

$$I(J^P) = 0(\frac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

Mass $m = 2284.9 \pm 0.6$ MeV Mean life $\tau = (200 \pm 6) \times 10^{-15}$ s (S = 1.6) $c\tau = 59.9 \ \mu$ m

Decay asymmetry parameters

 Λ_c^+

 $\begin{array}{ll} \Lambda \pi^+ & \alpha = -0.98 \pm 0.19 \\ \Sigma^+ \pi^0 & \alpha = -0.45 \pm 0.32 \\ \Lambda \ell^+ \nu_\ell & \alpha = -0.82 \substack{+0.11 \\ -0.07} \end{array}$

Nearly all branching fractions of the Λ_c^+ are measured relative to the $pK^-\pi^+$ mode, but there are no model-independent measurements of this branching fraction. We explain how we arrive at our value of $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ in a Note at the beginning of the branching-ratio measurements in the Listings. When this branching fraction is eventually well determined, all the other branching fractions will slide up or down proportionally as the true value differs from the value we use here.

Λ_c^+ DECAY MODES	F	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
Hadronic mode	es with a	a p: S = -1 fir	al states	
$p\overline{K}^0$		(2.3 \pm 0.6) $\%$	6	872
$\rho K^- \pi^+$	[/]	(5.0 \pm 1.3) $\%$	6	822
$p\overline{K}^*(892)^0$	[<i>m</i>]	(1.6 \pm 0.5) $\%$	6	681
$\Delta(1232)^{++}K^{-}$		(8.6 \pm 3.0) >	< 10 ⁻³	709
$\Lambda(1520)\pi^+$	[<i>m</i>]	(5.9 \pm 2.1)>	< 10 ⁻³	626
$ ho { m K}^{-} \pi^{+}$ nonresonant		(2.8 \pm 0.8) $\%$	6	822
$p\overline{K}^0\pi^0$		(3.3 \pm 1.0) $\%$	6	822

$p\overline{K}^{0}\eta$		(1.2 \pm 0.4) %	567
$p\overline{K}^0\pi^+\pi^-$		(2.6 \pm 0.7) %	753
$p K^- \pi^+ \pi^0$		(3.4 \pm 1.0) %	758
$p K^*(892)^- \pi^+$	[<i>m</i>]	($1.1~\pm~0.5$) %	579
$p(K^-\pi^+)_{ m nonresonant}\pi^0$		(3.6 \pm 1.2) %	758
$\Delta(1232)\overline{K}^*(892)$		seen	416
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$		(1.1 \pm 0.8) $ imes$ 10 $^{-3}$	670
$p K^- \pi^+ \pi^0 \pi^0$		$(8 \pm 4) \times 10^{-3}$	676

Hadronic modes with a p: S = 0 final states

$p\pi^+\pi^-$	$(3.5 \pm 2.0) \times 10^{-3}$	926
$p f_0(980)$ [n	n] (2.8 \pm 1.9) $\times10^{-3}$	621
$p\pi^+\pi^+\pi^-\pi^-$	(1.8 \pm 1.2) $\times10^{-3}$	851
р К ⁺ К ⁻	(7.7 \pm 3.5) $\times10^{-4}$	615
$p\phi$ [m	n] (8.2 \pm 2.7) $ imes$ 10 ⁻⁴	589
$ ho { m K}^+ { m K}^-$ non- ϕ	(3.5 \pm 1.7) $\times10^{-4}$	615

Hadronic modes with a hyperon: S = -1 final states

$\Lambda \pi^+$	(9.0 \pm 2.8) $ imes$ 10 $^{-3}$		863
$\Lambda \pi^+ \pi^0$	$(3.6 \pm 1.3)\%$		843
Λho^+	< 5 %	CL=95%	638
$\Lambda \pi^+ \pi^+ \pi^-$	(3.3 \pm 1.0) %		806
$\Lambda \pi^+ \eta$	(1.8 \pm 0.6) %		690
$\Sigma(1385)^+ \eta$	[m] (8.5 \pm 3.3) $ imes$ 10 ⁻³		569
$\Lambda K^+ \overline{K}{}^0$	(6.0 \pm 2.1) $ imes$ 10 $^{-3}$		441
$\Xi(1690)^0 {\cal K}^+$, $\Xi(1690)^0 ightarrow$	(1.6 \pm 0.8) $\times10^{-3}$		286
$\Sigma^0 \pi^+$	$(9.9 \pm 3.2) \times 10^{-3}$		824
$\Sigma^+ \pi^0$	$(1.00\pm0.34)\%$		826
$\Sigma^+\eta$	$(5.5 \pm 2.3) \times 10^{-3}$		712
$\Sigma^+\pi^+\pi^-$	$(3.6 \pm 1.0)\%$		803
$\Sigma^+ ho^0$	< 1.4 %	CL=95%	578
$\Sigma^{-}\pi^{+}\pi^{+}$	(1.9 \pm 0.8) %		798
$\Sigma^0 \pi^+ \pi^0$	(1.8 \pm 0.8) %		802
$\Sigma^0 \pi^+ \pi^+ \pi^-$	(1.1 \pm 0.4) %		762
$\Sigma^+ \pi^+ \pi^- \pi^0$	—		766
$\Sigma^+ \omega$	$[m]$ (2.7 \pm 1.0) %		568
$\Sigma^+ K^+ K^-$	(2.9 \pm 0.9) $ imes$ 10 $^{-3}$		346
$\Sigma^+\phi$	$[m]$ (3.1 \pm 1.0) $ imes$ 10 ⁻³		292
$\Xi(1690)^{0}K^{+}$,	(8.3 \pm 3.5) $ imes$ 10 $^{-4}$		286
$arepsilon(1690)^0 o \ \Sigma^+ K^-$			
$\Sigma^+ K^+ K^-$ nonresonant	$< 7 \times 10^{-4}$	CL=90%	346
$\Xi^0 K^+$	(3.9 \pm 1.4) $ imes$ 10 ⁻³		652
$\Xi^{-}K^{+}\pi^{+}$	(4.9 \pm 1.7) $ imes$ 10 $^{-3}$		564
${\it \Xi}(1530)^{0}{\it K}^{+}$	[m] (2.6 \pm 1.0) $ imes$ 10 ⁻³		471

HTTP://PDG.LBL.GOV Page 37 Created: 6/18/2002 16:09

Hadronic mod	es with a h	iyperoi	n: S =	= 0 final st	ates	
ΛK^+		(6.7	\pm 2.5	$) \times 10^{-4}$		780
$\Sigma^0 K^+$		(5.6	± 2.4	$) \times 10^{-4}$		734
$\Sigma^+ K^+ \pi^-$		(1.7	\pm 0.7	$) imes 10^{-3}$		668
	Semilepto	onic m	odes			
$\Lambda \ell^+ u_\ell$	[<i>n</i>]	(2.0	± 0.6) %		_
$\Lambda e^{+} \nu_{e}$		(2.1	± 0.6) %		870
$\Lambda \mu^+ \nu_{\mu}$		(2.0	± 0.7) %		866
	Inclusiv	ve mod	les			
e^+ anything		(4.5	\pm 1.7) %		_
pe^+ anything		(1.8	\pm 0.9) %		_
p anything		(50	± 16) %		_
p anything (no Λ)		(12	± 19) %		-
n anything		(50	± 16) %		-
n anything (no Λ)		(29	± 17) %		-
Λ anything		(35	± 11) %	S=1.4	_
Σ^\pm anything	[0]	(10	\pm 5) %		-
$\Delta C = 1$ we	ak neutral	curren	t (<i>C1</i>) modes, c	or	
Leptor	number (L) viol	ating	modes		
$p\mu^+\mu^-$	C1	< 3.4		imes 10 ⁻⁴	CL=90%	936
$\Sigma^{-}\mu^{+}\mu^{+}$	L	< 7.0		imes 10 ⁻⁴	CL=90%	811

Λ_c(2593)⁺

$$I(J^P) = 0(\frac{1}{2}^{-})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant.

 $\begin{array}{l} {\rm Mass} \,\,m=2593.9\pm 0.8\,\,{\rm MeV} \\ m-m_{\Lambda_c^+}=308.9\pm 0.6\,\,{\rm MeV} \quad ({\rm S}=1.1) \\ {\rm Full}\,\,{\rm width}\,\,\Gamma=3.6^{+2.0}_{-1.3}\,\,{\rm MeV} \end{array}$

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

$\Lambda_c(2593)^+$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda_{c}^{+}\pi^{+}\pi^{-}}$	[ho]pprox 67~%	124
$\Sigma_{c}(2455)^{++}\pi^{-}$	24 \pm 7 %	21
$\Sigma_{c}(2455)^{0}\pi^{+}$	24 \pm 7 %	24
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	124
$\Lambda_c^+ \pi^0$	[q] not seen	261
$\Lambda_c^+ \gamma$	not seen	291

$$\Lambda_{c}(2625)^{+} \qquad I(J^{P}) = 0(\frac{3}{2}^{-})$$

$$J^{P} \text{ has not been measured; } \frac{3}{2}^{-} \text{ is the quark-model}$$

$$Mass \ m = 2626.6 \pm 0.8 \text{ MeV} \quad (S = 1.2)$$

$$m - m_{+} = 341.7 \pm 0.6 \text{ MeV} \quad (S = 1.6)$$

 $m - m_{\Lambda_c^+} = 341.7 \pm 0.6 \text{ MeV}$ (S = 1.6) Full width $\Gamma < 1.9 \text{ MeV}$, CL = 90%

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\overline{\Lambda_c^+ \pi^+ \pi^-}$	$[p] \approx 67\%$		184
$\Sigma_{c}(2455)^{++}\pi^{-}$	<5	90%	100
$\Sigma_{c}(2455)^{0}\pi^{+}$	<5	90%	101
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large		184
$\Lambda_c^+ \pi^0$	[q] not seen		293
$\Lambda_c^+ \gamma$	not seen		319

HTTP://PDG.LBL.GOV

prediction.

*Σ*_c(2455)

$$I(J^P) = \mathbb{1}(\tfrac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2455)^{++} \text{mass } m = 2452.6 \pm 0.6 \text{ MeV} \\ & \Sigma_c(2455)^+ \text{ mass } m = 2451.3 \pm 0.7 \text{ MeV} \\ & \Sigma_c(2455)^0 \text{ mass } m = 2452.2 \pm 0.6 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Lambda_c^+} = 167.67 \pm 0.15 \text{ MeV} \\ & m_{\Sigma_c^+} - m_{\Lambda_c^+} = 166.4 \pm 0.4 \text{ MeV} \\ & m_{\Sigma_c^0} - m_{\Lambda_c^+} = 167.32 \pm 0.15 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Sigma_c^0} = 0.35 \pm 0.18 \text{ MeV} \\ & m_{\Sigma_c^+} - m_{\Sigma_c^0} = -0.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^{++} \text{full width } \Gamma = 2.0 \pm 0.5 \text{ MeV} \\ & \Sigma_c(2455)^+ \text{ full width } \Gamma = 1.6 \pm 0.5 \text{ MeV} \end{split}$$

 $\Lambda_{c}^{+}\pi$ is the only strong decay allowed to a Σ_{c} having this mass.

Σ_{c} (2455) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda_{c}^{+}\pi}$	pprox 100 %	90

Σ_c(2520)

$$I(J^P) = \mathbb{1}(\tfrac{3}{2}^+)$$

 J^P has not been measured; $\frac{3}{2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2519.4 \pm 1.5 \text{ MeV} \\ & \Sigma_c(2520)^+ \text{ mass } m = 2515.9 \pm 2.4 \text{ MeV} \\ & \Sigma_c(2520)^0 \text{ mass } m = 2517.5 \pm 1.4 \text{ MeV} \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 234.5 \pm 1.4 \text{ MeV} \\ & m_{\Sigma_c(2520)^+} - m_{\Lambda_c^+} = 231.0 \pm 2.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^0} - m_{\Lambda_c^+} = 232.6 \pm 1.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^0} = 1.9 \pm 1.7 \text{ MeV} \\ & \Sigma_c(2520)^{++} \text{ full width } \Gamma = 18 \pm 5 \text{ MeV} \\ & \Sigma_c(2520)^+ \text{ full width } \Gamma < 17 \text{ MeV}, \text{ CL} = 90\% \\ & \Sigma_c(2520)^0 \text{ full width } \Gamma = 13 \pm 5 \text{ MeV} \end{split}$$

 $\Lambda_{\rm C}^+\,\pi$ is the only strong decay allowed to a $\Sigma_{\rm C}$ having this mass.

Ξ_c^+

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

 $\begin{array}{l} {\sf Mass} \,\, m = 2466.3 \pm 1.4 \,\, {\sf MeV} \\ {\sf Mean} \,\, {\sf life} \,\, \tau = (442 \pm 26) \times 10^{-15} \,\, {\sf s} \quad ({\sf S} = 1.3) \\ c\tau = 132 \,\, \mu {\sf m} \end{array}$

No absolute branching fractions have been measured. THE FOLLOWING ARE BRANCHING *RATIOS* RELATIVE TO $\Xi^- \pi^+ \pi^+$.

	Fraction $(\Gamma \cdot / \Gamma)$	Confidence level	p (MeV/c)
		connuclice level	
$\Lambda K^{-} \pi^{+} \pi^{+} \qquad [r]$	0.58 ± 0.18		785
$\Lambda \overline{K}^* (892)^0 \pi^+ \qquad [m,r]$	<0.29	90%	603
$\Sigma(1385)^+ K^- \pi^+$ [m,r]	<0.41	90%	677
$\Sigma^+ \kappa^- \pi^+$ [r]	1.18 ± 0.31		809
$\Sigma^+ \overline{K}^* (892)^0 \qquad [m,r]$	0.92 ± 0.30		654
$\Sigma^0 \mathcal{K}^- \pi^+ \pi^+ \qquad [r]$	0.49 ± 0.26		734
$\Xi^0 \pi^+ \qquad [r]$	$0.55 \!\pm\! 0.16$		876
$\overline{\Xi}^{-}\pi^{+}\pi^{+}$ [r]	defined as 1		850
$\Xi(1530)^0 \pi^+$ [m,r]	<0.2	90%	749
$\Xi^0 \pi^+ \pi^0 \qquad [r]$	2.34 ± 0.68		855
$\Xi^0 \pi^+ \pi^+ \pi^- \qquad [r]$	1.74 ± 0.50		817
$\overline{\Xi}^0 e^+ \nu_e \qquad [r]$	$2.3 \begin{array}{c} +0.7 \\ -0.9 \end{array}$		883
$pK^{-}\pi^{+}$ [r]	0.21 ± 0.03		943
$p\overline{K}^*(892)^0\qquad\qquad [m,r]$	0.12 ± 0.02		824

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ **Ξ**⁰_c J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction. Mass $m = 2471.8 \pm 1.4$ MeV $m_{\Xi_c^0} - m_{\Xi_c^+} = 5.5 \pm 1.8 \; {
m MeV}$ Mean life $au = (98^{+23}_{-15}) imes 10^{-15} \; {
m s}$ $c\tau = 29 \ \mu m$ Decay asymmetry parameters $\Xi^{-}\pi^{+}$ $\alpha = -0.6 \pm 0.4$ =0 DECAY MODES Fraction $(\Gamma \cdot / \Gamma)$ n (MeV/c)

	$(1_{i}/1)$	p (wie v/c)
$\Lambda \overline{K}^0$	seen	907
$\Lambda \overline{K}{}^{0} \pi^{+} \pi^{-}$	seen	788
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen	704
$\Xi^{-}\pi^{+}$	seen	876
$\Xi^{-}\pi^{+}\pi^{+}\pi^{-}$	seen	817
$pK^-\overline{K}^*(892)^0$	seen	408
$\Omega^{-}K^{+}$	seen	523
$\Xi^- e^+ \nu_e$	seen	883
$\Xi^-\ell^+$ anything	seen	-

$$I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass $m = 2574.1 \pm 3.3$ MeV $m_{\Xi_c^{\prime+}} - m_{\Xi_c^+} = 107.8 \pm 3.0 \; {
m MeV}$

The $\Xi_c'^+ - \Xi_c^+$ mass difference is too small for any strong decay to occur.

$\frac{z'^{+}}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_c^+}\gamma$	seen	106

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Ξ'⁰ J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction. Mass $m = 2578.8 \pm 3.2$ MeV $m_{\Xi_c'^0} - m_{\Xi_c^0} = 107.0 \pm 2.9 \; {
m MeV}$ The $\Xi_c^{\prime 0} - \Xi_c^0$ mass difference is too small for any strong decay to occur. E^{/0} DECAY MODES Fraction (Γ_i/Γ) p (MeV/c)seen Ξ_c(2645) $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$ J^P has not been measured; $\frac{3}{2}^+$ is the quark-model prediction. $\Xi_c(2645)^+$ mass $m=2647.4\pm 2.0$ MeV (S = 1.2) $\Xi_c(2645)^0$ mass $m=2644.5\pm 1.8$ MeV $m_{\Xi_c(2645)^+} - m_{\Xi_c^0} = 175.6 \pm 1.4 \text{ MeV}$ (S = 1.7) $m_{\Xi_c(2645)^0} - m_{\Xi_c^+} = 178.2 \pm 1.1 \text{ MeV}$ $\Xi_c(2645)^+$ full width $\Gamma < 3.1$ MeV, CL = 90% $\Xi_c(2645)^0$ full width $\Gamma < 5.5$ MeV, CL = 90%

 $\varXi_{c}\pi$ is the only strong decay allowed to a \varXi_{c} resonance having this mass.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/		
$\Xi_c^0 \pi^+$	seen	103		
$\Xi_c^+\pi^-$	seen	107		

HTTP://PDG.LBL.GOV

105

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_c^+}\pi^+\pi^-$	seen	196
$\Xi_c^0 \pi^+ \pi^-$	seen	193

 \mathcal{P}_{c} J^{P} has not been measured; $\frac{1}{2}^{+}$ is the quark-model prediction. Mass $m = 2697.5 \pm 2.6$ MeV (S = 1.2) Mean life $\tau = (64 \pm 20) \times 10^{-15}$ s $c\tau = 19 \ \mu$ m

No absolute branching fractions have been measured.

Ω_c^0 decay modes	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma^+ K^- K^- \pi^+$	seen	691
$\Xi^0 \kappa^- \pi^+$	seen	902
$\Xi^- K^- \pi^+ \pi^+$	seen	832
$\Omega^{-}\pi^{+}$	seen	822
$\Omega^{-}\pi^{+}\pi^{0}$	seen	798
$\Omega^{-}\pi^{-}\pi^{+}\pi^{+}$	seen	754