BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0=u\,d\,b,\, \Xi_b^0=u\,s\,b,\, \Xi_b^-=d\,s\,b$$

 Λ_b^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5624\pm 9$ MeV (S=1.8) Mean life $\tau=(1.229\pm 0.080)\times 10^{-12}$ s

 $c\tau = 368 \ \mu \mathrm{m}$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction $B(b \rightarrow b$ -baryon) and are evaluated for our value $B(b \rightarrow b$ -baryon) = $(11.8 \pm 2.0)\%$.

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

Λ_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)$ Λ	$(4.7\pm2.8)\times10^{-}$	-4	1744
$\Lambda_c^+ \pi^-$	seen		2345
$\Lambda_c^+ \pi^- \ \Lambda_c^+ a_1 (1260)^-$	seen		2156
$\Lambda_{c}^{+}\ell^{-}\overline{ u}_{\ell}$ anything	$[s]$ (7.7 ± 1.8) %		_
$ ho\pi^-$	< 5.0 × 10	90%	2732
pK ⁻	< 5.0 × 10	-5 90%	2711

Created: 6/18/2002 16:09

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

Mean life
$$au = (1.208 \pm 0.051) \times 10^{-12} \text{ s}$$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction $B(b \rightarrow b$ -baryon) and are evaluated for our value $B(b \rightarrow b$ -baryon) = $(11.8 \pm 2.0)\%$.

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

b -baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	p (MeV/c)
$p\mu^-\overline{\nu}$ anything	$(4.2^{+}_{-}1.7_{-})\%$	_
$ ho \ell \overline{ u}_\ell$ anything	(4.0± 1.0) %	_
panything	(50 \pm 17)%	_
$arLambda \ell^- \overline{ u}_\ell$ anything	$(2.7\pm~0.5)\%$	_
$\Lambda/\overline{\Lambda}$ anything	$(28 \pm 6)\%$	_
$ar{oldsymbol{arXi}}^-\ell^-\overline{ u}_\ell$ anything	$(4.7\pm 1.3) \times 10^{-3}$	_

Created: 6/18/2002 16:09