QUARKS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass-independent subtraction scheme such as $\overline{\text{MS}}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are estimated from charmonium, bottomonium, D, and B masses. They are the "running" masses in the $\overline{\text{MS}}$ scheme. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass m=1.5 to 4.5 MeV $^{[a]}$ Charge $=\frac{2}{3}$ e $I_z=+\frac{1}{2}$ $m_u/m_d=0.2$ to 0.7

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass m=5 to 8.5 MeV $^{[a]}$ Charge $=-\frac{1}{3}~e~~I_z=-\frac{1}{2}~m_s/m_d=17$ to 22 $\overline{m}=(m_u+m_d)/2=2.5$ to 5.5 MeV

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m=80 to 155 MeV ^[a] Charge $=-\frac{1}{3}$ e Strangeness =-1 $(m_s-(m_u+m_d)/2)/(m_d-m_u)=30$ to 50

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass m = 1.0 to 1.4 GeV Charge $= \frac{2}{3} e$ Charm = +1

$$I(J^P) = 0(\frac{1}{2}^+)$$

Created: 6/18/2002 15:22

Mass m=4.0 to 4.5 GeV Charge $=-\frac{1}{3}$ e Bottom =-1

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \qquad \mathsf{Top} = +1$$

Mass $m=174.3\pm5.1~{\rm GeV}$ (direct observation of top events) Mass $m==178.1^{+10.4}_{-8.3}~{\rm GeV}$ (Standard Model electroweak fit)

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Wq(q = b, s, d)			_
W b			_
ℓu_ℓ anything	[b,c] (9.4±2.4) %		_
$ au u_{ au}$ b			_
$\gamma q(q=u,c)$	[d] < 3.2 %	95%	_
$\Delta T = 1$ weak neutral current ($T1$) modes			
Zq(q=u,c) T1	[e] < 13.7 %	95%	-

b' (4th Generation) Quark, Searches for

Mass m>199 GeV, CL = 95% ($p\overline{p}$, neutral-current decays) Mass m>128 GeV, CL = 95% ($p\overline{p}$, charged-current decays) Mass m>46.0 GeV, CL = 95% (e^+e^- , all decays)

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of u and d masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.
- [b] ℓ means e or μ decay mode, not the sum over them.
- [c] Assumes lepton universality and W-decay acceptance.
- [d] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [e] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 6/18/2002 15:22