Magnetic Monopole Searches

MAGNETIC MONOPOLE SEARCHES

Revised December 1997 by D.E. Groom (LBNL).

"At the present time (1975) there is no experimental evidence for the existence of magnetic charges or monopoles, but chiefly because of an early, brilliant theoretical argument by Dirac, the search for monopoles is renewed whenever a new energy region is opened up in high energy physics or a new source of matter, such as rocks from the moon, becomes available [1]." Dirac argued that a monopole anywhere in the universe results in electric charge quantization everywhere, and leads to the prediction of a least magnetic charge $g = e/2\alpha$, the Dirac charge [2]. Recently monopoles have become indispensable in many gauge theories, which endow them with a variety of extraordinarily large masses. The discovery by a candidate event in a single superconducting loop in 1982 [6] stimulated an enormous experimental effort to search for supermassive magnetic monopoles [3,4,5].

Monopole detectors have predominantly used either induction or ionization. Induction experiments measure the monopole magnetic charge and are independent of monopole electric charge, mass, and velocity. Monopole candidate events in single semiconductor loops [6,7] have been detected by this method, but no two-loop coincidence has been observed. Ionization experiments rely on a magnetic charge producing more ionization than an electrical charge with the same velocity. In the case of supermassive monopoles, time-of-flight measurements indicating $v \ll c$ has also been a frequently sought signature.

Cosmic rays are the most likely source of massive monopoles, since accelerator energies are insufficient to produce

HTTP://PDG.LBL.GOV

them. Evidence for such monopoles may also be obtained from astrophysical observations.

Jackson's 1975 assessment remains true. The search is somewhat abated by the lack of success in the 1980's and the decrease of interest in grand unified gauge theories.

References

- J. D. Jackson, *Classical Electrodynamics*, 2nd edition (John Wiley & Sons, New York, 1975).
- 2. P.A.M. Dirac, Proc. Royal Soc. London A133, 60 (1931).
- 3. J. Preskill, Ann. Rev. Nucl. and Part. Sci. **34**, 461 (1984).
- 4. G. Giacomelli, La Rivista del Nuovo Cimento 7, N. 12, 1 (1984).
- 5. Phys. Rep. **140**, 323 (1986).
- 6. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).
- 7. A.D. Caplin *et al.*, Nature **321**, 402 (1986).

Monopole Production Cross Section — Accelerator Searches

X-SECT	MASS	CHG	ENERGY					
(cm ²)	(GeV)	(g)	(GeV)	BEAM	EVTS	DOCUMENT ID		TECN
< 0.7E - 36	>295	1	1800	p p	0	^{1,2} KALBFLEISCH	I 00	CNTR
< 7.8E - 36	>260	2	1800	р р	0	^{1,2} KALBFLEISCH	I 00	CNTR
< 2.3E - 36	>325	3	1800	р <mark>р</mark>	0	^{1,3} KALBFLEISCH	00	CNTR
< 0.11E - 36	>420	6	1800	р <mark>р</mark>	0	^{1,3} KALBFLEISCH	00	CNTR
<0.65E-33	<3.3	≥ 2	11A	¹⁹⁷ Au	0	⁴ HE	97	
< 1.90E - 33	<8.1	≥ 2	160 <i>A</i>	²⁰⁸ Pb	0	⁴ HE	97	
<3.E-37	<45.0	1.0	88–94	e^+e^-	0	PINFOLD	93	PLAS
<3.E-37	<41.6	2.0	88–94	e^+e^-	0	PINFOLD	93	PLAS
<7.E-35	<44.9	0.2-1.0	89–93	e^+e^-	0	KINOSHITA	92	PLAS
<2.E-34	<850	≥ 0.5	1800	p p	0	BERTANI	90	PLAS
< 1.2E - 33	<800	\geq 1	1800	р <mark>р</mark>	0	PRICE	90	PLAS
< 1.E - 37	<29	1	50–61	e^+e^-	0	KINOSHITA	89	PLAS
< 1.E - 37	<18	2	50–61	e^+e^-	0	KINOSHITA	89	PLAS
< 1.E - 38	<17	<1	35	e^+e^-	0	BRAUNSCH	88 B	CNTR
<8.E-37	<24	1	50–52	e^+e^-	0	KINOSHITA	88	PLAS
< 1.3E - 35	<22	2	50–52	e^+e^-	0	KINOSHITA	88	PLAS
<9.E-37	<4	< 0.15	10.6	e^+e^-	0	GENTILE	87	CLEO
<3.E-32	<800	\geq 1	1800	р <u>р</u>	0	PRICE	87	PLAS
<3.E-38		<3	29	e^+e^-	0	FRYBERGER	84	PLAS
< 1.E - 31		1,3	540	р р	0	AUBERT	83 B	PLAS

HTTP://PDG.LBL.GOV

<4.E-38	<10	<6	34	e^+e^-	0	MUSSET	83	PLAS
<8.E-36	<20		52	рр	0	⁵ DELL	82	CNTR
<9.E-37	<30	<3	29	e^+e^-	0	KINOSHITA	82	PLAS
<1.E-37	<20	<24	63	рр	0	CARRIGAN	78	CNTR
< 1.E - 37	<30	<3	56	рр	0	HOFFMANN	78	PLAS
			62	рр	0	⁵ DELL	76	SPRK
<4.E-33			300	р	0	⁵ STEVENS	76 B	SPRK
< 1.E - 40	<5	<2	70	р	0	⁶ ZRELOV	76	CNTR
<2.E-30			300	n	0	⁵ BURKE	75	OSPK
< 1.E - 38			8	ν	0	⁷ CARRIGAN	75	HLBC
<5.E-43	<12	<10	400	р	0	EBERHARD	75 B	INDU
<2.E-36	<30	<3	60	рр	0	GIACOMELLI	75	PLAS
<5.E-42	<13	<24	400	р	0	CARRIGAN	74	CNTR
<6.E-42	<12	<24	300	р	0	CARRIGAN	73	CNTR
<2.E-36		1	0.001	γ	0	⁶ BARTLETT	72	CNTR
< 1.E - 41	<5		70	р	0	GUREVICH	72	EMUL
< 1.E - 40	<3	<2	28	р	0	AMALDI	63	EMUL
< 2.E - 40	<3	<2	30	р	0	PURCELL	63	CNTR
< 1.E - 35	<3	<4	28	р	0	FIDECARO	61	CNTR
<2.E-35	$<\!\!1$	1	6	р	0	BRADNER	59	EMUL

 1 KALBFLEISCH 00 used an induction method to search for stopped monopoles in pieces of the DØ (FNAL) beryllium beam pipe and in extensions to the drift chamber aluminum support cylinder. Results are model dependent.

² KALBFLEISCH 00 result is for aluminum. ³ KALBFLEISCH 00 result is for beryllium.

⁴ HE 97 used a lead target and barium phosphate glass detectors. Cross-section limits are well below those predicted via the Drell-Yan mechanism.

⁵ Multiphoton events.

⁶Cherenkov radiation polarization.

⁷ Re-examines CERN neutrino experiments.

Monopole Production — Other Accelerator Searches

(GeV)	CHG (g)	SPIN	ENERGY (GeV)	BEAM	DOCUMENT ID	TECN
> 610	\geq 1	0	1800	р р	⁸ ABBOTT 98к	D0
> 870	\geq 1	1/2	1800	p p	⁸ ABBOTT 98K	D0
>1580	\geq 1	1	1800	p p	⁸ ABBOTT 98ĸ	D0
> 510			88–94	e^+e^-	⁹ ACCIARRI 95C	L3

⁸ABBOTT 98K search for heavy pointlike Dirac monopoles via central production of a pair of photons with high transverse energies.

⁹ACCIARRI 95C finds a limit $B(Z \rightarrow \gamma \gamma \gamma) < 0.8 \times 10^{-5}$ (which is possible via a monopole loop) at 95% CL and sets the mass limit via a cross section model.

	Cosinic	itay ocarcites				
FLUX MASS	CHG	COMMENTS				
<u>(cm⁻²sr⁻¹s⁻¹)(GeV)</u>	(g)	$(\beta = v/c)$	EVTS	DOCUMENT ID		TECN
<1E-15	1	1.1×10^{-4} -0.1	0	¹⁰ AMBROSIO	97	MCRO
<4.1E-15	1	(0.18–2.7)E–3	0	¹¹ AMBROSIO	97	MCRO
<1.0E-15	1	0.0012-0.1	0	¹² AMBROSIO	97	MCRO
<0.87E-15		(0.11–5)E–3	0	¹³ AMBROSIO	97	MCRO
HTTP://PDG.LBL	GOV	Page 3		Created: 6/13/	2002	13:01

Monopole Flux — Cosmic Ray Searches

					14			
<6.8E-15		1	4.0E-5	0	14	AMBROSIO	97	MCRO
< 2.8E - 15		1	0.1-1	0	15	AMBROSIO	97	MCRO
< 4.4E - 15		1	0.1-1	0	16	AMBROSIO	97	MCRO
<5.6E-15		1	(0.18-3.0)E-3	0	17	AHLEN	94	MCRO
<2.7E-15		1	$\beta \sim 1 \times 10^{-3}$	0	18	BECKER-SZ	94	IMB
<8.7E-15		1	>2.E-3	0		THRON	92	SOUD
<4.4E-12		1	all β	0		GARDNER	91	INDU
<7.2E-13		1	all β	0		HUBER	91	INDU
<3.7E-15	>E12	1	$\beta = 1.E - 4$	0	19	ORITO	91	PLAS
<3.2E-16	>F10	1	$\beta > 0.05$	0	19	ORITO	91	PLAS
<3.2E-16	>F10-F12	2.3		0	19	ORITO	91	PLAS
< 3.8E - 13	/	_, 0	all β	0		BERMON	90	
< 5 F - 16		- 1	$\beta < 1 \text{ F} - 3$	0	18	BEZRUKOV	90	CHER
<1.8E - 14		1	$\beta \ge 1.1E = 3$ $\beta \ge 1.1E = 4$	0	20		90	HEPT
<15-18		1	$\beta > 1.12$ + 3 E_1 < $\beta < 1.5E_3$	0	21	CHOSH	00	MICA
<7.2E 13		1	$3.2-4$	0		HIBER	00	
<7.2L-13	< F 7	1		0			90 97	
< 5.L - 12	>L1	T	$3.L-4 < \beta < 3.L-3$	0	18		07 07	
< 1.E - 13		1	$1.E-3$	0			01 07	
< 1.E - 10		T		0			01 07	
< 2.E - 13			$1.E-4 < \beta < 0.E-4$	0			01	
< 2.E - 14			$4.E-5$	0			87 07	PLAS
<2.E-14			$1.E-3$	0			87 07	PLAS
<5.E-14			9.E-4 < β <1.E-2	0		SHEPKU	87	CNTR
<2.E-13		-	$4.E-4 < \beta < 1$	0	22	TSUKAMOTO	87	CNTR
<5.E-14		1	all β	T	22	CAPLIN	86	INDU
<5.E-12		1		0		CROMAR	86	INDU
< 1.E - 13		1	$7.E-4 < \beta$	0		HARA	86	CNTR
<7.E-11		1	all β	0	21	INCANDELA	86	INDU
< 1.E - 18			$4.E-4 < \beta < 1.E-3$	0	21	PRICE	86	MICA
<5.E-12		1		0		BERMON	85	INDU
<6.E-12		1		0		CAPLIN	85	INDU
<6.E-10		1		0	10	EBISU	85	INDU
< 3.E - 15			$5.E-5 \le \beta \le 1.E-3$	0	10 02	KAJITA	85	KAMI
< 2.E - 21			eta <1.E-3	0	18,23	KAJITA	85	KAMI
< 3.E - 15			$1.E-3 < \beta < 1.E-1$	0	18	PARK	85 B	CNTR
< 5.E - 12		1	$1.\mathrm{E}{-4} < eta < 1$	0		BATTISTONI	84	NUSX
<7.E-12		1		0		INCANDELA	84	INDU
< 7.E - 13		1	$3.E-4 < \beta$	0	20	KAJINO	84	CNTR
< 2.E - 12		1	$3.E-4 < \beta < 1.E-1$	0		KAJINO	84 B	CNTR
$<\!6.E\!-13$		1	$5.E-4 < \beta < 1$	0		KAWAGOE	84	CNTR
< 2.E - 14			$1.E-3 < \beta$	0	18	KRISHNA	84	CNTR
< 4.E - 13		1	$6.E-4 < \beta < 2.E-3$	0		LISS	84	CNTR
< 1.E - 16			$3.E-4 < \beta < 1.E-3$	0	21	PRICE	84	MICA
< 1.E - 13		1	$1.E-4 < \beta$	0		PRICE	8 4B	PLAS
< 4.E - 13		1	$6.E-4 < \beta < 2.E-3$	0		TARLE	84	CNTR
				7	24	ANDERSON	83	EMUL
<4.E-13		1	$1.E-2 < \beta < 1.E-3$	0		BARTELT	83 B	CNTR
< 1.E - 12		1	$7.E-3 < \beta < 1$	0		BARWICK	83	PLAS
<3.E-13		1	$1.E-3 < \beta < 4.E-1$	0		BONARELLI	83	CNTR
<3.E-12			$5.E-4 < \beta < 5.E-2$	0	18	BOSETTI	83	CNTR
<4.E-11		1	, · · ·	0		CABRERA	83	INDU

< 5.E - 15		1	$1.E-2 < \beta < 1$	0	DOKE	83	PLAS
<8.E-15			$1.E-4 < \beta < 1.E-1$	0	¹⁸ ERREDE	83	IMB
<5.E-12		1	$1.E-4 < \beta < 3.E-2$	0	GROOM	83	CNTR
< 2.E - 12			$6.E-4 < \beta < 1$	0	MASHIMO	83	CNTR
< 1.E - 13		1	$\beta = 3.E - 3$	0	ALEXEYEV	82	CNTR
< 2.E - 12		1	$7.E-3 < \beta < 6.E-1$	0	BONARELLI	82	CNTR
6.E-10		1	all eta	1	²⁵ CABRERA	82	INDU
$<\!\!2.E\!-\!11$			$1.E-2 < \beta < 1.E-1$	0	MASHIMO	82	CNTR
$<\!\!2.E\!-\!15$			concentrator	0	BARTLETT	81	PLAS
< 1.E - 13	>1		$1.E-3 < \beta$	0	KINOSHITA	81 B	PLAS
< 5.E - 11	<e17< td=""><td></td><td>$3.E-4 < \beta < 1.E-3$</td><td>0</td><td>ULLMAN</td><td>81</td><td>CNTR</td></e17<>		$3.E-4 < \beta < 1.E-3$	0	ULLMAN	81	CNTR
< 2.E - 11			concentrator	0	BARTLETT	78	PLAS
1.E - 1	>200	2		1	²⁶ PRICE	75	PLAS
< 2.E - 13		>2		0	FLEISCHER	71	PLAS
$<\!\!1.E\!-19$		>2	obsidian, mica	0	FLEISCHER	69C	PLAS
< 5.E - 15	<15	<3	concentrator	0	CARITHERS	66	ELEC
$<\!\!2.E\!-\!11$		< 1 - 3	concentrator	0	MALKUS	51	EMUL

¹⁰ AMBROSIO 97 global MACRO 90%CL is 0.78×10^{-15} at $\beta = 1.1 \times 10^{-4}$, goes through a minimum at 0.61×10^{-15} near $\beta = (1.1-2.7) \times 10^{-3}$, then rises to 0.84×10^{-15} at $\beta = 0.1$. The global limit in this region is below the Parker bound at 10^{-15} . Less stringent limits are established for $4 \times 10^{-5} < \beta < 1$. Limits set by various triggers in the detector are listed below. All limits assume a catalysis cross section smaller than 10 mb.

¹¹AMBROSIO 97 "Scintillator D" (low velocity) 90%CL increases from 4.1×10^{-15} at β =2.7 × 10⁻³ to 14.6 × 10⁻¹⁵ at β =0.006.

¹² AMBROSIO 97 "Scintillator B" 90%CL (single medium-velocity trigger with two analysis criteria).

 13 AMBROSIO 97 streamer tube 90%CL. Tubes contain helium, and hence trigger is sensitive via the atomic induction mechanism. 14 AMBROSIO 97 CR39 90%CL improves to 4.3×10^{-15} at $\beta{=}1.0\times10^{-4}$. CR39 is

¹⁴ AMBROSIO 97 CR39 90%CL improves to 4.3×10^{-15} at $\beta = 1.0 \times 10^{-4}$. CR39 is sensitive for $4 \times 10^{-5} < \beta < 1$ except for a window at $0.25 \times 10^{-3} < \beta < 2.1 \times 10^{-3}$. In the middle region other triggers set better limits.

¹⁵ AMBROSIO 97 CR39 90%CL falls to 2.7×10^{-15} at β =1 and increases at lower velocities. Provides better limit than "Scintillator C" for $0.1 < \beta < 1.0$.

¹⁶AMBROSIO 97 "Scintillator C" 90%CL, based on high absolute energy loss in two scintillator layers.

- ¹⁷ AHLEN 94 limit for dyons extends down to β =0.9E-4 and a limit of 1.3E-14 extends to β = 0.8E-4. Also see comment by PRICE 94 and reply of BARISH 94. One loophole in the AHLEN 94 result is that in the case of monopoles catalyzing nucleon decay, relativisitic particles could veto the events. See AMBROSIO 97 for additional results.
- 18 Catalysis of nucleon decay; sensitive to assumed catalysis cross section.

¹⁹ORITO 91 limits are functions of velocity. Lowest limits are given here.

- ²⁰Used DKMPR mechanism and Penning effect.
- ²¹ Assumes monopole attaches fermion nucleus.
- ²² Limit from combining data of CAPLIN 86, BERMON 85, INCANDELA 84, and CABR-ERA 83. For a discussion of controversy about CAPLIN 86 observed event, see GUY 87. Also see SCHOUTEN 87.
- ²³Based on lack of high- energy solar neutrinos from catalysis in the sun.
- ²⁴ Anomalous long-range α (⁴He) tracks.
- 25 CABRERA 82 candidate event has single Dirac charge within $\pm 5\%$.
- ²⁶ ALVAREZ 75, FLEISCHER 75, and FRIEDLANDER 75 explain as fragmenting nucleus. EBERHARD 75 and ROSS 76 discuss conflict with other experiments. HAGSTROM 77 reinterprets as antinucleus. PRICE 78 reassesses.

HTTP://PDG.LBL.GOV

interior porte i i							
FLUX	MASS	CHG	COMMENTS				
$(cm^{-2}sr^{-1}s^{-1})$	(GeV)	(g)	$(\beta = v/c)$	EVTS	DOCUMENT ID		TECN
< 1.3E - 20			faint white dwarf		²⁷ FREESE	99	ASTR
$<\!\!1.E\!-16$	E17	1	galactic field	0	²⁸ ADAMS	93	COSM
< 1.E - 23			Jovian planets		²⁷ ARAFUNE	85	ASTR
$<\!\!1.E\!-16$	E15		solar trapping	0	BRACCI	85 B	ASTR
< 1.E - 18		1		0	²⁷ HARVEY	84	COSM
<3.E-23			neutron stars		KOLB	84	ASTR
<7.E-22			pulsars	0	²⁷ FREESE	83 B	ASTR
< 1.E - 18	<e18< td=""><td>1</td><td>intergalactic field</td><td>0</td><td>²⁷ REPHAELI</td><td>83</td><td>COSM</td></e18<>	1	intergalactic field	0	²⁷ REPHAELI	83	COSM
< 1.E - 23			neutron stars	0	²⁷ DIMOPOUL	82	COSM
<5.E-22			neutron stars	0	²⁷ KOLB	82	COSM
< 5.E - 15	>E21		galactic halo		SALPETER	82	COSM
< 1.E - 12	E19	1	$\beta = 3.E - 3$	0	²⁹ TURNER	82	COSM
< 1.E - 16		1	galactic field	0	PARKER	70	COSM
07							

Monopole Flux — Astrophysics

²⁷ Catalysis of nucleon decay.

 28 ADAMS 93 limit based on "survival and growth of a small galactic seed field" is $10^{-16}~(m/10^{17}~{\rm GeV})~{\rm cm}^{-2}~{\rm s}^{-1}~{\rm sr}^{-1}$. Above $10^{17}~{\rm GeV}$, limit $10^{-16}~(10^{17}~{\rm GeV}/m)~{\rm cm}^{-2}~{\rm s}^{-1}~{\rm sr}^{-1}$ (from requirement that monopole density does not overclose the universe) is more stringent.

²⁹ Re-evaluates PARKER 70 limit for GUT monopoles.

Monopole Density — Matter Searches

MATERIAL	EVTS	DOCUMENT ID		TECN
8 Meteorites and other	0	JEON	95	INDU
i Fe ore	0	³⁰ EBISU	87	INDU
o deep schist	0	KOVALIK	86	INDU
manganese nodules	0	³¹ KOVALIK	86	INDU
seawater	0	KOVALIK	86	INDU
l iron aerosols	>1	MIKHAILOV	83	SPEC
air, seawater	0	CARRIGAN	76	CNTR
11 materials	0	CABRERA	75	INDU
i moon rock	0	ROSS	73	INDU
) seawater	0	KOLM	71	CNTR
) manganese nodules	0	FLEISCHER	69	PLAS
) manganese	0	FLEISCHER	69 B	PLAS
3 magnetite, meteor	0	GOTO	63	EMUL
meteorite	0	PETUKHOV	63	CNTR
	 MATERIAL Meteorites and other Fe ore deep schist manganese nodules seawater iron aerosols air, seawater 11 materials moon rock seawater manganese nodules manganese nodules 	MATERIALEVTSMeteorites and other0Fe ore0deep schist0manganese nodules0seawater0air, seawater0inon aerosols>1air, seawater0moon rock0seawater0manganese nodules0manganese nodules0manganese nodules0manganese nodules0manganese nodules0manganese0manganese0magnetite, meteor0meteorite0	MATERIALEVTSDOCUMENT IDMeteorites and other0JEONMeteorites and other030 EBISUFe ore030 EBISUdeep schist0KOVALIKmanganese nodules031 KOVALIKseawater0KOVALIKiron aerosols>1MIKHAILOVair, seawater0CARRIGAN411 materials0CABRERA5moon rock0ROSS0seawater0KOLM0manganese nodules0FLEISCHER0manganese0FLEISCHER0manganese0FLEISCHER0manganetite, meteor0GOTOmeteorite0PETUKHOV	MATERIALEVTSDOCUMENT IDMeteorites and other0JEON95Fe ore030EBISU87deep schist0KOVALIK86manganese nodules031KOVALIKseawater0KOVALIK86air, seawater0CARRIGAN76411 materials0CABRERA755moon rock0ROSS730seawater0KOLM710manganese nodules0FLEISCHER693manganese0FLEISCHER694manganese0FLEISCHER693magnetite, meteor0GOTO63meteorite0PETUKHOV63

 $^{30}_{\sim}$ Mass $1\times10^{14}\text{--}1\times10^{17}$ GeV.

³¹ KOVALIK 86 examined 498 kg of schist from two sites which exhibited clear minearalogic evidence of haivng been buried at least 20 km deep and held below the Curie temperature.

DENSITY	CHG (g)	MATERIAL	EVTS	DOCUMENT ID		TECN
< 1.E - 9/gram	1	sun, catalysis	0	³² ARAFUNE	83	COSM
<6.E-33/nucl	1	moon wake	0	SCHATTEN	83	ELEC
< 2.E - 28/nucl		earth heat	0	CARRIGAN	80	COSM

Monopole Density — Astrophysics

HTTP://PDG.LBL.GOV

Created: 6/13/2002 13:01

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

<2.E-4/prot	42cm absorption	0	BRODERICK	79	COSM
$< 2.E - 13/m^3$	moon wake	0	SCHATTEN	70	ELEC
20					

³² Catalysis of nucleon decay.

REFERENCES FOR Magnetic Monopole Searches

KALBFLEISCH	00	PRL 85 5292	G.R. Kalbfleisch <i>et al.</i> K. Errora, E. Krattava
ABBOTT	08K	PRI 81 524	B Abbott et al (D0 Collab.)
	07	PL B406 240	M Ambrosio et al. (MACRO Collab.)
HE	97	PRI 79 3134	YD He (IICB)
ACCIARRI	95C	PI B345 609	M Acciarri <i>et al</i> (L3 Collab.)
JEON	95	PRL 75 1443	H. Jeon. M.J. Longo (MICH)
Also	96	PRL 76 159 (errata)	H. Jeon, M.J. Longo
AHLEN	94	PRL 72 608	S.P. Ahlen <i>et al.</i> (MACRO Collab.)
BARISH	94	PRL 73 1306	B.C. Barish, G. Giacomelli, J.T. Hong (CIT+)
BECKER-SZ	94	PR D49 2169	R.A. Becker-Szendy et al. (IMB Collab.)
PRICE	94	PRL 73 1305	P.B. Price (UCB)
ADAMS	93	PRL 70 2511	F.C. Adams <i>et al.</i> (MICH, FNAL)
PINFOLD	93	PL B316 407	J.L. Pinfold <i>et al.</i> (ALBE, HARV, MONT+)
KINOSHITA	92	PR D46 R881	K. Kinoshita <i>et al.</i> (HARV, BGNA, REHO)
THRON	92	PR D46 4846	J.L. Thron <i>et al.</i> (SOUDAN-2 Collab.)
GARDNER	91	PR D44 622	R.D. Gardner <i>et al.</i> (STAN)
HUBER	91	PR D44 636	M.E. Huber <i>et al.</i> (STAN)
ORITO	91	PRL 66 1951	S. Orito et al. (ICEPP, WASCR, NIHO, ICRR)
BERMUN	90	PRL 04 839	S. Bermon et al. (IBM, BINL)
	90	EFL 12 013 S IND 52 54	I. P. Pozrukov et al. (INDM)
BEZROROV	90	Translated from VAF 52	86 (INTRI)
BUCKLAND	90	PR D41 2726	K.N. Buckland <i>et al.</i> (UCSD)
GHOSH	90	EPL 12 25	D.C. Ghosh, S. Chatterjea (JADA)
HUBER	90	PRL 64 835	M.E. Huber <i>et al.</i> (STAN)
PRICE	90	PRL 65 149	P.B. Price, J. Guiru, K. Kinoshita (UCB, HARV)
KINOSHITA	89	PL B228 543	K. Kinoshita <i>et al.</i> (HARV, TISA, KEK+)
BRAUNSCH	88B	ZPHY C38 543	R. Braunschweig <i>et al.</i> (TASSO Collab.)
KINOSHITA	88	PRL 60 1610	K. Kinoshita <i>et al.</i> (HARV, TISA, KEK+)
BARISH	87	PR D36 2641	B.C. Barish, G. Liu, C. Lane (CIT)
BARTELT	87	PR D36 1990	J.E. Bartelt <i>et al.</i> (Soudan Collab.)
Also	89	PR D40 1701 erratum	J.E. Bartelt <i>et al.</i> (Soudan Collab.)
EBISU	87	PR D36 3359	T. Ebisu, T. Watanabe (KOBE)
Also	85	JPG 11 883	I. Ebisu, I. Watanabe (KOBE)
GENTILE	87	PR D35 1081	I. Gentile <i>et al.</i> (CLEO Collab.)
GUY	87 07	NAT 325 403	J. Guy (LOIC)
	07 87	PR D35 2758 DI B183 305	G.E. Masek et al. (UCSD) S. Nakamura et al. (INUIS WASCE NIHO)
	07 87	PE D103 393	DR Price P Cueviae K Kinechita (IICR HARV)
SCHOUTEN	87	IPE 20 850	1.0. Free, R. Guoxiao, R. Rinosinta (0.00, FRARV)
SHEPKO	87	PR D35 2917	M Shenko <i>et al</i> (TAMII)
TSUKAMOTO	87	FPI 3 39	T Tsukamoto <i>et al</i> (ICRR)
CAPLIN	86	NAT 321 402	A.D. Caplin <i>et al.</i> (LOIC)
Also	87	JPE 20 850	J.C. Schouten <i>et al.</i> (LOIC)
Also	87	NAT 325 463	J. Guy (LOIC)
CROMAR	86	PRL 56 2561	M.W. Cromar, A.F. Clark, F.R. Fickett (NBSB)
HARA	86	PRL 56 553	T. Hara <i>et al.</i> (ICRR, KYOT, KEK, KOBE+)
INCANDELA	86	PR D34 2637	J. Incandela <i>et al.</i> (CHIC, FNAL, MICH)
KOVALIK	86	PR A33 1183	J.M. Kovalik, J.L. Kirschvink (CIT)
PRICE	86	PRL 56 1226	P.B. Price, M.H. Salamon (UCB)
ARAFUNE	85	PR D32 2586	J. Arafune, M. Fukugita, S. Yanagita (ICRR, KYOTU+)
BERMON	85	PRL 55 1850	S. Bermon <i>et al.</i> (IBM)
BRACCI	85B	NP B258 720	L. Bracci, G. Fiorentini, G. Mezzorani (PISA+)
	82 82	LINC 42 123 NAT 217 224	A D Caplin et al. (LOIC)
	00 85	IPC 11 883	T Ebisu T Watanabe (KORE)
KAIITA	85	IPS I 54 4065	T Kajita et al (ICRR KEK NIIC)
PARK	85R	NP B252 261	H.S. Park <i>et al.</i> (IMB Collab.)
BATTISTONI	84	PL 133B 454	G. Battistoni <i>et al.</i> (NUSEX Collab.)
FRYBERGER	84	PR D29 1524	D. Fryberger <i>et al.</i> (SLAC. UCB)
HARVEY	84	NP B236 255	J.A. Harvey (PRIN)

HTTP://PDG.LBL.GOV Page 7 Created: 6/13/2002 13:01

INCANDELA	84	PRL 53 2067	J. Incandela <i>et al.</i> (CHIC, FNAL, MICH)
KAJINO	84	PRL 52 1373	F. Kajino et al. (ICRR)
KAJINO	84B	JPG 10 447	F. Kajino <i>et al.</i> (ICRR)
KAWAGOE	84	LNC 41 315	K. Kawagoe <i>et al.</i> (IOKY)
KOLB	84	APJ 286 702	E.W. Kolb, M.S. Turner (FNAL, CHIC)
	84 04	PL 142B 99	TM Lize S.D. Ablem C. Tarle (IICR IND)
	84 04	PR D30 884	1.W. LISS, S.P. Anien, G. Tarie $(UCB, IND+)$
	04 01D	PRL 52 1205 DI 140P 110	P.B. Price et al. (ROMA, UCB, IND+)
	04D 04	PL 1400 112 DDI 52.00	C Tarle S.D. Ahlen T.M. Liss (UCR MICH)
	83	PR D28 2308	S. N. Anderson <i>et al</i> $(W/\Delta SH)$
ARAFUNE	83	PI 133B 380	I Arafune M Fukugita (ICRR KYOTU)
AUBERT	83B	PL 120B 465	B. Aubert <i>et al.</i> (CERN, LAPP)
BARTELT	83B	PRL 50 655	J.E. Bartelt <i>et al.</i> (MINN, ANL)
BARWICK	83	PR D28 2338	S.W. Barwick, K. Kinoshita, P.B. Price (UCB)
BONARELLI	83	PL 126B 137	R. Bonarelli, P. Capiluppi, I. d'Antone (BGNA)
BOSETTI	83	PL 133B 265	P.C. Bosetti et al. (AACH3, HAWA, TOKY)
CABRERA	83	PRL 51 1933	B. Cabrera <i>et al.</i> (STAN)
DOKE	83	PL 129B 370	T. Doke <i>et al.</i> (WASU, RIKK, TTAM, RIKEN)
ERREDE	83	PRL 51 245	S.M. Errede <i>et al.</i> (IMB Collab.)
FREESE	83B	PRL 51 1625	K. Freese, M.S. Turner, D.N. Schramm (CHIC)
GROOM	83	PRL 50 573	D.E. Groom <i>et al.</i> (UTAH, STAN)
MASHIMO	83	PL 128B 327	I. Mashimo <i>et al.</i> (ICEPP)
MIKHAILOV	83	PL 130B 331	V.F. Mikhailov (KAZA)
MUSSEI	83	PL 128B 333	P. Musset, M. Price, E. Lonrmann (CERN, HAMB)
REPHAELI	83 02	PL 121B 115 DD D07 1525	Y. Rephaell, M.S. Turner (CHIC)
	03 07	FR D27 1525	E.N. Alaksony at al (INDM)
RONARELLI	02 82	PI 112B 100	R Bonarelli et al. (ININI)
CABRERA	82	PRI 48 1378	B Cabrera (STAN)
DELL	82	NP B209 45	G.F. Dell <i>et al.</i> (BNL, ADEL, ROMA)
DIMOPOUL	82	PL 119B 320	S. Dimopoulos, J. Preskill, F. Wilczek (HARV+)
KINOSHITA	82	PRL 48 77	K. Kinoshita, P.B. Price, D. Fryberger (UCB+)
KOLB	82	PRL 49 1373	E.W. Kolb, S.A. Colgate, J.A. Harvey (LASL, PRIN)
MASHIMO	82	JPSJ 51 3067	T. Mashimo, K. Kawagoe, M. Koshiba (INUS)
SALPETER	82	PRL 49 1114	E.E. Salpeter, S.L. Shapiro, I. Wasserman (CORN)
TURNER	82	PR D26 1296	M.S. Turner, E.N. Parker, T.J. Bogdan (CHIC)
BARTLETT	81	PR D24 612	D.F. Bartlett <i>et al.</i> (COLO, GESC)
KINOSHITA	81B	PR D24 1707	K. Kinoshita, P.B. Price (UCB)
ULLMAN	81	PRL 47 289	J.D. Ullman (LEHM, BNL)
CARRIGAN	80	NAT 288 348	R.A. Carrigan (FNAL)
	79 70	PR D19 1040	J.J. Broderick et al. (VPI) DE Partlett D See MC White (COLO PPIN)
	70 78	PR DI0 2255 PR D17 1754	B.A. Carrigan B.P. Strauss G. Giacomolli (ENALL)
HOFFMANN	78	INC 23 357	H Hoffmann et al $(CERN ROMA)$
PRICE	78	PR D18 1382	PB Price et al. (UCB HOUS)
HAGSTROM	77	PRI 38 729	R Hagstrom (IBI)
CARRIGAN	76	PR D13 1823	R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL)
DELL	76	LNC 15 269	G.F. Dell et al. (CERN, BNL, ROMA, ADEL)
ROSS	76	LBL-4665	R.R. Ross (LBL)
STEVENS	76B	PR D14 2207	D.M. Stevens et al. (VPI, BNL)
ZRELOV	76	CZJP B26 1306	V.P. Zrelov <i>et al.</i> (JINR)
ALVAREZ	75	LBL-4260	L.W. Alvarez (LBL)
BURKE	75	PL 60B 113	D.L. Burke <i>et al.</i> (MICH)
CABRERA	75	I hesis	B. Cabrera (STAN)
CARRIGAN	75 71	NP B91 279	R.A. Carrigan, F.A. Nezrick (FNAL)
	71	PR D3 50	R.A. Carrigan, F.A. INEZRICK (FINAL)
	75 75 D	PR DII 3099	P.H. Eberhard (LDL, MPINI)
	750	DDL-4209 PRI 35 1/12	R Eleischer R N E Walker (CESC WIISI)
FRIEDI ANDER	75	PRI 35 1167	MW Friedlander (WUSL)
GIACOMELLI	75	NC 28A 21	G. Giacomelli <i>et al.</i> (BGNA, CERN, SACL+)
PRICE	75	PRL 35 487	P.B. Price <i>et al.</i> (UCB. HOUS)
CARRIGAN	74	PR D10 3867	R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL)
CARRIGAN	73	PR D8 3717	R.A. Carrigan, F.A. Nezrick, B.P. Strauss (FNAL)
ROSS	73	PR D8 698	R.R. Ross <i>et al.</i> (LBL, SLAC)
Also	71	PR D4 3260	P.H. Eberhard <i>et al.</i> (LBL, SLAC)
Also	70	Science 167 701	L.W. Alvarez <i>et al.</i> (LBL, SLAC)
RAKILFL	72	PK D6 1817	D.F. Bartlett, M.D. Lahana (COLO)

HTTP://PDG.LBL.GOV Page 8 Created: 6/13/2002 13:01

GUREVICH	72	PL 38B 549	I.I. Gurevich <i>et al.</i> (KIAE,)	NOVO, SERP)
Also	72B	JETP 34 917	L.M. Barkov, I.I. Gurevich, M.S. Zolotorev	(KIAE+)
		Translated from ZETF 61	l 1721.	
Also	70	PL 31B 394	I.I. Gurevich <i>et al.</i> (KIAE,)	NOVO, SERP)
FLEISCHER	71	PR D4 24	R.L. Fleischer <i>et al.</i>	(GESC)
KOLM	71	PR D4 1285	H.H. Kolm, F. Villa, A. Odian	(MIT, SLAC)
PARKER	70	APJ 160 383	E.N. Parker	(CHIC)
SCHATTEN	70	PR D1 2245	K.H. Schatten	(NASA)
FLEISCHER	69	PR 177 2029	R.L. Fleischer <i>et al.</i>	(GESC, FSU)
FLEISCHER	69B	PR 184 1393	R.L. Fleischer <i>et al.</i> (GESC,	UNCS, GSCO)
FLEISCHER	69C	PR 184 1398	R.L. Fleischer, P.B. Price, R.T. Woods	(GESC)
Also	70C	JAP 41 958	R.L. Fleischer et al.	(GESC)
CARITHERS	66	PR 149 1070	W.C.J. Carithers, R.J. Stefanski, R.K. Adair	
AMALDI	63	NC 28 773	E. Amaldi <i>et al.</i> (ROMA,	UCSD, CERN)
GOTO	63	PR 132 387	E. Goto, H.H. Kolm, K.W. Ford (TOKY,	MIT, BRAN)
PETUKHOV	63	NP 49 87	V.A. Petukhov, M.N. Yakimenko	(LEBD)
PURCELL	63	PR 129 2326	E.M. Purcell et al.	(HARV, BNL)
FIDECARO	61	NC 22 657	M. Fidecaro, G. Finocchiaro, G. Giacomelli	CERN)
BRADNER	59	PR 114 603	H. Bradner, W.M. Isbell	(LBL)
MALKUS	51	PR 83 899	W.V.R. Malkus	(CHIC)
OTHER RELATED PAPERS				
GROOM	86	PRPL 140 323	D.E. Groom	(UTAH)
Review				

HTTP://PDG.LBL.GOV Page 9 Created: 6/13/2002 13:01