, Musgrave, Repond,+(ZEUS Collab.)ABE94PR D49 R2149Diaz Cruz, Sampayo(CINV)VELISSARIS94PL B331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE93GPRL 71 2542+Albrow, Amidei, Anway-Wiese, Apollinari,+(CDF Collab.)ABT93NP B396 3+Andreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ABT93NP B400 3+Amitosin, Ansari, Autiero, Bareyre+(UA2 Collab.)ALITTI93NP B400 3+Amidei, Anoy-Wiese, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 2896+Amidei, Anay-Wiese, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1603+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 286+Adam, Adami, Adye, Akesson+(DELPH						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		-		·	. `	
ABE95NPRL 74 3538+Albrow, Amendola, Amidei, Antos+(CDF Collab.)ACCIARRI95GPL B353 136+Adram, Adriani, Aguilar-Benitez, Ahlen+(L3 Collab.)AID95PL B353 578+Andrew, Andrieu, Appuhn, Arpagaus+(H1 Collab.)DERRICK95BZPHY C65 627+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE94PRL 72 3004+Albrow, Amidei, Anway-Wiese, Apollinari+(CDF Collab.)DIAZCRUZ94PR D49 R2149Diaz Cruz, Sampayo(CINV)VELISSARIS94PL B331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE936PRL 71 2542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)AULTTI93NP B400+Amdrein, Appuhn, Arpagaus+(H1 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU92CZPHY C53 455+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B282 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92BPL B292 4769+Aguilar-Benitez, Ahlen, Akbari, Alcarez					2	
ACCIARRI 95G PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) AID 95 PL B353 578 +Andreev, Andrieu, Appuhn, Arpagaus+ (H1 Collab.) ABE 94 PRL 72 3004 +Albrow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) DIAZCRUZ 94 PR D49 R2149 Diaz Cuz, Sampayo (CINV) VELISSARIS 94 PR T1 2542 +Albrow, Akimoto, Amidei, Anway-Wiese, Apollinari, + (CDF Collab.) ABE 936 PRL 71 2542 +Albrow, Akimoto, Amidei, Anway-Wiese, H (CDF Collab.) ABT 93 NP B396 +Andreev, Andrieu, Appuhn, Arpagaus+ (L3 Collab.) ADRIANI 93M PRPL 261 215 +Decamp, Goy, Lees, Minard, Mours+ (ALEPH Collab.) BUSKULIC 930 PRL 68 1607 +Krakauer, Magill, Musgrave, Repond+ (ZEUS Collab.) ABE 92D PRL 68 1604 +A	BUSKULIC	96Z	PL B384 333	+De Bonis, Decamp, Ghez+	(ALEPH	Collab.)
ACCIARRI 95G PL B353 136 +Adam, Adriani, Aguilar-Benitez, Ahlen+ (L3 Collab.) AID 95 PL B353 578 +Andreev, Andrieu, Appuhn, Arpagaus+ (H1 Collab.) ABE 94 PRL 72 3004 +Albrow, Amidei, Anway-Wiese, Apollinari+ (CDF Collab.) DIAZCRUZ 94 PR D49 R2149 Diaz Cuz, Sampayo (CINV) VELISSARIS 94 PR T1 2542 +Albrow, Akimoto, Amidei, Anway-Wiese, Apollinari, + (CDF Collab.) ABE 936 PRL 71 2542 +Albrow, Akimoto, Amidei, Anway-Wiese, H (CDF Collab.) ABT 93 NP B396 +Andreev, Andrieu, Appuhn, Arpagaus+ (L3 Collab.) ADRIANI 93M PRPL 261 215 +Decamp, Goy, Lees, Minard, Mours+ (ALEPH Collab.) BUSKULIC 930 PRL 68 1607 +Krakauer, Magill, Musgrave, Repond+ (ZEUS Collab.) ABE 92D PRL 68 1604 +A	ABE	95N	PRL 74 3538	+Albrow, Amendolia, Amidei, Antos+	(CDF	Collab.)
AID95PL B353 578+Andreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)DERRICK95BZPHY C65 627+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE94PR D49 R2149Diaz Cruz, Sampayo(CDF Collab.)DIAZCRUZ94PR D49 R2149Diaz Cruz, Sampayo(CDF Collab.)VELISSARIS94PL B331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE936PRL 71 2542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ABT93NP B396 3+Andreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ADRIANI93MPRL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)AULTTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)BUSKULIC93QZPHY C53 14+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 68 1104+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ABREU92DZPHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)ADRIANI92FPL B292 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PR D46 58(ROCH)DECAMP92PRPL 216 253+Des					· .	
DERRICK95BZPHY C65 627+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE94PR D49 R2149Diaz Cruz, Sampayo(CINV)VELISSARIS94PL B331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE93GPR L71 2542+Albrow, Akimoto, Amidei, Anway-Wiese, Apollinari, H1 Collab.)ABTABT93PRPL 236 1+Andreev, Andrieu, Appuhn, Arpagaus+(LI Collab.)ADRIANI93MPRPL 236 1+Audreev, Andrieu, Appuhn, Arpagaus+(LI Collab.)ALITTI93PB 400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU92CZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL 8288 404+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Ben					A	
ABE94PRL 72 3004+Albrow, Amidei, Anway-Wiese, Apollinari, + (CDF Collab.)DIAZCRUZ94PR D49 R2149Diaz Cruz, Sampayo(CINV)VELISSARIS94PL 831 227+Lusin, Churg, Park, Cho, Bodek, Kim+(AMY Collab.)ABE936PRL 71 2542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ABT93NP B396 3+Andreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL 816 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92CZPHY C53 455+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PL B297 13Bardadin-Otwinowska						
DIAZCRUZ94PR D49 R2149Diaz Cruz, SampayoC(INV)VELISSARIS94PL 8331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE936PRL 71 2542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B306 3+Amdreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)ALITTI93PR 168 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92DZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92BPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PR D46 58(ROCH)(ROCH)PDG <t< td=""><td>DERRICK</td><td>95B</td><td>ZPHY C65 627</td><td>+Krakauer, Magill, Musgrave, Repond+</td><td>(ZEUS</td><td>Collab.)</td></t<>	DERRICK	95B	ZPHY C65 627	+Krakauer, Magill, Musgrave, Repond+	(ZEUS	Collab.)
DIAZCRUZ94PR D49 R2149Diaz Cruz, SampayoC(INV)VELISSARIS94PL 8331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE936PRL 71 2542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B306 3+Amdreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)ALITTI93PR 168 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92DZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92BPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PR D46 58(ROCH)(ROCH)PDG <t< td=""><td>ABE</td><td>94</td><td>PRL 72 3004</td><td>+Albrow, Amidei, Anway-Wiese, Apollinari</td><td>+ (CDF</td><td>Collab.)</td></t<>	ABE	94	PRL 72 3004	+Albrow, Amidei, Anway-Wiese, Apollinari	+ (CDF	Collab.)
VELISSARIS94PL B331 227+Lusin, Chung, Park, Cho, Bodek, Kim+(AMY Collab.)ABE93GPRL 71 2542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ABT93NP B306 3+Andreev, Andrieu, Appuhn, Arpagaus+(HI Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1463+Amidei, Anway-Wiese, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac, CDF Collab.)ABREUABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson, Hekseev+(DELPHI Collab.)ABREU92DZPHY C55 55+Adami, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92FPL B284 404+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B291 206+Kotick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(CCHPOG92PR D46 58(CDF Collab.)ABE91DPRL 67 2418+Amidei, Apolinari, Atac, Auchincloss+(DF Collab.)ABREU91FNP					. (-	
ABE93GPRI712542+Albrow, Akimoto, Amidei, Anway-Wiese+(CDF Collab.)ABT93NP B396 3+Andreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Amibrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY CS9 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92DPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DZPHY C53 41+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ABREU92DZPHY C53 55+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92FPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92PL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez, Aloisio+(L2 Collab.)BARDADIN92ZPHY C55 163Bardadin-Otwinowska(CLER)DCCAMP92PRL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B284 144+Fwidiei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91DPL B287 511+Adam,						· · ·
ABT93NP B396 3+Andreev, Andrieu, Appuhn, Arpagaus+(H1 Collab.)ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)ALITTI93Q ZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92DPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(DELPHI Collab.)ABREU92DZPHY C53 41+Adam, Adami, Adye, Akesson, Aleksev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92BPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92JPL B291 206+Kotick, Tauchi, Miyamoto, Kichimi+(TDPAZ Collab.)BARDADIN92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)PDG92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TDPAZ Collab.)ABEE91DPR 67 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FPL B256 13+Anazawa, Doser, Enomoto				`	- /
ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(LEPH Collab.)HOWELL92PL B291 206+Kotick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABEL91EPL B256 613+Anaazwa,	ABE	93G	PRL 71 2542	+Albrow, Akimoto, Amidei, Anway-Wiese+	- (CDF	Collab.)
ADRIANI93MPRPL 236 1+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(L3 Collab.)ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92DPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 2896+Amidei, Anya-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)BARDADIN92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Kotick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PR D45, 13 une, Pa	ABT	93	NP B396 3	+Andreev, Andrieu, Appuhn, Arpagaus+	(H1	Collab.)
ALITTI93NP B400 3+Ambrosini, Ansari, Autiero, Bareyre+(UA2 Collab.)BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92DZPHY C53 41+Adam, Adami, Adye, Akesson, Aleksev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92BPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 4769+Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+(CLER)DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Amidei, Apolinari, Atac, Auchincloss+(CDF Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AbRAUY91FPL B255 613+Anazawa, Doser, Enomoto	ADRIANI	93M	PRPI 236 1			
BUSKULIC93QZPHY C59 215+Decamp, Goy, Lees, Minard, Mours+(ALEPH Collab.)DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92DZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Aleksev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92PL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)BARDADIN92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(ROCH)PDG92PR D45 711+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABE91DPRL 67 2418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABE					··	
DERRICK93BPL B316 207+Krakauer, Magill, Musgrave, Repond+(ZEUS Collab.)ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 69 2896+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anvay-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Alcarez, Aloisio+(L3 Collab.)BARDADIN92PPHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PR D46 58(ROCH)(TOPAZ Collab.)HOWELL92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 531+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)ALTTI91B<						
ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac,(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 55+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez, Aloisio+(L2 Collab.)BARDADIN92PPRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(ROCH)PDG92PR D45, 1 June, PartI Hikas, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)AkraWY91FPL B257 51 143+Criegee, Field, Franke, Jung+(CELLO Collab.) <td>BUSKULIC</td> <td>93Q</td> <td>ZPHY C59 215</td> <td></td> <td>(ALEPH</td> <td>Collab.)</td>	BUSKULIC	93Q	ZPHY C59 215		(ALEPH	Collab.)
ABE92BPRL 68 1463+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac,(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 55+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez, Aloisio+(L2 Collab.)BARDADIN92PPRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(ROCH)PDG92PR D45, 1 June, PartI Hikas, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)AkraWY91FPL B257 51 143+Criegee, Field, Franke, Jung+(CELLO Collab.) <td>DERRICK</td> <td>93B</td> <td>PL B316 207</td> <td>+Krakauer, Magill, Musgrave, Repond+</td> <td>(ZEUS</td> <td>Collab.)</td>	DERRICK	93B	PL B316 207	+Krakauer, Magill, Musgrave, Repond+	(ZEUS	Collab.)
ABE92DPRL 68 1104+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac,(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92FPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez, Aloisio+(L3 Collab.)BARDADIN92PPRL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45 58(ROCH)PDG92PR D45, 1 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABEEU91EPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)AKRAWY91FPL B257 143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)AltTTI91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)	ABE	92B	PRI 68 1463		(CDF	Collab Ĵ
ABE92MPRL 69 2896+Amidei, Anway-Wiese, Apollinari, Atac+(CDF Collab.)ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92BPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez, Aloisio+(L3 Collab.)BARDADIN92ZPHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PR L 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45, 1 June, PartI Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AKRAWY91FPL B255 613+Alaxader, Allison, Allport, Anderson+(DPLPHI Collab.)ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)Also91BZPHY C51 143+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)ABE901ZPHY C51 143+Criegee, Field, Franke, Jung,					<u>}</u>	
ABREU92CZPHY C53 41+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU92DZPHY C53 555+Adam, Adami, Adye, Akesson, Alekseev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)BARDADIN92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45, 1 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABREU91EPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AKRAWY91FPL B257 531+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(DELPHI Collab.)Also91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)Alse901ZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143+Criegee, Field, Franke, Jung+						
ABREU92DZPHY C53 555+Adami, Adami, Adye, Akesson, Aleksev+(DELPHI Collab.)ADRIANI92BPL B288 404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPL B292 472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92JPL B297 469+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)BARDADIN92ZPHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D45, 1 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91EPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BZPHY C51 143+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51 143+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)AltraniAguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)Aber90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>- /</td>						- /
ADRIANI92BPLB288404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPLB292472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPLB297469+Aguilar-Benitez, Ahlen, Alcarez, Aloisio+(L3 Collab.)BARDADIN92ZPHY C55163Bardadin-Otwinowska(CLER)DECAMP92PR DL216253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PLB291206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D4658(ROCH)(ROCH)PDG92PR D45, 1 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PLB284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FPLB265513+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPLB257531+Alexander, Allison, Allport, Anderson+(DAL Collab.)ALITTI91BPLB257143+Criegee, Field, Franke, Jung+(CELLO Collab.)Aller91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)Aller91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)Aller91BZPHY C51143+Ariani, Aguilar-Be	ABREU	92C	ZPHY C53 41	+Adam, Adami, Adye, Akesson+	(DELPHI	Collab.)
ADRIANI92BPLB288404+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92FPLB292472+Aguilar-Benitez, Ahlen, Akbari, Alcaraz+(L3 Collab.)ADRIANI92JPLB297469+Aguilar-Benitez, Ahlen, Alcarez, Aloisio+(L3 Collab.)BARDADIN92ZPHY C55163Bardadin-Otwinowska(CLER)DECAMP92PR DL216253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PLB291206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D4658(ROCH)(ROCH)PDG92PR D45, 1 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PLB284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FPLB265513+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPLB257531+Alexander, Allison, Allport, Anderson+(DAL Collab.)ALITTI91BPLB257143+Criegee, Field, Franke, Jung+(CELLO Collab.)Aller91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)Aller91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)Aller91BZPHY C51143+Ariani, Aguilar-Be	ABREU	92D	ZPHY C53 555	+Adam, Adami, Adve, Akesson, Alekseev-	-ÌDELPHI	Collab.)
ADRIANI92FPLB292472+Aguilar-Benitez, Ahlen, Akbari, Alcarez+(L3 Collab.)ADRIANI92JPLB297469+Aguilar-Benitez, Ahlen, Alcarez, Aloisio+(L3 Collab.)BARDADIN92ZPHY C55163Bardadin-Otwinowska(CLER)DECAMP92PRPL216253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PR D4658(ROCH)PDG92PR D451 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PLB284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91FNP B367511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257322+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)ALITTI91BPL B257143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)Also91BZPHY C51143+Ariani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ABE901ZPHY C51143+Ariani, Asano, Chiba+(VENUS Collab.)ABE901ZPHY C51143+Ariani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.) <td< td=""><td></td><td></td><td></td><td>-</td><td>· .</td><td>- /</td></td<>				-	· .	- /
ADRIANI92JPLB297469+Aguilar-Benitez, Ahlen, Alcarez, Aloisio+(L3 Collab.)BARDADIN92ZPHY C55163Bardadin-Otwinowska(CLER)DECAMP92PRPL 216253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)WROHA92PR D451 June, PartII Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPL B268296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257321+Alexander, Allison, Allport, Anderson+(DELPHI Collab.)ALITTI91BPL B257143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51143+Ariani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90FPL B247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)				-		
BARDADIN92ZPHY C55 163Bardadin-Otwinowska(CLER)DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(ROCH)PDG92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)ALITTI91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51 149+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143+Arnako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)					<u>`````````````````````````````````````</u>	
DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(ROCH)PDG92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FPL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91CZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)Also91BZPHY C51 143+Ariaani, Asano, Chiba+(VENUS Collab.)ABE901ZPHY C51 143+Ariani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	ADRIANI	92J	PL B297 469	+Aguilar-Benitez, Ahlen, Alcarez, Aloisio+	(L3	Collab.)
DECAMP92PRPL 216 253+Deschizeaux, Goy, Lees, Minard+(ALEPH Collab.)HOWELL92PL B291 206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PR D46 58(ROCH)PDG92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anzawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)ALITTI91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51 149+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	BARDADIN	92	ZPHY C55 163	Bardadin-Otwinowska		(CLER)
HOWELL92PLB291206+Koltick, Tauchi, Miyamoto, Kichimi+(TOPAZ Collab.)KROHA92PRD4558(ROCH)PDG92PRD45, 1June, PartIIHikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PLB284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPLB268296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNPB367511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PLB255613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPLB257321+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPLB257143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51143+Arako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	DECAMP	92	PRPI 216 253	+Deschizeaux Gov Lees Minard+	(ALEPH	
KROHA92PR D46 58(ROCH)PDG92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143+Amiao, Arai, Asano, Chiba+(VENUS Collab.)ABE901ZPHY C48 13+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)				-		
PDG92PR D45, 1 June, Part II Hikasa, Barnett, Stone+(KEK, LBL, BOST+)SHIMOZAWA92PL B284 144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 67 2418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91EZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)Also91BZPHY C51 143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C48 13+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)				+Kollick, Tauchi, Miyamolo, Kichimi+	TUPAL	(· · ·
SHIMOZAWA92PLB284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPL B268296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257731+Alexander, Allison, Allport, Anderson+(DPAL Collab.)ALITTI91BPL B25722+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91CZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C4813+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	KROHA	92	PR D46 58			
SHIMOZAWA92PLB284144+Fujimoto, Abe, Adachi, Doser+(TOPAZ Collab.)ABE91DPRL 672418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPL B268296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257731+Alexander, Allison, Allport, Anderson+(DPAL Collab.)ALITTI91BPL B25722+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91CZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C4813+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	PDG	92	PR D45, 1 June, Part	II Hikasa, Barnett, Stone+ (KE	K, LBL, I	BOST+)
ABE91DPRL 67 2418+Amidei, Apollinari, Atac, Auchincloss+(CDF Collab.)ABREU91EPL B268 296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 731+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91CZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEREND91CZPHY C51 143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	SHIMOZAWA	92				
ABREU91EPLB268296+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ABREU91FNPB367511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PLB255613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPLB257531+Alexander, Allison, Allport, Anderson+(DPAL Collab.)ALITTI91BPLB257232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C4813+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						
ABREU91FNP B367 511+Adam, Adami, Adye, Akesson+(DELPHI Collab.)ADACHI91PL B255 613+Anazawa, Doser, Enomoto+(TOPAZ Collab.)AKRAWY91FPL B257 531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51 149+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51 143+Amako, Arai, Asano, Chiba+(VENUS Collab.)ABE901ZPHY C51 133+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						
ADACHI91PLB255613+Anazawa, Doser, Énomoto+(TOPAZ Collab.)AKRAWY91FPLB257531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPLB257232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51149+Criegee, Field, Franke, Jung+(CELLO Collab.)Also91BZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51143+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	ABREU	91E	PL B268 296	+Adam, Adami, Adye, Akesson+	(DELPHI	Collab.)
ADACHI91PLB255613+Anazawa, Doser, Énomoto+(TOPAZ Collab.)AKRAWY91FPLB257531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPLB257232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51149+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51143+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	ABREU	91F	NP B367 511	+Adam, Adami, Adye, Akesson+	(DELPHI	Collab.)
AKRAWY91FPLB257531+Alexander, Allison, Allport, Anderson+(OPAL Collab.)ALITTI91BPLB257232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51149+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51143+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						
ALITTI91BPL B257 232+Ansari, Autiero, Bareyre, Blaylock+(UA2 Collab.)BEHREND91BZPHY C51 143+Criegee, Field, Franke, Jung+(CELLO Collab.)BEHREND91CZPHY C51 149+Criegee, Field, Franke, Jung+(CELLO Collab.)Also91BZPHY C51 143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE901ZPHY C51 143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						Collab
BEHREND91BZPHY C51143+Criegee, Field, Franke, Jung+(CÈLLO Collab.)BEHREND91CZPHY C51149+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE90IZPHY C4813+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						
BEHREND91CZPHY C51149+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE90IZPHY C4813+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						
BEHREND91CZPHY C51 149+Criegee, Field, Franke, Jung, Meyer+(CELLO Collab.)Also91BZPHY C51 143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE90IZPHY C48 13+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	BEHREND	91B	ZPHY C51 143	+Criegee, Field, Franke, Jung+	(CELLO	Collab.)
Also91BZPHY C51143Behrend, Criegee, Field, Franke, Jung+(CELLO Collab.)ABE90IZPHY C4813+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)	BEHREND		ZPHY C51 149			
ABE90IZPHY C48 13+Amako, Arai, Asano, Chiba+(VENUS Collab.)ADEVA90FPL B247 177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPL B250 199+Adriani, Aguilar-Benitez, Akbari, Alcarez+(L3 Collab.)						
ADEVA90FPLB247177+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)ADEVA90KPLB250199+Adriani, Aguilar-Benitez, Akbari, Alcaraz+(L3 Collab.)						
ADEVA 90K PL B250 199 +Adriani, Aguilar-Benitez, Akbari, Alcarez+ (L3 Collab.)					· ·	
ADEVA 90K PL B250 199 +Adriani, Aguilar-Benitez, Akbari, Alcarez+ (L3 Collab.)	ADEVA	90F	PL B247 177	+Adriani, Aguilar-Benitez, Akbari, Alcaraz-	+ (L3	Collab.)
	ADEVA	90K	PL B250 199	+Adriani, Aguilar-Benitez, Akbari, Alcarez-	+ (Ľ3	Collab.)
					. (20	

ADEVA	90O	PL B252 525	+Adriani, Aguilar-Benitez, Akbari, Alc	araz+ (L3 Collab.)
AKRAWY	90F	PL B241 133	+Alexander, Allison, Allport+	(OPAL Collab.)
AKRAWY	901	PL B244 135	+Alexander, Allison, Allport, Andersor	+ (OPAL Collab.)
AKRAWY	90J	PL B246 285	+Alexander, Allison, Allport, Andersor	+ (OPAL Collab.)
DECAMP	90G	PL B236 501	+Deschizeaux, Lees, Minard+	(ÀLEPH Collab.)
DECAMP	90O	PL B250 172	+Deschizeaux, Goy, Lees+	(ALEPH Collab.)
KIM	90	PL B240 243	+Breedon, Ko, Lander, Maeshima, Ma	
ABE	89	PRL 62 613	+Amidei, Apollinari, Ascori, Atac+	(CDF Collab.)
ABE	89B	PRL 62 1825	+Amidei, Apollinari, Ascoli, Atac+	(CDF Collab.)
ABE	89D	PRL 63 1447	+Amidei, Apollinari, Ascoli, Atac+	(CDF Collab.)
ABE	89H	PRL 62 3020	+Amidei, Apollinari, Ascoli, Atac+	(CDF Collab.)
ABE	89J	ZPHY C45 175	+Amako, Arai, Fukawa+	(VENUS Collab.)
ABE	89L	PL B232 425	+Amako, Arai, Asano, Chiba+	(VENUS Collab.)
ADACHI	89B	PL B228 553	+Aihara, Doser, Enomoto, Fujii+	(TOPAZ Collab.)
ALBAJAR	89	ZPHY C44 15	+Albrow, Allkofer, Arnison, Astbury+	(UA1 Collab.)
BARGER	89	PL B220 464	+Hagiwara, Han, Zeppenfeld	(WISC, KEK)
BEHREND	89B	PL B222 163	+Criegee, Dainton, Field, Franke+	(CELLO Collab.)
BRAUNSCH	89C	ZPHY C43 549	Braunschweig, Gerhards, Kirschfink+	· · · · · · /
DORENBOS	89	ZPHY C41 567	Dorenbosch, Udo, Allaby, Amaldi+	(CHARM Collab.)
HAGIWARA	89	PL B219 369	+Sakuda, Terunuma	(KEK, DURH, HIRO)
KIM	89	PL B223 476	+Kim, Kang, Lee, Myung, Bacala	(AMY Collab.)
ABE	88B	PL B213 400	+Amako, Arai, Asano, Chiba, Chiba+	. `
BARINGER	88	PL B206 551	+Bylsma, De Bonte, Koltick, Low+	(HRS Collab.)
BRAUNSCH	88	ZPHY C37 171	Braunschweig, Gerhards+	(TASSO Collab.)
BRAUNSCH	88D	ZPHY C40 163	Braunschweig, Gerhards, Kirschfink+	
ANSARI	87D	PL B195 613	+Bagnaia, Banner+	(UA2 Collab.)
BARTEL	87B	ZPHY C36 15	+Becker, Felst+	(JADE Collab.)
BEHREND	87C	PL B191 209	+Buerger, Criegee, Dainton+	(CELLO Collab.)
FERNANDEZ	87B	PR D35 10	+Ford, Qi, Read, Smith, Camporesi+	(MAC Collab.)
ARNISON	86C	PL B172 461	+Albrow, Allkofer+	(UA1 Collab.)
ARNISON	86D	PL B177 244	+Albajar, Albrow+	(UA1 Collab.)
BARTEL	86	ZPHY C31 359	+Becker, Felst, Haidt+	(JADE Collab.)
BARTEL	86C	ZPHY C30 371	+Becker, Cords, Felst, Haidt+	(JADE Collab.)
BEHREND	86	PL 168B 420	+Buerger, Criegee, Fenner+	(CELLO Collab.)
BEHREND	86C	PL B181 178	+Buerger, Criegee, Dainton+	(CELLO Collab.)
DERRICK	86	PL 166B 463	+Gan, Kooijman, Loos+	(HRS Collab.)
Also	86B	PR D34 3286	Derrick, Gan, Kooijman, Loos, Muse	· · · · · · · · · · · · · · · · · · ·
DERRICK	86B	PR D34 3286	+Gan, Kooijman, Loos, Musgrave+	(HRS Collab.)
GRIFOLS	86	PL 168B 264	+Peris	(BARC)
JODIDIO	86	PR D34 1967	+Balke, Carr, Gidal, Shinsky+	(LBL, NWES, TRIU)
Also	88	PR D37 237 erratum	Jodidio, Balke, Carr+	(LBL, NWES, TRIU)
APPEL	85	PL 160B 349	+Bagnaia, Banner+	(UA2 Collab.)
BARTEL	85K	PL 160B 337	+Baghala, Banner+ +Becker, Cords, Eichler+	(JADE Collab.)
BERGER	85	ZPHY C28 1	+Genzel, Lackas, Pielorz+	(PLUTO Collab.)
BERGER	85B	ZPHY C27 341	+Deuter, Genzel, Lackas, Pielorz+	(PLUTO Collab.)
BAGNAIA	оэд 84С	PL 138B 430	+Deuter, Genzel, Lackas, Pielorz+ +Banner, Battiston+	(
BAGNAIA	84C 84D	PL 138B 430 PL 146B 437		(UA2 Collab.)
BARTEL	84D 84E	PL 146B 437 PL 146B 121	+Becker, Bowdery, Cords+	(JADE Collab.)
EICHTEN	04⊏ 84	RMP 56 579	+Becker, Bowdery, Cords, Felst+	(JADE Collab.)
-	84 83C	PL 126B 493	+Hinchliffe, Lane, Quigg	(FNAL, LBL, OSU)
	83C 82		+Fischer, Burkhardt+	(TASSO Collab.)
RENARD	ŏΖ	PL 116B 264		(CERN)