

Mean life $\tau = (1.051 \pm 0.013) \times 10^{-12}$ s $c\tau = 315 \ \mu$ m

c-quark decays

 D^{\pm}

 $\Gamma(c \rightarrow \ell^+ \text{ anything}) / \Gamma(c \rightarrow \text{ anything}) = 0.095 \pm 0.009 \text{ [mm]}$

CP-violation decay-rate asymmetries

 $A_{CP}(K^+ K^- \pi^{\pm}) = -0.017 \pm 0.027$ $A_{CP}(K^{\pm} K^{*0}) = -0.02 \pm 0.05$ $A_{CP}(\phi \pi^{\pm}) = -0.014 \pm 0.033$ $A_{CP}(\pi^+ \pi^- \pi^{\pm}) = -0.02 \pm 0.04$

$D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$ form factors

$$\begin{split} r_{\nu} &= 1.82 \pm 0.09 \\ r_2 &= 0.78 \pm 0.07 \\ r_3 &= 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T &= 1.14 \pm 0.08 \\ \Gamma_+/\Gamma_- &= 0.21 \pm 0.04 \quad (\mathsf{S}=1.3) \end{split}$$

 D^- modes are charge conjugates of the modes below.

D ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
	Inclusive modes		
e ⁺ anything	(17.2 \pm 1.9) %		_
K ⁻ anything	(24.2 \pm 2.8) %	S=1.4	_
\overline{K}^0 anything + K^0 anything	(59 \pm 7) %		_
K^+ anything	(5.8 \pm 1.4) %		_
η anything	[<i>nn</i>] < 13 %	CL=90%	-

Leptonic and semileptonic modes

$\mu^+ u_{\mu}$	(8 +	$^{-17}_{-5}$) $\times 10^{-4}$	932	2
$\overline{K}^0 \ell^+ \nu_\ell$	[<i>oo</i>] (6.8 ±	= 0.8)%	-	_
$\overline{K}^0 e^+ \nu_e$	(6.7 ±	= 0.9) %	868	8
$\overline{K}{}^{0}\mu^{+}\nu_{\mu}$	(7.0 +	- 3.0 - 2.0)%	865	5
$K^-\pi^+e^+\nu_e$	(4.1 _	- 0.9 - 0.7)%	863	3
$\overline{K}^*(892)^0 e^+ \nu_e$	(3.2 ±	= 0.33) %	720	0
$ imes$ B($K^{*0} ightarrow K^- \pi^+$)				
${\it K}^-\pi^+ {\it e}^+ {\it u}_{\it e}$ nonresonant	< 7	imes 10 ⁻³	CL=90% 863	3
$K^-\pi^+\mu^+ u_\mu$	$(3.2 \pm$	= 0.4)%	S=1.1 85	1
$\overline{K}^*(892)^{0'}\mu^+ u_{\mu}$	(2.9 \pm	= 0.4)%	71!	5
$\times \ B(\overline{K}^{*0} \rightarrow \ K^{-}\pi^{+})$				
${\cal K}^-\pi^+\mu^+ u_\mu$ nonresonant	$(2.7 \pm$	= 1.1) $ imes$ 10 $^{-3}$	853	1
$(\overline{K}^*(892)\pi)^0 e^+ \nu_e$	< 1.2	%	CL=90% 714	4
$(\overline{K}\pi\pi)^0 e^+ \nu_e$ non- $\overline{K}^*(892)$	< 9	imes 10 ⁻³	CL=90% 846	6
$K^-\pi^+\pi^0\mu^+ u_\mu$	< 1.4	imes 10 ⁻³	CL=90% 825	5
$\pi^0 \ell^+ \nu_\ell$	[pp] ($3.1 \pm$	= 1.5) $ imes$ 10 $^{-3}$	930	0

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^*(892)^0 \ell^+ \nu_\ell$	$[oo]$ (4.7 \pm 0.4) %		-
$\overline{K}^{*}(892)^{0} e^{+} \nu_{e}$	(4.8 \pm 0.5) %		720
$\overline{K}^*(892)^0\mu^+ u_\mu$	(4.4 \pm 0.6) %	S=1.1	715
$\overline{K}_{1}(1270)^{0}\mu^{+}\nu_{\mu}$	< 3.5	%	CL=95%	493
$\overline{K}^{*}(1410)^{0}\mu^{+}\nu_{\mu}$	< 2.7	%	CL=95%	389
$\overline{K}_{2}^{*}(1430)^{0}\mu^{+}\nu_{\mu}$	< 8	imes 10 ⁻³	CL=95%	374
$\rho^0 e^+ \nu_e$	(2.2 \pm 0.8) × 10 ⁻³		776
$ ho^0 \mu^+ u_\mu$	($2.7~\pm~0.7$) × 10 ⁻³		772
$\phi e^+ \nu_e$	< 2.09	%	CL=90%	657
$\phi \mu^+ \nu_{\mu}$	< 3.72	%	CL=90%	651
$\eta \ell^+ \nu_\ell$	< 5	imes 10 ⁻³	CL=90%	-
η^{\prime} (958) $\mu^+ u_{\mu}$	< 9	imes 10 ⁻³	CL=90%	684

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$

$\overline{K}^0 \pi^+$	($2.89\pm~0.26)$ %	S=1.1	862
$K^- \pi^+ \pi^+ \qquad [qq]$	(9.0 \pm 0.6) %		845
$\overline{K}^{*}(892)^{0} \pi^{+}$	$(1.27\pm~0.13)~\%$		712
\times B($\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$)			
$\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$	(2.3 \pm 0.3) %		368
$\times B(\overline{K}_0^*(1430)^0 \rightarrow K^- \pi^+)$			
$\overline{K}^*(1680)^{0}\pi^+$	(3.7 \pm 0.8) $ imes$ 10 $^{-3}$		65
\times B($\overline{K}^*(1680)^0 \rightarrow K^-\pi^+)$	· · · · ·		

HTTP://PDG.LBL.GOV Page 29 Created: 7/18/2000 13:39

$\mathcal{K}^-\pi^+\pi^+$ nonresonant (8.5 \pm 0.8)%	845
$\overline{K}^0 \pi^+ \pi^0$ [qq] (9.7 ± 3.0)% S=1	.1 845
$\overline{K}^0 \rho^+$ (6.6 ± 2.5)%	680
$\overline{K}^{*}(892)^{0}\pi^{+}$ (6.3 ± 0.4)×10 ⁻³	712
$\times B(\overline{K}^{*0} \to \overline{K}^0 \pi^0)$	
$\overline{K}^0 \pi^+ \pi^0$ nonresonant (1.3 ± 1.1)%	845
$\mathcal{K}^{-}\pi^{+}\pi^{+}\pi^{0}$ [<i>qq</i>] (6.4 ± 1.1)%	816
$\overline{K}^{*}(892)^{0} \rho^{+}$ total (1.4 ± 0.9)%	423
$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$	
$\overline{K}_{1}(1400)^{0}\pi^{+}$ (2.2 ± 0.6)%	390
$\times B(\overline{K}_1(1400)^0 \to K^- \pi^+ \pi^0)$	
$K^- \rho^+ \pi^+$ total (3.1 ± 1.1)%	616
$K^- \rho^+ \pi^+$ 3-body (1.1 ± 0.4)%	616
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{0}$ total (4.5 ± 0.9)%	687
$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$	
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{0}$ 3-body (2.8 ± 0.9)%	687
$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$	
$K^{*}(892)^{-}\pi^{+}\pi^{+}$ 3-body (7 ± 3) × 10 ⁻³	688
$\times B(K^{*-} \rightarrow K^{-}\pi^{0})$	
$\mathcal{K}^- \pi^+ \pi^+ \pi^0$ nonresonant [rr] (1.2 \pm 0.6)%	816
$\overline{K}^0 \pi^+ \pi^+ \pi^-$ [qq] (7.0 ± 0.9)%	814
$\overline{K}{}^{0} a_{1}(1260)^{+}$ (4.0 ± 0.9)%	328
$\times B(a_1(1260)^+ \to \pi^+ \pi^+ \pi^-)$	
$\overline{K}_1(1400)^0 \pi^+$ (2.2 ± 0.6)%	390
$\times \ B(\overline{K}_1(1400)^0 \to \ \overline{K}^0 \pi^+ \pi^-)$	
$K^*(892)^- \pi^+ \pi^+$ 3-body (1.4 \pm 0.6)%	688
$ imes$ B($K^{*-} ightarrow ~\overline{K}{}^{0}\pi^{-}$)	
$\overline{K}{}^0 \rho^0 \pi^+$ total (4.2 \pm 0.9)%	614
$\overline{K}{}^0 ho^0\pi^+$ 3-body (5 \pm 5) $ imes$ 10 ⁻³	614
$\overline{K}{}^0 \pi^+ \pi^+ \pi^-$ nonresonant (8 \pm 4) $ imes$ 10 $^{-3}$	814
$K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}$ [qq] (7.2 ± 1.0) × 10 ⁻³	772
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{+}\pi^{-}$ (5.4 ± 2.3)×10 ⁻³	642
$\times \ B(\overline{K}^{*0} o \ K^- \pi^+)$	
$\overline{K}^{*}(892)^{0} \rho^{0} \pi^{+}$ (1.9 + 1.1)×10 ⁻³	242
$\times \begin{array}{c} B(\overline{K^{*0}} \rightarrow K^{-}\pi^{+}) \end{array}$	
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{+}\pi^{-}$ no- ρ (2.9 ± 1.1) × 10 ⁻³	642
$\times B(\overline{K}^{*0} \to K^{-}\pi^{+})$	-
$K^{-}\rho^{0}\pi^{+}\pi^{+}$ (3.1 ± 0.9)×10 ⁻³	529
$K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}$ nonresonant < 2.3 $\times 10^{-3}$ CL=900	% 772
u = + + 0.0 $u = - + 50.5$	
$K = \pi^{+}\pi^{+}\pi^{0}\pi^{0}$ (2.2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	775

HTTP://PDG.LBL.GOV Page 30

$\overline{K}^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^-$	$(8 \pm 7) \times 10^{-4}$	714
$K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	(2.0 \pm 1.8) $\times10^{-3}$	718
$\overline{K}{}^{0}\overline{K}{}^{0}K^{+}$	(1.8 \pm 0.8) %	545

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^0 \rho^+$	($6.6~\pm~2.5$) %	680
$\overline{K}^0 a_1(1260)^+$	(8.0 \pm 1.7)%	328
$\overline{K}^0 a_2(1320)^+$	$< 3 \times 10^{-3}$	CL=90% 199
$\overline{K}^{*}(892)^{0}\pi^{+}$	($1.90\pm~0.19)~\%$	712
$\overline{K}^*(892)^0 ho^+$ total	$[rr]$ (2.1 \pm 1.3) %	423
$\overline{\textit{K}}^{*}(892)^{0} ho^{+}\textit{S}$ -wave	$[rr]$ (1.6 \pm 1.6) %	423
$\overline{\textit{K}}^{*}(892)^{0} ho^{+}\textit{P} ext{-wave}$	$< 1 \times 10^{-3}$	CL=90% 423
$\overline{\textit{K}}^{*}(892)^{0} ho^{+}\textit{D}$ -wave	(10 \pm 7) $ imes$ 10 $^{-3}$	423
$\overline{K}^*(892)^0 ho^+ D$ -wave longitu-	$< 7 \times 10^{-3}$	CL=90% 423
$\frac{1}{K}$ (1270) ⁰ π^+	< 7	CL 00% 497
$\frac{K_1(1270)}{K}$ (1400) ⁰ π^+	$< 7 \times 10^{\circ}$	CL=90% 487
$\frac{K_1(1400)}{K^*(1410)^0}\pi^+$	(4.9 ± 1.2) %	CI00%
$\frac{1}{K} (1410)^{0} \pi^{+}$	$\langle 7 \times 10^{-2}$	CL=90/0 302
$\frac{K_0(1450)}{K}$ (1690) ⁰ -+	$(3.7 \pm 0.4)\%$	500
$\frac{1}{K} (1000)^{2} \pi^{+} \pi^{0}$ total	$(1.43 \pm 0.30)\%$	05
$\frac{1}{K} = \frac{1}{K} = \frac{1}$	$(0.7 \pm 1.4)\%$	087
$K^{*}(892) = \pi^{+}\pi^{+}3$ body	$[rr] (4.2 \pm 1.4)\%$	600
$K^{-} a^{+} \pi^{+} \text{total}$	$(2.0 \pm 0.9)\%$	000
$K^{-} a^{+} \pi^{+} 3$ body	(3.1 ± 1.1) / (11 ± 0.4) %	616
$\overline{K}^0 a^0 \pi^+$ total	(1.1 ± 0.4) %	CI = 00% 61/
$\frac{F}{K^0} a^0 \pi^+ 3$ -body	$(-5, \pm 5, -3, -3) \times 10^{-3}$	CL=9070 014
$\overline{K}^{0} f_{0}(980) \pi^{+}$	$< 5 \times 10^{-3}$	CI = 90% 461
$\frac{1}{K} (892)^0 \pi^+ \pi^+ \pi^-$	$(8.1 \pm 3.4) \times 10^{-3}$	S=1.7 642
$\overline{K}^{*}(892)^{0}\rho^{0}\pi^{+}$	$(2.9 + \frac{1.7}{1.5}) \times 10^{-3}$	S=1.8 242
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{+}\pi^{-}$ no- a	$(43 + 17) \times 10^{-3}$	642
$K^{-} o^{0} \pi^{+} \pi^{+}$	$(31 + 09) \times 10^{-3}$	520
		525
-+0	Pionic modes $(25 + 0.7) \times 10^{-3}$	0.05
$\pi^+\pi^+\pi^-$	$(2.5 \pm 0.7) \times 10^{-3}$	925
$\eta + \eta + \eta$	$(3.0 \pm 0.4) \times 10^{-3}$	900
$p^{-\pi}$ $\pi^+\pi^+\pi^-$ nonresonant	$(1.05 \pm 0.31) \times 10^{-3}$	709 008
$\pi^+\pi^+\pi^-\pi^0$	$(2.2 \pm 0.4) \times 10$	900
$+ \mathbf{p}(\mathbf{r} + \mathbf{r})$	$(1.9 - 1.2)^{\%}$	882
$\eta \pi' \times B(\eta \rightarrow \pi' \pi \pi^{\circ})$	$(0.9 \pm 1.4) \times 10^{-4}$	848
$\omega \pi^+ \times D(\omega \to \pi^+ \pi^- \pi^-)$ $\pi^+ \pi^+ \pi^+ \pi^- \pi^-$	$< 0 \times 10^{-3}$	CL=90% /64
+ + + 0	$(2.1 \pm 0.4) \times 10^{-2}$	040
π ' π ' π ' π ' π ' π '	$(2.9 + 2.0 \times 10^{-3}) \times 10^{-3}$	799

HTTP://PDG.LBL.GOV Page 31 Created: 7/18/2000 13:39

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\eta \pi^+$	(3.0 ± 0.6)	5) × 10 ⁻³		848
$\rho^{-\pi}$	(1.05 ± 0.3)	$(10^{31}) \times 10^{-3}$	CI 90%	769
$n o^+$	< 7	$^{\times 10}_{\times 10}$	CL = 90%	658
$n'(958)\pi^+$	(5.0 ± 1.0	$) \times 10^{-3}$	62 3070	680
$\eta'(958) \rho^+$	< 5	× 10 ⁻³	CL=90%	355
Hadronic r	nodes with a $K\overline{P}$	7 pair		
$K^+\overline{K}{}^0$	(7.4 ± 1.0)) $\times 10^{-3}$		792
$K^+ K^- \pi^+$	[qq] (8.7 ± 0.7	$^{\prime}$) $ imes$ 10 $^{-3}$		744
$\phi \pi^+ imes B(\phi o \ K^+ K^-)$	(3.0 ± 0.3	$3) \times 10^{-3}$		647
$K^+\overline{K}^*(892)^0$	(2.8 \pm 0.4) $ imes$ 10 $^{-3}$		610
$\times \ B(\overline{K}^{*0} o \ K^- \pi^+)$				
$K^+K^-\pi^+$ nonresonant	(4.5 \pm 0.9	$) \times 10^{-3}$		744
$K^0 \overline{K}{}^0 \pi^+$				741
$K^{*}(892)^{+}K^{0}$	($2.1~\pm~1.0$)%		611
$\times B(K^{*+} \to K^0 \pi^+)$				
$K^+ K^- \pi^+ \pi^0$	—			682
$\phi \pi^+ \pi^0 \times B(\phi \to K^+ K^-)$	(1.1 \pm 0.5	5)%		619
$\phi \rho^+ \times B(\phi \rightarrow K^+ K^-)$	< 7	$\times 10^{-3}$	CL=90%	268
$K^+K^-\pi^+\pi^0$ non- ϕ	(1.5 + 0.7 - 0.6)	5)%		682
$K^+\overline{K}^0\pi^+\pi^-$	< 2	%	CL=90%	678
$K^{0}K^{-}\pi^{+}\pi^{+}$	($1.0~\pm~0.6$	5)%		678
$K^{*}(892)^{+}K^{*}(892)^{0}$	(1.2 \pm 0.5	5)%		273
$\times B^2(K^{*+} \rightarrow K^0 \pi^+)$		2		
$K^{0}K^{-}\pi^{+}\pi^{+}$ non- $K^{*+}K^{*0}$	< 7.9	$\times 10^{-3}$	CL=90%	678
$K^+K^-\pi^+\pi^+\pi^-$	_	2		600
$\phi \pi^+ \pi^+ \pi^-$	< 1	$\times 10^{-3}$	CL=90%	565
$\times B(\phi \to K^{+}K^{-})$	-	0/	G 1 1 1 1 1	
$\kappa \cdot \kappa \pi \cdot \pi \cdot \pi$ nonresonant	< 3	%	CL=90%	600

Fractions of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\phi \pi^+$	($6.1~\pm~0.1$.6) $\times 10^{-3}$		647
$\phi \pi^+ \pi^0$	(2.3 \pm 1.	.0)%		619
ϕho^+	< 1.4	%	CL=90%	268
$\phi \pi^+ \pi^+ \pi^-$	< 2	imes 10 ⁻³	CL=90%	565
$K^+\overline{K}^*(892)^0$	(4.2 ± 0.1)	.5) $\times 10^{-3}$		610
$K^{*}(892)^{+}\overline{K}^{0}$	($3.2 \pm 1.$.5)%		611
$K^{*}(892)^{+}\overline{K}^{*}(892)^{0}$	(2.6 \pm 1.	.1)%		273

Doubly Cabibbo suppressed (DC) modes,
$\Delta C = 1$ weak neutral current (C1) modes, or
Lepton Family number (LF) or Lepton number (L) violating modes

$K^+\pi^+\pi^-$	DC	(6.8	\pm 1.5) $ imes$ 10 $^{-4}$		845
$\mathcal{K}^+ ho^{0}$	DC	(2.5	\pm 1.2) $ imes$ 10 ⁻⁴		681
$K^{*}(892)^{0}\pi^{+}$	DC	(3.6	\pm 1.6) $ imes$ 10 ⁻⁴		712
$K^+\pi^+\pi^-$ nonresonant	DC	(2.4	\pm 1.2) $ imes$ 10 $^{-4}$		845
$K^+K^+K^-$	DC	<	1.4	imes 10 ⁻⁴	CL=90%	550
ϕ K $^+$	DC	<	1.3	imes 10 ⁻⁴	CL=90%	527
$\pi^+ e^+ e^-$	С1	<	5.2	imes 10 ⁻⁵	CL=90%	929
$\pi^+ \mu^+ \mu^-$	С1	<	1.5	imes 10 ⁻⁵	CL=90%	917
$\rho^+ \mu^+ \mu^-$	C1	<	5.6	imes 10 ⁻⁴	CL=90%	759
$K^+ e^+ e^-$		[<i>ss</i>] <	2.0	imes 10 ⁻⁴	CL=90%	869
$K^+ \mu^+ \mu^-$		[<i>ss</i>] <	4.4	imes 10 ⁻⁵	CL=90%	856
$\pi^+ e^{\pm} \mu^{\mp}$	LF	[ee] <	3.4	imes 10 ⁻⁵	CL=90%	926
$K^+ e^{\pm} \mu^{\mp}$	LF	[ee] <	6.8	imes 10 ⁻⁵	CL=90%	866
$\pi^- e^+ e^+$	L	<	9.6	imes 10 ⁻⁵	CL=90%	929
$\pi^- \mu^+ \mu^+$	L	<	1.7	imes 10 ⁻⁵	CL=90%	917
$\pi^- e^+ \mu^+$	L	<	5.0	imes 10 ⁻⁵	CL=90%	926
$\rho^- \mu^+ \mu^+$	L	<	5.6	imes 10 ⁻⁴	CL=90%	759
$K^-e^+e^+$	L	<	1.2	imes 10 ⁻⁴	CL=90%	869
$K^-\mu^+\mu^+$	L	<	1.2	imes 10 ⁻⁴	CL=90%	856
$K^- e^+ \mu^+$	L	<	1.3	imes 10 ⁻⁴	CL=90%	866
$K^{*}(892)^{-}\mu^{+}\mu^{+}$	L	<	8.5	imes 10 ⁻⁴	CL=90%	703

D⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

 $\begin{array}{ll} \text{Mass } m = 1864.5 \pm 0.5 \ \text{MeV} & (\text{S} = 1.1) \\ m_{D^{\pm}} - m_{D^{0}} = 4.79 \pm 0.10 \ \text{MeV} & (\text{S} = 1.1) \\ \text{Mean life } \tau = (0.4126 \pm 0.0028) \times 10^{-12} \ \text{s} \\ c\tau = 123.7 \ \mu\text{m} \\ \left| m_{D_{1}^{0}} - m_{D_{2}^{0}} \right| \ < \ 7 \times 10^{10} \ \hbar \ \text{s}^{-1}, \ \text{CL} = 95\% \ ^{[tt]} \\ (\Gamma_{D_{1}^{0}} - \Gamma_{D_{2}^{0}})/\Gamma_{D^{0}}: \ -0.116 < \Delta\Gamma/\Gamma < 0.020, \ \text{CL} = 95\% \ ^{[tt]} \\ \Gamma(K^{+} \ell^{-} \overline{\nu}_{\ell} \ (\text{via} \ \overline{D}^{0}))/\Gamma(K^{-} \ell^{+} \nu_{\ell}) < \ 0.005, \ \text{CL} = 90\% \\ \Gamma(K^{+} \pi^{-} (\text{via} \ \overline{D}^{0}))/\Gamma(K^{-} \pi^{+}) \ < \ 4.1 \times 10^{-4}, \ \text{CL} = 95\% \end{array}$

CP-violation decay-rate asymmetries

 $A_{CP}(K^+K^-) = 0.026 \pm 0.035$ $A_{CP}(\pi^+\pi^-) = -0.05 \pm 0.08$ $A_{CP}(K_{S}^{0}\phi) = -0.03 \pm 0.09$ $A_{CP}(K_{S}^{0}\pi^{0}) = -0.018 \pm 0.030$ $A_{CP}(K^{\pm}\pi^{\mp}) = 0.02 \pm 0.20$

 $\overline{\it D}{}^0$ modes are charge conjugates of the modes below.

D ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
e^+ anything	Inclusive modes $(675\pm0.29)\%$		_
u^+ anything	$(6.6 \pm 0.8)\%$		_
K^- anything	$(53 \pm 4)\%$	S=1.3	_
\overline{K}^0 anything + K^0 anything	(42 ±5)%		-
K^+ anything	(3.4 $\substack{+0.6\\-0.4}$) %		_
η anything	[<i>nn</i>] < 13 %	CL=90%	-
S	emileptonic modes		
$K^-\ell^+ u_\ell$	[oo] (3.47 ± 0.17) %	S=1.3	867
$K^- e^+ \nu_e$	$(3.64\pm0.18)\%$		867
${\cal K}^- \mu^+ u_\mu$	(3.22±0.17) %		863
$K^-\pi^0 e^+ \nu_e$	(1.6 $\substack{+1.3\\-0.5}$)%		861
$\overline{K}{}^{0}\pi^{-}e^{+}\nu_{e}$	(2.8 $\substack{+1.7\\-0.9}$)%		860
$\overline{K}^{*}(892)^{-}e^{+}\nu_{e}$	$(1.35\pm0.22)\%$		719
$ imes$ B($K^{*-} ightarrow \overline{K}{}^{0}\pi^{-}$)			
$K^-\pi^+\pi^-\mu^+ u_\mu$	< 1.2 ×	10^{-3} CL=90%	821
$(\overline{K}^*(892)\pi)^-\mu^+ u_\mu$	< 1.4 ×	10^{-3} CL=90%	693
$\pi^- e^+ \nu_e$	(3.7 \pm 0.6) $ imes$	10 ⁻³	927

A fraction of the following resonance mode has already appeared above as a submode of a charged-particle mode.

$K^{*}(892)^{-}e^{+}\nu_{e}$	(2.02±0.33) %	719
------------------------------	----------------	-----

Hadronic m	odes	with a \overline{K} or $\overline{K}\overline{K}\overline{K}$		
$K^-\pi^+$		(3.83±0.09) %		861
$\overline{K}^0 \pi^0$		(2.11±0.21) %	S=1.1	860
$\overline{K}^0 \pi^+ \pi^-$	[qq]	(5.4 \pm 0.4)%	S=1.2	842
$\overline{K}^0 \rho^0$		(1.21±0.17) %		676
$\overline{K}^{0}f_{0}(980)$		$(3.0 \pm 0.8) \times 10^{-3}$		549
$\times B(f_0 \rightarrow \pi^+ \pi^-)$. ,		
$\overline{K}^0 f_2(1270)$		(2.4 \pm 0.9) $ imes$ 10 $^{-3}$		263
$\times B(f_2 \rightarrow \pi^+\pi^-)$				
$\overline{K}^{0} f_{0}(1370)$		(4.3 ± 1.3) $ imes 10^{-3}$		_
$\times B(f_0 \rightarrow \pi^+\pi^-)$				
$K^{*}(892)^{-}\pi^{+}$		(3.4 +0.3)%		711
$\times B(K^{*-} \rightarrow \overline{K}^0 \pi^-)$		() //		
$K_{*}^{*}(1430)^{-}\pi^{+}$		$(6.4 + 1.6) \times 10^{-3}$		364
$\times B(K^*(1430)^- \rightarrow \overline{K}^0 \pi^-)$)	() /		
$\overline{K}^{0}\pi^{+}\pi^{-}$ poprosonant)	(1.47 ± 0.24) 9/		040
$\kappa^{-}\pi^{+}\pi^{0}$	[مم]	$(1.47 \pm 0.24) /_{0}$	C_1 2	042
$K = a^{\pm}$	[99]	$(13.9 \pm 0.9)\%$	5=1.5	670
$\kappa \rho^{-}$		$(10.8 \pm 1.0)\%$		0/8
$(092) \pi^{+}$		$(1.7 \pm 0.2)\%$		/11
$ \xrightarrow{\times} D(R \to R \pi^*) $		(0,1,1,0,2,0)		700
$(092)^{-\pi}$		$(2.1 \pm 0.3)\%$		709
$\times B(A^{*} \to A^{*} \pi^{*})$		$(c c + c z) = 10^{-3}$		~
$\kappa \pi' \pi^\circ$ nonresonant		$(6.9 \pm 2.5) \times 10^{-5}$		844
$\kappa^{\circ}\pi^{\circ}\pi^{\circ}$				843
$K^{*}(892)^{\circ}\pi^{\circ}$		(1.1 ± 0.2)%		709
$\times B(K^{*0} \rightarrow K^{0}\pi^{0})$		2		
$K^{\circ}\pi^{\circ}\pi^{\circ}$ nonresonant		$(7.8 \pm 2.0) \times 10^{-3}$		843
$K \pi' \pi' \pi$	[qq]	(7.49±0.31)%		812
$K^-\pi^+\rho^0$ total		(6.3 ±0.4)%		612
$K^-\pi^+\rho^0$ 3-body		$(4.7 \pm 2.1) \times 10^{-3}$		612
$K^*(892)^{0}\rho^{0}$		$(9.8 \pm 2.2) \times 10^{-3}$		418
$\times B(K^{*0} \rightarrow K^{-}\pi^{+})$				
$K^{-}a_{1}(1260)^{+}$		(3.6 ±0.6)%		327
\times B($a_1(1260)^+ \rightarrow \pi^+\pi$	$+\pi^{-}$)		
$K^*(892)^0 \pi^+ \pi^-$ total		(1.5 \pm 0.4)%		683
\times B($K^{*0} \rightarrow K^{-}\pi^{+}$)				
$K^{*}(892)^{0}\pi^{+}\pi^{-}$ 3-body		(9.5 ± 2.1) $ imes 10^{-3}$		683
$\times B(K^{*0} \rightarrow K^{-}\pi^{+})$		_		
$K_1(1270)^-\pi^+$	[<i>rr</i>]	(3.6 ± 1.0) $ imes 10^{-3}$		483
\times B(K ₁ (1270) ⁻ \rightarrow K ⁻ π^+	$\pi^{-})$			
$K^-\pi^+\pi^+\pi^-$ nonresonant		(1.74±0.25) %		812
$K^{0}\pi^{+}\pi^{-}\pi^{0}$	[qq]	(10.0 ± 1.2)%		812

$\overline{K}{}^{0}\eta imes B(\eta o \pi^{+}\pi^{-}\pi^{0})$	(1.6 ± 0.3) $ imes 10^{-3}$	772
$\overline{K}^{0}\omega \times B(\omega \rightarrow \pi^{+}\pi^{-}\pi^{0})$	$(1.9 \pm 0.4)\%$	670
$K^{*}(892)^{-}\rho^{+}$	$(4.1 \pm 1.6)\%$	422
$\times B(K^{*-} \rightarrow \overline{K}^0 \pi^-)$	× ,	
$\overline{K}^*(892)^0 \rho^0$	(4.9 ± 1.1) $ imes 10^{-3}$	418
$\times B(\overline{K}^{*0} \to \overline{K}^0 \pi^0)$		
$K_1(1270)^- \pi^+$ [rr]	(5.1 \pm 1.4) $ imes$ 10 $^{-3}$	483
$\times B(K_1(1270)^- \rightarrow \overline{K}^0 \pi^- \pi^0)$		
$\overline{K}^*(892)^0\pi^+\pi^-$ 3-body	(4.8 ± 1.1) $ imes 10^{-3}$	683
$\times \ B(\overline{K}^{*0} o \ \overline{K}^0 \pi^0)$		
$\overline{K}{}^{0}\pi^{+}\pi^{-}\pi^{0}$ nonresonant	(2.1 \pm 2.1)%	812
$K^-\pi^+\pi^0\pi^0$	(15 ± 5) %	815
$K^-\pi^+\pi^+\pi^-\pi^0$	(4.0 ± 0.4) %	771
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-}\pi^{0}$	(1.2 ± 0.6) %	641
\times B($\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$)		
$\overline{K}^*(892)^0\eta$	(2.9 ± 0.8) $ imes 10^{-3}$	580
$\times B(\overline{K}^{*0} \to \overline{K}^{-} \pi^{+})$		
\times B($\eta \rightarrow \pi^+ \pi^- \pi^0$)		
$K^{-}\pi^{+}\omega \times B(\omega \rightarrow \pi^{+}\pi^{-}\pi^{0})$	(2.7 ±0.5)%	605
$K^*(892)^0 \omega$	$(7 \pm 3) \times 10^{-3}$	406
$\times B(K^{*0} \to K^{-}\pi^{+})$		
\times B($\omega \rightarrow \pi^+ \pi^- \pi^0$)	2	
$K^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(5.8 ± 1.6) $ imes 10^{-3}$	768
$\overline{K}{}^{0}\pi^{+}\pi^{-}\pi^{0}\pi^{0}(\pi^{0})$	$(10.6 \ +7.3 \ -3.0 \)\%$	771
$\overline{K}^0 K^+ K^-$	$(9.4 \pm 1.0) \times 10^{-3}$	544
$\overline{K}^{0}\phi \times B(\phi \rightarrow K^{+}K^{-})$	$(4.3 \pm 0.5) \times 10^{-3}$	520
$\overline{K}^0 K^+ K^-$ non- ϕ	$(5.1 \pm 0.8) \times 10^{-3}$	544
$K^0_{\xi}K^0_{\xi}K^0_{\xi}$	$(8.3 \pm 1.5) \times 10^{-4}$	538
$\breve{K}^{+}\breve{K}^{-}\breve{K}^{-}\pi^{+}$	$(2.1 \pm 0.5) \times 10^{-4}$	434
$K^+ K^- \overline{K}{}^0 \pi^0$	$(7.2^{+4.8}) \times 10^{-3}$	435
	· — 5.5 /	

Fractions of many of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. (Modes for which there are only upper limits and $\overline{K}^*(892)\rho$ submodes only appear below.)

$\overline{K}^0\eta$	(7.0 ± 1.0) $\times 10^{-3}$		772
$\overline{K}^0 \rho^0$	$(1.21\pm0.17)\%$		676
$\frac{K}{\rho}$	(10.8 ± 0.9)%	S=1.2	678
$\overline{K}^0 \omega$	(2.1 \pm 0.4)%		670
$\overline{K}^0 \eta'(958)$	(1.71±0.26) %		565
$\overline{K}^0 f_0(980)$	(5.7 ± 1.6) $ imes 10^{-3}$		549
$\overline{K}^{0}\phi$	(8.6 ± 1.0) $ imes 10^{-3}$		520
$K^{-}a_{1}(1260)^{+}$	(7.3 ± 1.1)%		327

HTTP://PDG.LBL.GOV

Page 36

Created: 7/18/2000 13:39

$\overline{K}^0 a_1(1260)^0$	< 1.9 %	CL=90%	322
$\overline{K}^0 f_2(1270)$	(4.1 ± 1.5) $ imes 10^{-3}$		263
$K^- a_2(1320)^+$	$< 2 \times 10^{-3}$	CL=90%	197
$\overline{K}^0 f_0(1370)$	(6.9 ± 2.1) $ imes 10^{-3}$		-
$K^{*}(892)^{-}\pi^{+}$	(5.0 \pm 0.4)%	S=1.2	711
$\overline{K}^{*}(892)^{0}\pi^{0}$	(3.1 \pm 0.4)%		709
$\overline{K}^*(892)^0 \pi^+ \pi^-$ total	(2.2 ± 0.5)%		683
$\overline{K}^*(892)^0 \pi^+ \pi^-$ 3-body	$(1.42\pm0.32)\%$		683
$K^-\pi^+ ho^0$ total	$(6.3 \pm 0.4)\%$		612
$\underline{K}^{-}\pi^{+}\rho^{0}$ 3-body	(4.7 ± 2.1) $ imes 10^{-3}$		612
$K^{*}(892)^{0}\rho^{0}$	$(1.46\pm0.32)\%$		418
$\underline{K}^*(892)^0 \rho^0$ transverse	(1.5 ± 0.5)%		418
$\underline{K}^*(892)^0 \rho^0 S$ -wave	$(2.8 \pm 0.6)\%$		418
$\underline{K}^*(892)^0 \rho^0 S$ -wave long.	$< 3 \times 10^{-3}$	CL=90%	418
<u>$K^{*}(892)^{0}\rho^{0}P$</u> -wave	$< 3 \times 10^{-3}$	CL=90%	418
$K^*(892)^0 \rho^0 D$ -wave	(1.9 \pm 0.6)%		418
$K^{*}(892)^{-}\rho^{+}$	(6.1 \pm 2.4)%		422
$K^*(892)^- \rho^+$ longitudinal	(2.9 \pm 1.2)%		422
$K^*(892)^- \rho^+$ transverse	(3.2 \pm 1.8)%		422
$K^*(892)^- \rho^+ P$ -wave	< 1.5 %	CL=90%	422
$K^{-}\pi^{+}f_{0}(980)$	< 1.1 %	CL=90%	459
$K^*(892)^{\circ} f_0(980)$	$< 7 \times 10^{-3}$	CL=90%	-
$K_1(1270)^-\pi^+$	[rr] (1.06±0.29) %		483
$K_1(1400)^- \pi^+$	< 1.2 %	CL=90%	386
$K_1(1400)^{\circ}\pi^{\circ}$	< 3.7 %	CL=90%	387
$K^*(1410)^-\pi^+$	< 1.2 %	CL=90%	378
$K_0^{+}(1430)^{-}\pi^{+}$	$(1.04\pm0.26)\%$		364
$K_{2}^{*}(1430)^{-}\pi^{+}$	$< 8 \times 10^{-3}$	CL=90%	367
$K_2^*(1430)^0 \pi^0$	$< 4 \times 10^{-3}$	CL=90%	363
$\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-}\pi^{0}$	(1.8 ± 0.9)%		641
$K^{*}(892)^{0}\eta$	(1.9 ± 0.5)%		580
$K^{-}\pi^{+}\omega$	(3.0 \pm 0.6)%		605
$K^{*}(892)^{0}\omega$	(1.1 \pm 0.4)%		406
$K^{-}\pi^{+}\eta'(958)$	$(7.0 \pm 1.8) imes 10^{-3}$		479
$K^*(892)^0 \eta'(958)$	$< 1.0 \times 10^{-3}$	CL=90%	99
	Pionic modes		
$\pi^+\pi^-$	$(1.52\pm0.09)\times10^{-3}$		922
$\pi^0 \pi^0$	$(8.4 \pm 2.2) \times 10^{-4}$		922
$\pi^+\pi^-\pi^0$	$(1.6 \pm 1.1)\%$	S=2.7	907
$\pi^+\pi^+\pi^-\pi^-$	$(7.3 \pm 0.5) \times 10^{-3}$		879
$\pi^+\pi^+\pi^-\pi^-\pi^0$	(1.9 ± 0.4) %		844
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	$(4.0 \pm 3.0) \times 10^{-4}$		795

Hadronic mades with a K	
	A DAIL

$(4.25\pm0.16) imes10^{-3}$		791
(6.5 ± 1.8) $ imes 10^{-4}$	S=1.2	788
$(6.4 \pm 1.0) \times 10^{-3}$	S=1.1	739
$< 1.1 \times 10^{-3}$	CL=90%	605
(2.3 ± 0.5) $ imes 10^{-3}$		610
(2.3 \pm 2.3) $ imes$ 10 $^{-3}$		739
(5.0 ± 1.0) $ imes 10^{-3}$		739
$< 5 \times 10^{-4}$	CL=90%	605
(1.2 \pm 0.7) $ imes$ 10 $^{-3}$		610
$(3.8 \ +2.3 \ -1.9) \times 10^{-3}$		739
$(1.3 + 0.4) \times 10^{-3}$		742
$< 5.9 \times 10^{-4}$		739
$[\mu\mu]$ (2.50+0.23) × 10 ⁻³		676
$(5.3 \pm 1.4) \times 10^{-4}$		614
$(3.0 + 1.6) \times 10^{-4}$		260
$(9.0 \pm 2.3) \times 10^{-4}$		309
$[vv] < 5$ $\times 10^{-4}$		528
$(6 \pm 2) \times 10^{-4}$		257
· · · · · ·		
_		676
$< 8 \times 10^{-4}$	CL=90%	676
(6.8 ± 2.7) $ imes 10^{-3}$		673
$(3.1 \pm 2.0) \times 10^{-3}$		600
	$\begin{array}{c} (\ 4.25\pm0.16)\times10^{-3}\\ (\ 6.5\ \pm1.8\)\times10^{-4}\\ (\ 6.4\ \pm1.0\)\times10^{-3}\\ <\ 1.1\ \ \times10^{-3}\\ (\ 2.3\ \pm0.5\)\times10^{-3}\\ (\ 2.3\ \pm0.5\)\times10^{-3}\\ (\ 2.3\ \pm2.3\)\times10^{-3}\\ (\ 5.0\ \pm1.0\)\times10^{-3}\\ <\ 5\ \ \times10^{-4}\\ (\ 1.2\ \pm0.7\)\times10^{-3}\\ (\ 1.2\ \pm0.7\)\times10^{-3}\\ (\ 1.3\ \pm0.4\)\times10^{-3}\\ (\ 1.3\ \pm0.4\)\times10^{-3}\\ <\ 5.9\ \ \times10^{-4}\\ [uu]\ (\ 2.50\pm0.23)\times10^{-3}\\ (\ 5.3\ \pm1.4\)\times10^{-4}\\ (\ 3.0\ \pm1.6\)\times10^{-4}\\ (\ 9.0\ \pm2.3\)\times10^{-4}\\ [vv]< 5\ \ \times10^{-4}\\ (\ 6\ \pm2\)\times10^{-4}\\ (\ 6\ \pm2\)\times10^{-4}\\ (\ 6.8\ \pm2.7\)\times10^{-3}\\ (\ 3.1\ \pm2.0\)\times10^{-3}\\ (\ 3.1\ \pm2.0\)\times10^{-3}\end{array}$	$\begin{array}{ccccccc} (&4.25\pm0.16)\times10^{-3} & & & & & \\ (&6.5\pm1.8)\times10^{-4} & & & & \\ (&6.4\pm1.0)\times10^{-3} & & & \\ (&1.1&\times10^{-3} & & \\ (&2.3\pm0.5)\times10^{-3} & & \\ (&2.3\pm2.3)\times10^{-3} & & \\ (&2.3\pm2.3)\times10^{-3} & & \\ (&2.3\pm2.3)\times10^{-3} & & \\ (&5.0\pm1.0)\times10^{-3} & & \\ (&1.2\pm0.7)\times10^{-3} & & \\ (&1.2\pm0.7)\times10^{-3} & & \\ (&1.3\pm0.4)\times10^{-3} & & \\ (&1.3\pm0.4)\times10^{-3} & & \\ (&1.3\pm0.4)\times10^{-4} & & \\ (&1.3\pm1.4)\times10^{-4} & & \\ (&3.0\pm1.6)\times10^{-4} & & \\ (&9.0\pm2.3)\times10^{-4} & & \\ (&9.0\pm2.3)\times10^{-4} & & \\ (&6\pm2)\times10^{-4} & & \\ (&6\pm2)\times10^{-4} & & \\ (&6.8\pm2.7)\times10^{-3} & & \\ (&6.8\pm2.7)\times10^{-3} & & \\ (&6.8\pm2.7)\times10^{-3} & & \\ \end{array}$

Fractions of most of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^{*}(892)^{0}K^{0}$	< 1.6	imes 10 ⁻³	CL=90%	605
K*(892) ⁺ K ⁻	(3.5 ± 0.8)	$3) \times 10^{-3}$		610
$K^*(892)^0 \overline{K}^0$	< 8	imes 10 ⁻⁴	CL=90%	605
K*(892) ⁻ K ⁺	(1.8 ± 1.0)) $ imes$ 10 $^{-3}$		610
$\phi \pi^{0}$	< 1.4	imes 10 ⁻³	CL=90%	644
$\phi\eta$	< 2.8	imes 10 ⁻³	CL=90%	489
$\phi \omega_{\parallel}$	< 2.1	$ imes 10^{-3}$	CL=90%	239
$\phi \pi^+ \pi^-$	(1.07 ± 0.2)	$(28) \times 10^{-3}$		614
$\phi \rho^0$	(6 ±3	$) \times 10^{-4}$		260
$\phi \pi^+ \pi^-$ 3-body	(7 ±5	$) \times 10^{-4}$		614
$K^*(892)^0 K^- \pi^+ + c.c.$	[vv] < 7	$\times 10^{-4}$	CL=90%	-
$K^{*}(892)^{0}K^{*}(892)^{0}$	(1.4 ± 0.5	5) $\times 10^{-3}$		257

HTTP://PDG.LBL.GOV

Created: 7/18/2000 13:39

	Radiative mode	es		
$ ho^{0}\gamma$	< 2.4	imes 10 ⁻⁴	CL=90%	773
$\omega \gamma$	< 2.4	imes 10 ⁻⁴	CL=90%	768
$\phi\gamma$	< 1.9	imes 10 ⁻⁴	CL=90%	654
$\overline{K}^*(892)^0\gamma$	< 7.6	imes 10 ⁻⁴	CL=90%	717

Doubly Cabibbo suppressed (DC) modes,

 $\Delta C = 2$ forbidden via mixing (C2M) modes,

 $\Delta C = 1$ weak neutral current (C1) modes, or

Lepton Family number (LF) violating modes

${\cal K}^+ \ell^- \overline{ u}_\ell$ (via $\overline{D}{}^0)$	C2M	<	1.7	imes 10 ⁻⁴	CL=90%	_
$K^+\pi^-$	DC		(1.46 ± 0.3)	$30) \times 10^{-4}$		861
$K^+\pi^-$ (via $\overline{D}{}^0$)	C2M	<	1.6	imes 10 ⁻⁵	CL=95%	861
$K^+\pi^-\pi^+\pi^-$	DC		(1.9 ± 2.6)	5) $ imes$ 10 $^{-4}$		812
$K^+\pi^-\pi^+\pi^-$ (via $\overline{D}{}^0$)	C2M	<	4	imes 10 ⁻⁴	CL=90%	812
$K^+\pi^-$ or		<	1.0	imes 10 ⁻³	CL=90%	_
$K^+\pi^-\pi^+\pi^-$ (via $\overline{D}{}^0$)						
μ^- anything (via $\overline{D}{}^0)$	C2M	<	4	imes 10 ⁻⁴	CL=90%	-
e ⁺ e ⁻	C1	<	6.2	imes 10 ⁻⁶	CL=90%	932
$\mu^+_{\mu}\mu^{\mu}$	С1	<	4.1	imes 10 ⁻⁶	CL=90%	926
$\pi^{0} e^{+} e^{-}$	С1	<	4.5	imes 10 ⁻⁵	CL=90%	927
$\pi^0 \mu^+ \mu^-$	C1	<	1.8	imes 10 ⁻⁴	CL=90%	915
$\eta e^+ e^-$	С1	<	1.1	imes 10 ⁻⁴	CL=90%	852
$\eta \mu^+ \mu^-$	С1	<	5.3	imes 10 ⁻⁴	CL=90%	838
$ ho_{e}^{0}e^{+}e^{-}$	C1	<	1.0	imes 10 ⁻⁴	CL=90%	773
$ ho^0 \mu^+ \mu^-$	C1	<	2.3	imes 10 ⁻⁴	CL=90%	756
$\omega e^+ e^-$	C1	<	1.8	imes 10 ⁻⁴	CL=90%	768
$\omega \mu^+ \mu^-$	C1	<	8.3	imes 10 ⁻⁴	CL=90%	751
$\phi e^+ e^-$	C1	<	5.2	imes 10 ⁻⁵	CL=90%	654
$\phi \mu^+ \mu^-$	C1	<	4.1	imes 10 ⁻⁴	CL=90%	631
$\overline{K}^0 e^+ e^-$		[<i>ss</i>] <	1.1	imes 10 ⁻⁴	CL=90%	866
$\overline{K}^0 \mu^+ \mu^-$		[<i>ss</i>] <	2.6	imes 10 ⁻⁴	CL=90%	852
$\overline{K}^{*}(892)^{0} e^{+} e^{-}$		[<i>ss</i>] <	1.4	imes 10 ⁻⁴	CL=90%	717
$\overline{K}^{*}(892)^{0}\mu^{+}\mu^{-}$		[<i>ss</i>] <	1.18	imes 10 ⁻³	CL=90%	698
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	<	8.1	imes 10 ⁻⁴	CL=90%	863
$\mu^{\pm} e^{\mp}$	LF	[ee] <	8.1	imes 10 ⁻⁶	CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[ee] <	8.6	imes 10 ⁻⁵	CL=90%	924
$\eta e^{\pm} \mu^{\mp}$	LF	[ee] <	1.0	imes 10 ⁻⁴	CL=90%	848
$ ho^{0} e^{\pm} \mu^{\mp}$	LF	[ee] <	4.9	imes 10 ⁻⁵	CL=90%	769
$\omega e^{\pm} \mu^{\mp}$	LF	[ee] <	1.2	imes 10 ⁻⁴	CL=90%	764
$\phi e^{\pm} \mu^{\mp}$	LF	[ee] <	3.4	imes 10 ⁻⁵	CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[ee] <	1.0	imes 10 ⁻⁴	CL=90%	862
$\overline{K}^*(892)^0e^\pm\mu^\mp$	LF	[ee] <	1.0	imes 10 ⁻⁴	CL=90%	712

HTTP://PDG.LBL.GOV

Created: 7/18/2000 13:39

*D**(2007)⁰

D*(201

 $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.

 $\begin{array}{ll} {\rm Mass} \,\,m=2006.7\pm0.5\,\,{\rm MeV} & ({\rm S}=1.1)\\ m_{D^{*0}}-m_{D^0}=142.12\pm0.07\,\,{\rm MeV}\\ {\rm Full}\,\,{\rm width}\,\,\Gamma\,<\,2.1\,\,{\rm MeV},\,\,{\rm CL}=90\% \end{array}$

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

<i>D</i> *(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D^{0}\pi^{0}$	(61.9±2.9) %	43
$D^0\gamma$	(38.1±2.9) %	137

0)±	$I(J^P) = \frac{1}{2}(1^-)$
	<i>I</i> , <i>J</i> , <i>P</i> need contirmation.
Mas	s $m = 2010.0 \pm 0.5$ MeV $({\sf S} = 1.1)$
m_{D^*}	$_{(2010)^+}$ - m_{D^+} = 140.64 \pm 0.10 MeV (S = 1.1)
m_{D^*}	$(2010)^+ - m_{D^0} = 145.436 \pm 0.016 \text{ MeV}$
Full	width Γ < 0.131 MeV, CL = 90%

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D^{0}\pi^{+}$	(67.7±0.5) %	39
$D^+ \pi^0$	(30.7±0.5) %	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

*D*₁(2420)⁰

 $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.

 $\begin{array}{ll} {\sf Mass} \ m = 2422.2 \pm 1.8 \ {\sf MeV} & ({\sf S} = 1.2) \\ {\sf Full \ width} \ \Gamma = 18.9^{+4.6}_{-3.5} \ {\sf MeV} \end{array}$

 $\overline{D}_1(2420)^0$ modes are charge conjugates of modes below.

Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
seen	355
not seen	474
	Fraction (Γ_i/Γ) seen not seen

D₂*(2460)⁰ $I(J^{P}) = \frac{1}{2}(2^{+})$ $J^P = 2^+$ assignment strongly favored (ALBRECHT 89B). Mass $m = 2458.9 \pm 2.0$ MeV (S = 1.2) Full width $\Gamma=23\pm5~\text{MeV}$

 $\overline{D}_{2}^{*}(2460)^{0}$ modes are charge conjugates of modes below.

<i>D</i> [*] ₂ (2460) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D^+\pi^-$	seen	503
$D^{*}(2010)^{+}\pi^{-}$	seen	387

<i>D</i> [*] ₂ (2460) [±]	$I(J^P) = \frac{1}{2}(2^+)$
$J^{P} = 2^{-1}$	⁺ assignment strongly favored (ALBRECHT 89B).
Mas	$m = 2459 \pm 4 { m MeV} ({ m S} = 1.7)$
$m_{D_{2}^{*}}$	$_{(2460)^{\pm}} - m_{D_2^*(2460)^0} = 0.9 \pm 3.3 \; { m MeV} ({ m S} = 1.1)$
Full	width $\Gamma = 25 \frac{+8}{-7}$ MeV

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
seen	508
seen	390
	Fraction (Γ_i/Γ) seen seen