LIGHT QUARKS (u, d, s)

OMITTED FROM SUMMARY TABLE

u-QUARK MASS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\rm MS}$. The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1.5 to 4.5 OUR EVALUATION			
• • • We do not use the fol	lowing data for averag	es, fits, limits,	etc. • • •
2.3 ± 0.4	¹ NARISON		
$3.9\!\pm\!1.1$	² JAMIN	95 THEO	MS scheme
3.0 ± 0.7	³ NARISON	95C THEO	MS scheme
¹ NARISON 99 uses sum in by combining with sum in	rules to order α_s^3 for ϕ	meson decay	s to get m_s , and finds m_u
by combining with sum r	rule estimates of m_u^+	m_d and Dash	en s formula.
2 JAMIN 95 uses QCD sui $=5.3\pm1.5$ to $\mu=2$ Ge	eV.		_
³ For NARISON 95C, we h	ave rescaled $m(1 \text{ Ge})$	(1) = 4 + 1 to	$\mu = 2 \text{GeV}.$

d-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
5 to 8.5 OUR EVALUATION			
• • • We do not use the following	data for average	s, fits, limits,	etc. • • •
6.4 ± 1.1	⁴ NARISON	99 THEO	MS scheme
7.0 ± 1.1	⁵ JAMIN	95 THEO	MS scheme
7.4 ± 0.7	⁶ NARISON	95C THEO	MS scheme
4 NARISON 99 uses sum rules to by combining with sum rule es 5 JAMIN 95 uses QCD sum rule $=9.4\pm1.5$ to $\mu=2$ GeV. 6 For NARISON 95C, we have respectively.	timates of $m_u + n$ s at next-to-leadi	n _d and Dashe ng order. We	en's formula. Have rescaled $m_d(1{ m GeV})$

$$\overline{m} = (m_u + m_d)/2$$

See the comments for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV) DOCUMENT ID TECN 2.5 to 5.5 OUR EVALUATION • • We do not use the following data for averages, fits, limits, etc. ⁷ MALTMAN 3.9 ± 0.6 01 THEO MS scheme ⁸ AOKI MS scheme 4.57 ± 0.18 LATT ⁹ GOECKELER MS scheme 4.4 ± 2 ¹⁰ AOKI 4.23 ± 0.29 99 LATT MS scheme ¹¹ STEELE THEO MS scheme ≥ 2.1 ¹² BECIREVIC 98 4.5 ± 0.4 LATT MS scheme ¹³ DOSCH 4.6 ± 1.2 98 THEO MS scheme ¹⁴ PRADES 4.7 ± 0.9 98 THEO MS scheme ¹⁵ EICKER 2.7 ± 0.2 MS scheme ¹⁶ GOUGH 97 LATT MS scheme 3.6 ± 0.6 ¹⁷ GUPTA $3.4 \pm 0.4 \pm 0.3$ 97 I ATT MS scheme ¹⁸ LELLOUCH >3.8 ¹⁹ BIJNENS THEO MS scheme 4.5 ± 1.0

⁷ MALTMAN 01 uses Borel transformed and finite energy sum rules.

⁸ AOKI 00 obtain the light quark masses from a quenched lattice simulation of the meson and baryon spectrum with the Wilson quark action.

⁹ GOECKELER 00 obtained from a quenched lattice computation of the pseudoscalar meson masses using $\mathcal{O}(a)$ improved Wilson fermions and nonperturbative renormalization.

¹⁰ AOKI 99 obtain the light quark masses from a quenched lattice simulation of the meson spectrum with the staggered quark action employing the regularization independent scheme.

¹¹ STEELE 99 obtain a bound on the light quark masses by applying the Holder inequality to a sum rule. We have converted their bound of $(m_u+m_d)/2 \ge 3$ MeV at $\mu=1$ GeV to $\mu=2$ GeV.

¹² BECIREVIC 98 compute the quark mass using the Alpha action in the quenched approximation. The conversion from the regularization independent scheme to the MS scheme is at NNLO.

¹³ DOSCH 98 use sum rule determinations of the quark condensate and chiral perturbation theory to obtain $9.4 \le (m_u + m_d)(1 \text{ GeV}) \le 15.7 \text{ MeV}$. We have converted to result to μ =2 GeV.

 $^{^{14}}$ PRADES 98 uses finte energy sum rules for the axial current correlator.

 $^{^{15}}$ EICKER 97 use lattice gauge computations with two dynamical light flavors.

 $^{^{16}\,\}text{GOUGH}$ 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives 2.1 $<\overline{m}<$ 3.5 MeV at $\mu{=}2$ GeV.

 $^{^{17}}$ GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamic flavors at $\mu=2$ GeV is 2.7 \pm 0.3 \pm 0.3 MeV.

 $^{^{18}}$ LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions.

 $^{^{19}}$ BIJNENS 95 determines m_u+m_d (1 GeV) = 12 \pm 2.5 MeV using finite energy sum rules. We have rescaled this to 2 GeV.

s-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 155 OUR EVALUATIO	N			
 ◆ We do not use the following 	data for averages	, fits	, limits,	etc. • • •
$\begin{array}{ccc} 116 & +20 \\ & -25 \end{array}$	²⁰ CHEN	01 B	THEO	MS scheme
125 ± 27	²¹ KOERNER	01	THEO	MS scheme
	²² AOKI	00	LATT	MS scheme
105 ± 4	²³ GOECKELER	00	LATT	MS scheme
118 ± 14	²⁴ AOKI	99	LATT	MS scheme
- 55	²⁵ BARATE	99 R	ALEP	MS scheme
	²⁶ MALTMAN	99	THEO	MS scheme
129 ± 24	²⁷ NARISON	99	THEO	MS scheme
	²⁸ PICH	99	THEO	MS scheme
111 ± 12	²⁹ BECIREVIC	98	LATT	MS scheme
148 ± 48	30 CHETYRKIN	98	THEO	MS scheme
103 ± 10	31 CUCCHIERI	98		MS scheme
115 ± 19	32 DOMINGUEZ	98	THEO	MS scheme
152.4 ± 14.1	³³ CHETYRKIN	97	THEO	MS scheme
≥ 89	³⁴ COLANGELO	97	THEO	MS scheme
140 ± 20	³⁵ EICKER	97	LATT	MS scheme
95 ± 16	³⁶ GOUGH	97	LATT	MS scheme
100 ± 21 ± 10	³⁷ GUPTA	97	LATT	MS scheme
>100	³⁸ LELLOUCH	97	THEO	MS scheme
140 ± 24	³⁹ JAMIN	95	THEO	MS scheme

 $^{^{20}}$ CHEN 01B uses an anlysis of the hadronic spectral function in au decay.

²¹ KOERNER 01 obtain the s quark mass of $m_S(m_T)=130\pm27(\exp)\pm9(\text{thy})$ MeV from an analysis of Cabibbo suppressed τ decays. We have converted this to $\mu=2$ GeV.

 $^{^{22}\,\}mathrm{AOKI}$ 00 obtain the light quark masses from a quenched lattice simulation of the meson and baryon spectrum with the Wilson quark action. We have averaged their results of $m_{
m s}{=}$ 115.6 \pm 2.3 and $m_{
m S}{=}$ 143.7 \pm 5.8 obtained using $m_{
m K}$ and m_{ϕ} , respectively, to normalize the spectrum.

²³ GOECKELER 00 obtained from a quenched lattice computation of the pseudoscalar meson masses using $\mathcal{O}(a)$ improved Wilson fermions and nonperturbative renormalization.

 $^{^{24}}$ AOKI 99 obtain the light quark masses from a quenched lattice simulation of the meson spectrum with the Staggered quark action employing the regularization independent scheme. We have averaged their results of m_s =106.0 \pm 7.1 and m_s =129 \pm 12 obtained using m_K and m_ϕ , respectively, to normalize the spectrum.

 $^{^{25}}$ BARATE 99R obtain the strange quark mass from an analysis of the observed mass spectra in τ decay. We have converted their value of $m_{\rm S}(m_{\tau})=176^{+46}_{-57}~{\rm MeV}$ to $\mu=2~{\rm GeV}$.

 $^{^{26}}$ MALTMAN 99 determines the strange quark mass using finite energy sum rules. 27 NARISON 99 uses sum rules to order α_s^3 for ϕ meson decays.

 $^{^{28}}$ PICH 99 obtain the s-quark mass from an analysis of the moments of the invariant mass distribution in τ decays.

- 29 BECIREVIC 98 compute the quark mass using the Alpha action in the quenc<u>hed</u> approximation. The conversion from the regularization independent scheme to the MS scheme
- 30 CHETYRKIN 98 uses spectral moments of hadronic au decays to determine $m_s(1\,{\rm GeV})=200\pm70\,{\rm MeV}$. We have rescaled the result to $\mu=2\,{\rm GeV}$.
- $^{
 m 31}$ CUCCHIERI 98 obtains the quark mass using a quenched lattice computation of the hadronic spectrum.
- $^{
 m 32}$ DOMINGUEZ 98 uses hadronic spectral function sum rules (to four loops, and including dimension six operators) to determine $m_s(1 \text{ GeV}) < 155 \pm 25 \text{ MeV}$. We have rescaled the result to $\mu=2$ GeV.
- 33 CHETYRKIN 97 obtains 205.5 \pm 19.1 MeV at $\mu{=}1$ GeV from QCD sum rules including fourth-order QCD corrections. We have rescaled the result to 2 GeV.
- 34 COLANGELO 97 is QCD sum rule computation. We have rescaled $m_{\mathcal{S}}(1\,\mathrm{GeV})>120$ to
- ³⁵ EICKER 97 use lattice gauge computations with two dynamical light flavors.
- 36 GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives 54 < m_{S} < 92 MeV at μ =2 GeV.
- $^{
 m 37}$ GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamical flavors at $\mu=2\,\mathrm{GeV}$ is $68\pm12\pm7\,\mathrm{MeV}$.
- ³⁸ LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions.
- ³⁹ JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_c(1 \text{ GeV})$ = 189 \pm 32 to $\mu=$ 2 GeV.

LIGHT QUARK MASS RATIOS

u/d MASS RATIO

0.2	to 0.7 OUR EVALUATION	<u> </u>		002.11
VALUE		DOCUMENT ID	TECN	COMMENT

• We do not use the following data for averages, fits, limits, etc. • •

0.44	⁴⁰ GAO	97	THEO	$\overline{\text{MS}}$ scheme
0.553 ± 0.043	⁴¹ LEUTWYLER	96	THEO	Compilation
< 0.3	⁴² CHOI	92	THEO	
0.26	⁴³ DONOGHUE	92	THEO	
0.30 ± 0.07	⁴⁴ DONOGHUE			
0.66	⁴⁵ GERARD	90	THEO	
0.4 to 0.65	⁴⁶ LEUTWYLER			
0.05 to 0.78	⁴⁷ MALTMAN	90	THEO	

- $^{
 m 40}\,{\rm GAO}$ 97 uses electromagnetic mass splittings of light mesons.
- ⁴¹LEUTWYLER 96 uses a combined fit to $\eta \to 3\pi$ and $\psi' \to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.
- ⁴² CHOI 92 result obtained from the decays $\psi(2S) o J/\psi(1S) \pi$ and $\psi(2S) o J/\psi(1S) \eta$, and a dilute instanton gas estimate of some unknown matrix elements.
- 43 DONOGHUE 92 result is from a combined analysis of meson masses, $\eta
 ightarrow 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S)
 ightharpoonup$ $J/\psi(1S)\pi)/(\psi(2S) \rightarrow J/\psi(1S)\eta).$
- ⁴⁴ DONOGHUE 92B computes quark mass ratios using $(\psi(2S) o J/\psi(1S)\pi)/(\psi(2S) o$ $J/\psi(1S)\eta$), and an estimate of L_{14} using Weinberg sum rules.
- ⁴⁵ GERARD 90 uses large N and η - η' mixing.
- $^{
 m 46}$ LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .
- ⁴⁷ MALTMAN 90 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Uses a criterion of "maximum reasonableness" that certain coefficients which are expected to be of order one are ≤ 3 .

s/d MASS RATIO

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

17 to 22 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • • •

	⁴⁸ GAO			
	⁴⁹ LEUTWYLER			Compilation
	⁵⁰ DONOGHUE			
18	⁵¹ GERARD			
18 to 23	⁵² LEUTWYLER	90 B	THEO	

⁴⁸ GAO 97 uses electromagnetic mass splittings of light mesons.

$$(m_s-m)/(m_d-m_u)$$
 MASS RATIO

 $\overline{m} \equiv (m_{\mu} + m_{d})/2$

ALUE <u>DOCUMENT ID</u> <u>TECN</u>

30 to 50 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • • •

	⁵³ ANISOVICH	96	THEO
36 ± 5	⁵⁴ NEFKENS	92	THEO
45±3	⁵⁵ NEFKENS	92	THEO

⁵³ANISOVICH 96 find $Q=22.7\pm0.8$ with $Q^2\equiv(m_s^2-m^2)/(m_d^2-m_s^2)$ from $\eta\to\pi^+\pi^-\pi^0$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS (u, d, s) REFERENCES

CHEN KOERNER MALTMAN AOKI GOECKELER AOKI BARATE MALTMAN NARISON PICH STEELE BECIREVIC CHETYRKIN CUCCHIERI DOMINGUEZ	01B 01 00 00 99 99R 99 99 99 99 98 98 98	EPJ C22 31 EPJ C20 259 PL B517 332 PRL 84 238 PR D62 054504 PRL 82 4392 EPJ C11 599 PL B462 195 PL B466 345 JHEP 9910 004 PL B451 201 PL B451 201 PL B444 401 NP B533 473 PL B422 212 PL B425 193	S. Chen et al. J.G. Koerner, F. Krajewski, A.A. F. K. Maltman, J. Kambor S. Aoki et al. M. Goeckeler et al. S. Aoki et al. R. Barate et al. K. Maltman S. Narison A. Pich, J. Prades T.G. Steele, K. Kostuik, J. Kwan D. Becirevic et al. K.G. Chetyrkin, J.H. Kuehn, A.A. A. Chucchieri et al. C.A. Dominguez, L. Pirovano, K. S.	(CP-PACS Collab.) (JLQCD Collab.) (ALEPH Collab.)
				Schilcher
DOSCH PRADES	98 98	PL B417 173 NPBPS 64 253	H.G. Dosch, S. Narison J. Prades	
CHETYRKIN	96 97	PL B404 337	K.G. Chetyrkin, D. Pirjol, K. Schile	cher

⁴⁹ LEUTWYLER 96 uses a combined fit to $\eta \to 3\pi$ and $\psi' \to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.

⁵⁰ DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \to 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S) \to J/\psi(1S)\pi)/(\psi(2S) \to J/\psi(1S)\eta)$.

⁵¹ GERARD 90 uses large N and η - η' mixing.

 $^{^{52}}$ LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .

⁵⁴ NEFKENS 92 result is from an analysis of meson masses, mixing, and decay.

⁵⁵ NEFKENS 92 result is from an analysis of of baryon masses.

COLANGELO EICKER GAO	97 97 97	PL B408 340 PL B407 290 PR D56 4115	P. Colangelo <i>et al.</i> N. Eicker <i>et al.</i> DN. Gao, B.A. Li, ML. Yan
GOUGH	97	PRL 79 1622	B. Gough et al.
GUPTA LELLOUCH	97 97	PR D55 7203 PL B414 195	R. Gupta, T. Bhattacharya L. Lellouch, E. de Rafael, J. Taron
ANISOVICH	97 96		· · · · · · · · · · · · · · · · · · ·
		PL B375 335	A.V. Anisovich, H. Leutwyler
LEUTWYLER	96	PL B378 313	H. Leutwyler
BIJNENS	95	PL B348 226	J. Bijnens, J. Prades, E. de Rafael (NORD, BOHR+)
JAMIN	95	ZPHY C66 633	M. Jamin, M. Munz (HEIDT, MUNT)
NARISON	95C	PL B358 113	S. Narison (MONP)
CHOI	92	PL B292 159	K.W. Choi (UCSD)
DONOGHUE	92	PRL 69 3444	J.F. Donoghue, B.R. Holstein, D. Wyler (MASA+)
DONOGHUE	92B	PR D45 892	J.F. Donoghue, D. Wyler (MASA, ZURI, UCSBT)
NEFKENS	92	CNPP 20 221	B.M.K. Nefkens, G.A. Miller, I. Slaus (UCLA+)
GERARD	90	MPL A5 391	J.M. Gerard (MPIM)
LEUTWYLER	90B	NP B337 108	H. Leutwyler (BERN)
MALTMAN	90	PL B234 158	K. Maltman, T. Goldman, Stephenson Jr. (YORKC+)