Number of Neutrino Types and Sum of Neutrino Masses

The neutrinos referred to in this section are those of the Standard $SU(2)\times U(1)$ Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m < m_Z/2$. The limits are on the number of neutrino mass eigenstates, including ν_1 , ν_2 , and ν_3 .

THE NUMBER OF LIGHT NEUTRINO TYPES FROM COLLIDER EXPERIMENTS

Revised August 2001 by D. Karlen (Carleton University).

The most precise measurements of the number of light neutrino types, N_{ν} , come from studies of Z production in $e^{+}e^{-}$ collisions. The invisible partial width, $\Gamma_{\rm inv}$, is determined by subtracting the measured visible partial widths, corresponding to Z decays into quarks and charged leptons, from the total Z width. The invisible width is assumed to be due to N_{ν} light neutrino species each contributing the neutrino partial width Γ_{ν} as given by the Standard Model. In order to reduce the model dependence, the Standard Model value for the ratio of the neutrino to charged leptonic partial widths, $(\Gamma_{\nu}/\Gamma_{\ell})_{\rm SM} = 1.991 \pm 0.001$, is used instead of $(\Gamma_{\nu})_{\rm SM}$ to determine the number of light neutrino types:

$$N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\rm SM} . \tag{1}$$

Created: 6/13/2002 16:06

The combined result from the four LEP experiments is $N_{\nu} = 2.984 \pm 0.008$ [1].

In the past, when only small samples of Z decays had been recorded by the LEP experiments and by the Mark II at SLC, the uncertainty in N_{ν} was reduced by using Standard Model fits to the measured hadronic cross sections at several centerof-mass energies near the Z resonance. Since this method is much more dependent on the Standard Model, the approach described above is favored.

Before the advent of the SLC and LEP, limits on the number of neutrino generations were placed by experiments at lower-energy e^+e^- colliders by measuring the cross section of the process $e^+e^- \to \nu \overline{\nu} \gamma$. The ASP, CELLO, MAC, MARK J, and VENUS experiments observed a total of 3.9 events above background [2], leading to a 95% CL limit of N_{ν} < 4.8. This process has a much larger cross section at center-of-mass energies near the Z mass and has been measured at LEP by the ALEPH, DELPHI, L3, and OPAL experiments [3]. These experiments have observed several thousand such events, and the combined result is $N_{\nu} = 3.00 \pm 0.08$. The same process has also been measured by the LEP experiments at much higher center-of-mass energies, between 130 and 208 GeV, in searches for new physics [4]. Combined, the measured cross section is 0.982 ± 0.012 (stat) of that expected for three light neutrino generations [5].

Experiments at $p\overline{p}$ colliders also placed limits on N_{ν} by determining the total Z width from the observed ratio of $W^{\pm} \to \ell^{\pm} \nu$ to $Z \to \ell^{+} \ell^{-}$ events [6]. This involved a calculation that assumed Standard Model values for the total W width and the ratio of W and Z leptonic partial widths, and used an estimate of the ratio of Z to W production cross sections. Now that the Z width is very precisely known from the LEP experiments, the approach is now one of those used to determine the W width.

References

1. The LEP Collaborations and the LEP Electroweak Working Group, as reported by J. Dress at the XX International

- Symposium on Lepton and Photon Interactions at High Energy, Rome, Italy (July 2001).
- VENUS: K. Abe et al., Phys. Lett. B232, 431 (1989);
 ASP: C. Hearty et al., Phys. Rev. D39, 3207 (1989);
 CELLO: H.J. Behrend et al., Phys. Lett. B215, 186 (1988);
 MAC: W.T. Ford et al., Phys. Rev. D33, 3472 (1986);
 MARK J: H. Wu, Ph.D. Thesis, Univ. Hamburg (1986).
- L3: M. Acciarri et al., Phys. Lett. B431, 199 (1998);
 DELPHI: P. Abreu et al., Z. Phys. C74, 577 (1997);
 OPAL: R. Akers et al., Z. Phys. C65, 47 (1995);
 ALEPH: D. Buskulic et al., Phys. Lett. B313, 520 (1993).
- OPAL: G. Abbiendi et al., Eur. Phys. J. C18, 253 (2000);
 DELPHI: P. Abreu et al., Eur. Phys. J. C17, 53 (2000);
 L3: M. Acciarri et al., Phys. Lett. B470, 268 (1999);
 ALEPH: R. Barate et al., Phys. Lett. B429, 201 (1998).
- 5. The LEP Collaborations and the LEP SUSY Working Group, LEPSUSYWG/01-05.1.
- UA1: C. Albajar et al., Phys. Lett. B198, 271 (1987);
 UA2: R. Ansari et al., Phys. Lett. B186, 440 (1987).

Number from e⁺e⁻ Colliders

Number of Light ν Types

Our evaluation uses the invisible and leptonic widths of the Z boson from our combined fit shown in the Particle Listings for the Z Boson, and the Standard Model value $\Gamma_{\nu}/\Gamma_{\ell}=1.9908\pm0.0015$.

 VALUE
 DOCUMENT ID
 TECN

 2.994±0.012 OUR EVALUATION
 Combined fit to all LEP data.

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 3.00 ±0.05
 1 LEP
 92 RVUE

Number of Light ν Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^- \to \nu \overline{\nu} \gamma$. All are obtained from LEP runs in the $E^{ee}_{\rm CM}$ range 88–189 GeV.

VALUE	DOCUMENT ID		TECN	COMMENT
2.92 ± 0.07 OUR AVERAGE				
$2.69 \pm 0.13 \pm 0.11$	ABBIENDI,G	00 D	OPAL	1998 LEP run
$2.84 \pm 0.15 \pm 0.14$	ABREU	00Z	DLPH	1997-1998 LEP runs
3.01 ± 0.08	ACCIARRI	99R	L3	1991-1998 LEP runs
$2.89 \pm 0.32 \pm 0.19$	ABREU	97J	DLPH	1993-1994 LEP runs
$2.68 \pm 0.20 \pm 0.20$	BUSKULIC	93L	ALEP	1990-1991 LEP runs
• • • We do not use the following of	data for averages	, fits,	limits,	etc. • • •
$3.1 \pm 0.6 \pm 0.1$	ADAM	96 C	DLPH	$\sqrt{s}=$ 130, 136 GeV

¹ Simultaneous fits to all measured cross section data from all four LEP experiments.

Limits from Astrophysics and Cosmology

Number of Light ν Types

("light" means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this *Review*.

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use	e the following data	for averages	s, fits, limits, etc. • • •
< 3.6	² CYBURT	01 COSM	
<17	³ HANNESTAD	01c COSM	
< 9	⁴ KNELLER	01 COSM	
$2 < N_{\nu} < 4$	LISI	99	BBN
< 4.3	OLIVE	99	BBN
< 4.9	COPI	97	Cosmology
< 3.6	HATA	97 B	High D/H quasar abs.
< 4.0	OLIVE	97	BBN; high ⁴ He and ⁷ Li
< 4.7	CARDALL	96 B	Cosmology, High D/H quasar abs.
< 3.9	FIELDS	96	Cosmology, BBN; high ⁴ He and ⁷ Li
< 4.5	KERNAN	96	Cosmology, High D/H quasar abs.
< 3.6	OLIVE	95	BBN; \geq 3 massless $ u$
< 3.3	WALKER	91	Cosmology
< 3.4	OLIVE	90	Cosmology
< 4	YANG	84	Cosmology
< 4	YANG	79	Cosmology
< 7	STEIGMAN	77	Cosmology
	PEEBLES	71	Cosmology
<16	⁵ SHVARTSMAI	V69	Cosmology
	HOYLE	64	Cosmology

² Limit on the number of neutrino types based on ⁴He abundance assuming a baryon density fixed by the recent CMB data. Limit relaxes to 5.9 if D/H is used instead of ⁴He. More than two light (m<1 MeV) neutrino types have been assumed.

Number Coupling with Less Than Full Weak Strength

VALUE	DOCUMENT ID		<u>TECN</u>
• • • We do not use the following	data for averages,	fits,	limits, etc. • • •
\			COSM
<20	⁶ STEIGMAN	79	COSM
⁶ Limit varies with strength of co	upling. See also W	/ALł	KER 91.

³ Limit on the number of neutrino types based solely on microwave background anisotropy

⁴ Limit on the number of neutrino types based on combination of microwave background anisotropy data and degenerate big bang nucleosynthesis.

⁵ SHVARTSMAN 69 limit inferred from his equations.

Revised April 1998 by K.A. Olive (University of Minnesota).

The limits on low mass $(m_{\nu} \lesssim 1 \text{ MeV})$ neutrinos apply to m_{tot} given by

$$m_{\rm tot} = \sum_{\nu} (g_{\nu}/2) m_{\nu} ,$$

where g_{ν} is the number of spin degrees of freedom for ν plus $\overline{\nu}$: $g_{\nu} = 4$ for neutrinos with Dirac masses; $g_{\nu} = 2$ for Majorana neutrinos. Stable neutrinos in this mass range make a contribution to the total energy density of the Universe which is given by

$$\rho_{\nu} = m_{\text{tot}} n_{\nu} = m_{\text{tot}} (3/11) n_{\gamma}$$

where the factor 3/11 is the ratio of (light) neutrinos to photons. Writing $\Omega_{\nu} = \rho_{\nu}/\rho_c$, where ρ_c is the critical energy density of the Universe, and using $n_{\gamma} = 412 \text{ cm}^{-3}$, we have

$$\Omega_{\nu}h^2 = m_{\rm tot}/(94 \text{ eV}) .$$

Therefore, a limit on $\Omega_{\nu}h^2$ such as $\Omega_{\nu}h^2 < 0.25$ gives the limit

$$m_{\rm tot} < 24 \text{ eV}$$
.

The limits on high mass $(m_{\nu} > 1 \text{ MeV})$ neutrinos apply separately to each neutrino type.

Limit on Total ν MASS, $m_{\rm tot}$

(Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to $m_{\rm tot}$. For other limits, see SZALAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

VALUE (eV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for average	s, fits	, limits,	etc. • • •
< 2.7	⁷ FUKUGITA	00	COSM	
< 5.5	⁸ CROFT	99	ASTR	Ly α power spec
<180	SZALAY	74	COSM	
<132	COWSIK	72	COSM	
<280	MARX	72	COSM	
<400	GERSHTEIN	66	COSM	

HTTP://PDG.LBL.GOV

Page 5

Limits on MASSES of Light Stable Right-Handed ν (with necessarily suppressed interaction strengths)

VALUE (eV)	DOCUMENT IL)	TECN	COMMENT
• • • We do not use the fo	lowing data for averag	ges, fits	, limits,	etc. • • •
<100-200	⁹ OLIVE	82	COSM	Dirac $ u$
<200-2000	⁹ OLIVE	82	COSM	Majorana $ u$
⁹ Depending on interactio	n strength G_R where	$G_R < 0$	$G_{\mathbf{F}}$.	

Limits on MASSES of Heavy Stable Right-Handed ν (with necessarily suppressed interaction strengths)

VALUE (GeV)	DOCUMENT I	'D	TECN	COMMENT	
• • • We do not use the follow	ing data for avera	ges, fits,	limits,	etc. • • •	
> 10	¹⁰ OLIVE	82	COSM	G_R/G_F <0.1	
>100	¹⁰ OLIVE	82	COSM	G_R/G_F < 0.01	

 $^{^{10}}$ These results apply to heavy Majorana neutrinos and are summarized by the equation: $m_{\nu} > 1.2$ GeV (G_F/G_R) . The bound saturates, and if G_R is too small no mass range is allowed.

REFERENCES FOR Limits on Number of Neutrino Types and Sum of Neutrino Masses

CYBURT	01	ASP 17 87	R.H. Cyburt, B.D. Fields, K.A. Olive	
HANNESTAD	01C	PR D64 083002	S. Hannestad <i>et al.</i>	
KNELLER	01	PR D64 123506	J.P. Kneller et al.	
ABBIENDI,G	00D	EPJ C18 253	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	00Z	EPJ C17 53	P. Abreu <i>et al.</i>	(DELPHI Collab.)
FUKUGITA	00	PRL 84 1082	M. Fukugita, G.C. Liu, N. Sugiyama	,
ACCIARRI	99R	PL B470 268	M. Acciarri <i>et al.</i>	(L3 Collab.)
CROFT	99	PRL 83 1092	R.A.C. Croft, W. Hu, R. Dave	,
LISI	99	PR D59 123520	E. Lisi, S. Sarkar, F.L. Villante	
OLIVE	99	ASP 11 403	K.A. Olive, D. Thomas	
ABREU	97 J	ZPHY C74 577	P. Abreu <i>et al.</i>	(DELPHI Collab.)
COPI	97	PR D55 3389	C.J. Copi, D.N. Schramm, M.S. Turner	(CHIC)
HATA	97B	PR D55 540	N. Hata et al.	(OSU, PENN)
OLIVE	97	ASP 7 27	K.A. Olive, D. Thomas	(MINN, FLOR)
ADAM	96C	PL B380 471	W. Adam <i>et al.</i>	(DELPHI Collab.)
CARDALL	96B	APJ 472 435	C.Y. Cardall, G.M. Fuller	(UCSD)
FIELDS	96	New Ast 1 77	B.D. Fields <i>et al.</i> (NDAN	1, CERN, MINN+)
KERNAN	96	PR D54 3681	P.S. Kernan, S. Sarkar	(CASE, OXFTP)
OLIVE	95	PL B354 357	K.A. Olive, G. Steigman	(MINN, OSU)
BUSKULIC	93L	PL B313 520	D. Buskulic et al.	(ALEPH Collab.)
LEP	92	PL B276 247	LEP Collabs. (LEP, ALEPH, D	ELPHI, L3, OPAL)
WALKER	91	APJ 376 51	T.P. Walker <i>et al.</i> (HS	CA, OSU , $CHIC+$)
DENEGRI	90	RMP 62 1	D. Denegri, B. Sadoulet, M. Spiro	(CERN, UCB+)
OLIVE	90	PL B236 454	K.A. Olive <i>et al.</i> (MI	NN, CHIC, $OSU+)$
COWSIK	85	PL 151B 62	R. Cowsik	(TATA)
FREESE	84	NP B233 167	K. Freese, D.N. Schramm	(CHIC, FNAL)
SCHRAMM	84	PL 141B 337	D.N. Schramm, G. Steigman	(FNAL, BART)
YANG	84	APJ 281 493	J. Yang <i>et al.</i>	(CHIC, BART)
OLIVE	82	PR D25 213	K.A. Olive, M.S. Turner	(CHIC, UCSB)

⁷ FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is based on the clustering scale σ_8 and the COBE normalization and leads to a conservative limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum of the light neutrino masses.

⁸ CROFT 99 result based on the power spectrum of the Ly α forest. If $\Omega_{\rm matter} <$ 0.5, the limit is improved to $m_{\nu} <$ 2.4 $(\Omega_{\rm matter}/0.17-1)$ eV.

BERNSTEIN OLIVE	81 81	APJ 246 557	J. Bernstein, G. Feinberg K.A. Olive <i>et al.</i>	(STEV, COLU) (CHIC, BART)
OLIVE			K.A. Olive, D.N. Schramm, G. Steigman	
STEIGMAN	79	PRL 43 239	G. Steigman, K.A. Olive, D.N. Schramm	,
YANG	79	APJ 227 697	J. Yang <i>et al.</i> (CHI	
STEIGMAN	77	PL 66B 202	G. Steigman, D.N. Schramm, J.E. Gunn	(YALE, CHIC+)
VYSOTSKY	77	JETPL 26 188	M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovic	cĥ (ITEP)
		Translated from ZETFP	26 200.	,
SZALAY	76	AA 49 437	A.S. Szalay, G. Marx	(EOTV)
SZALAY	74	APAH 35 8	A.S. Szalay, G. Marx	(EOTV)
COWSIK	72	PRL 29 669	R. Cowsik, J. McClelland	(UCB)
MARX	72	Nu Conf. Budapest	G. Marx, A.S. Szalay	(EOTV)
PEEBLES	71	Physical Cosmology	P.Z. Peebles	(PRIN)
Princeton	Univ.	Press (1971)		
SHVARTSMAN	l 69	JETPL 9 184	V.F. Shvartsman	(MOSU)
		Translated from ZETFP	9 315.	` ,
GERSHTEIN	66	JETPL 4 120	S.S. Gershtein, Y.B. Zeldovich	(KIAM)
		Translated from ZETFP		. ,
HOYLE	64	NAT 203 1108	F. Hoyle, R.J. Tayler	(CAMB)