BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0=u\,d\,b,\,\Xi_b^0=u\,s\,b,\,\Xi_b^-=d\,s\,b$$

 Λ_b^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5624\pm 9$ MeV (S=1.8) Mean life $\tau=(1.229\pm 0.080)\times 10^{-12}$ s

$$c\tau = 368 \ \mu \text{m}$$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction $B(b \rightarrow b$ -baryon) and are evaluated for our value $B(b \rightarrow b$ -baryon) = $(11.6 \pm 2.0)\%$.

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

$\Lambda_{\boldsymbol{b}}^{0}$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)$ Λ	$(4.7\pm2.8)\times10^{-}$	-4	1744
$\Lambda_c^+ \pi^-$	seen		2345
$\Lambda_c^+ \pi^- \ \Lambda_c^+ a_1 (1260)^-$	seen		2156
$\Lambda_{c}^{ar{+}}\ell^{-}\overline{ u}_{\ell}$ anything	$[r]$ (7.9 ± 1.9) %		_
$ ho\pi^-$	< 5.0 × 10 ⁻¹	-5 90%	2732
pK ⁻	$< 5.0 imes 10^{-}$	-5 90%	2711

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

Mean life
$$\tau = (1.208 \pm 0.051) \times 10^{-12}~\text{s}$$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B($b \rightarrow b$ -baryon) and are evaluated for our value B($b \rightarrow b$ -baryon) = (11.6 \pm 2.0)%.

Created: 7/18/2000 13:39

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

<i>b</i> -baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	p (MeV/c)
$p\mu^-\overline{\nu}$ anything	$(4.2^{+}_{-})^{1.8}_{1.5})\%$	_
$ ho \ell \overline{ u}_\ell$ anything	(4.1± 1.0) %	_
<i>p</i> anything	(51 \pm 17)%	_
$arLambda \ell^- \overline{ u}_\ell$ anything	(2.7 ± 0.8) %	_
$\Lambda/\overline{\Lambda}$ anything	$(28 \pm 7)\%$	_
$ar{eta}^-\ell^-ar{ u}_\ell$ anything	$(4.8\pm 1.3) \times 10^{-3}$	_

Created: 7/18/2000 13:39