Axions (A⁰) and Other Very Light Bosons, Searches for

AXIONS AND OTHER VERY LIGHT BOSONS

Written October 1997 by H. Murayama (University of California, Berkeley) Part I; April 1998 by G. Raffelt (Max-Planck Institute, München) Part II; and April 1998 by C. Hagmann, K. van Bibber (Lawrence Livermore National Laboratory), and L.J. Rosenberg (Massachusetts Institute of Technology) Part III.

This review is divided into three parts:

Part I (Theory) Part II (Astrophysical Constraints) Part III (Experimental Limits)

AXIONS AND OTHER VERY LIGHT BOSONS, PART I (THEORY)

(by H. Murayama)

In this section we list limits for very light neutral (pseudo) scalar bosons that couple weakly to stable matter. They arise if there is a global continuous symmetry in the theory that is spontaneously broken in the vacuum. If the symmetry is exact, it results in a massless Nambu–Goldstone (NG) boson. If there is a small explicit breaking of the symmetry, either already in the Lagrangian or due to quantum mechanical effects such as anomalies, the would-be NG boson acquires a finite mass; then it is called a pseudo-NG boson. Typical examples are axions (A^0) [1], familons [2], and Majorons [3,4], associated, respectively, with spontaneously broken Peccei-Quinn [5], family, and lepton-number symmetries. This Review provides brief descriptions of each of them and their motivations.

HTTP://PDG.LBL.GOV Page 1 Created: 6/14/2002 11:12

One common characteristic for all these particles is that their coupling to the Standard Model particles are suppressed by the energy scale of symmetry breaking, *i.e.* the decay constant f, where the interaction is described by the Lagrangian

$$\mathcal{L} = \frac{1}{f} (\partial_{\mu} \phi) J^{\mu}, \qquad (1)$$

where J^{μ} is the Noether current of the spontaneously broken global symmetry.

An axion gives a natural solution to the strong CP problem: why the effective θ -parameter in the QCD Lagrangian $\mathcal{L}_{\theta} = \theta_{eff} \frac{\alpha_s}{8\pi} F^{\mu\nu a} \tilde{F}^a_{\mu\nu}$ is so small $(\theta_{eff} \leq 10^{-9})$ as required by the current limits on the neutron electric dipole moment, even though $\theta_{eff} \sim O(1)$ is perfectly allowed by the QCD gauge invariance. Here, θ_{eff} is the effective θ parameter after the diagonalization of the quark masses, and $F^{\mu\nu a}$ is the gluon field strength and $\tilde{F}^a_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma a}$. An axion is a pseudo-NG boson of a spontaneously broken Peccei–Quinn symmetry, which is an exact symmetry at the classical level, but is broken quantum mechanically due to the triangle anomaly with the gluons. The definition of the Peccei–Quinn symmetry is model dependent. As a result of the triangle anomaly, the axion acquires an effective coupling to gluons

$$\mathcal{L} = \left(\theta_{\text{eff}} - \frac{\phi_A}{f_A}\right) \frac{\alpha_s}{8\pi} F^{\mu\nu a} \widetilde{F}^a_{\mu\nu} , \qquad (2)$$

where ϕ_A is the axion field. It is often convenient to *define* the axion decay constant f_A with this Lagrangian [6]. The QCD nonperturbative effect induces a potential for ϕ_A whose minimum is at $\phi_A = \theta_{eff} f_A$ cancelling θ_{eff} and solving the strong CP problem. The mass of the axion is inversely proportional to f_A as

$$m_A = 0.62 \times 10^{-3} \text{eV} \times (10^{10} \text{GeV}/f_A)$$
 (3)

HTTP://PDG.LBL.GOV Page 2 Created: 6/14/2002 11:12

The original axion model [1,5] assumes $f_A \sim v$, where $v = (\sqrt{2}G_F)^{-1/2} = 247$ GeV is the scale of the electroweak symmetry breaking, and has two Higgs doublets as minimal ingredients. By requiring tree-level flavor conservation, the axion mass and its couplings are completely fixed in terms of one parameter $(\tan \beta)$: the ratio of the vacuum expectation values of two Higgs fields. This model is excluded after extensive experimental searches for such an axion [7]. Observation of a narrow-peak structure in positron spectra from heavy ion collisions [8] suggested a particle of mass 1.8 MeV that decays into e^+e^- . Variants of the original axion model, which keep $f_A \sim v$, but drop the constraints of tree-level flavor conservation, were proposed [9]. Extensive searches for this particle, $A^0(1.8 \text{ MeV})$, ended up with another negative result [10].

The popular way to save the Peccei-Quinn idea is to introduce a new scale $f_A \gg v$. Then the A^0 coupling becomes weaker, thus one can easily avoid all the existing experimental limits; such models are called invisible axion models [11,12]. Two classes of models are discussed commonly in the literature. One introduces new heavy quarks which carry Peccei–Quinn charge while the usual quarks and leptons do not (KSVZ axion) or "hadronic axion") [11]. The other does not need additional quarks but requires two Higgs doublets, and all quarks and leptons carry Peccei–Quinn charges (DFSZ axion or "GUTaxion") [12]. All models contain at least one electroweak singlet scalar boson which acquires an expectation value and breaks Peccei–Quinn symmetry. The invisible axion with a large decay constant $f_A \sim 10^{12}$ GeV was found to be a good candidate of the cold dark matter component of the Universe [13](see Dark Matter review). The energy density is stored in the lowmomentum modes of the axion field which are highly occupied and thus represent essentially classical field oscillations.

HTTP://PDG.LBL.GOV Page 3

The constraints on the invisible axion from astrophysics are derived from interactions of the axion with either photons, electrons or nucleons. The strengths of the interactions are model dependent (*i.e.*, not a function of f_A only), and hence one needs to specify a model in order to place lower bounds on f_A . Such constraints will be discussed in Part II. Serious experimental searches for an invisible axion are underway; they typically rely on axion-photon coupling, and some of them assume that the axion is the dominant component of our galactic halo density. Part III will discuss experimental techniques and limits.

Familons arise when there is a global family symmetry broken spontaneously. A family symmetry interchanges generations or acts on different generations differently. Such a symmetry may explain the structure of quark and lepton masses and their mixings. A familon could be either a scalar or a pseudoscalar. For instance, an SU(3) family symmetry among three generations is non-anomalous and hence the familons are exactly massless. In this case, familons are scalars. If one has larger family symmetries with separate groups of left-handed and right-handed fields, one also has pseudoscalar familons. Some of them have flavor-off-diagonal couplings such as $\partial_{\mu}\phi_{F}\bar{d}\gamma^{\mu}s/F_{ds}$ or $\partial_{\mu}\phi_{F}\bar{e}\gamma^{\mu}\mu/F_{\mu e}$, and the decay constant F can be different for individual operators. The decay constants have lower bounds constrained by flavor-changing processes. For instance, $B(K^+ \rightarrow \pi^+ \phi_F) < 3 \times 10^{-10}$ [14] gives $F_{ds} > 3.4 \times 10^{11} \text{ GeV} [15]$. The constraints on familons primarily coupled to third generation are quite weak [15].

If there is a global lepton-number symmetry and if it breaks spontaneously, there is a Majoron. The triplet Majoron model [4] has a weak-triplet Higgs boson, and Majoron couples to Z. It is now excluded by the Z invisible-decay width. The

model is viable if there is an additional singlet Higgs boson and if the Majoron is mainly a singlet [16]. In the singlet Majoron model [3], lepton-number symmetry is broken by a weaksinglet scalar field, and there are right-handed neutrinos which acquire Majorana masses. The left-handed neutrino masses are generated by a "seesaw" mechanism [17]. The scale of lepton number breaking can be much higher than the electroweak scale in this case. Astrophysical constraints require the decay constant to be $\geq 10^9$ GeV [18].

There is revived interest in a long-lived neutrino, to improve Big-Bang Nucleosynthesis [19] or large scale structure formation theories [20]. Since a decay of neutrinos into electrons or photons is severely constrained, these scenarios require a familon (Majoron) mode $\nu_1 \rightarrow \nu_2 \phi_F$ (see, *e.g.*, Ref. 15 and references therein).

Other light bosons (scalar, pseudoscalar, or vector) are constrained by "fifth force" experiments. For a compilation of constraints, see Ref. 21.

It has been widely argued that a fundamental theory will not possess global symmetries; gravity, for example, is expected to violate them. Global symmetries such as baryon number arise by accident, typically as a consequence of gauge symmetries. It has been noted [22] that the Peccei-Quinn symmetry, from this perspective, must also arise by accident and must hold to an extraordinary degree of accuracy in order to solve the strong CP problem. Possible resolutions to this problem, however, have been discussed [22,23]. String theory also provides sufficiently good symmetries, especially using a large compactification radius motivated by recent developments in M-theory [24].

References

1. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);

HTTP://PDG.LBL.GOV

Page 5

Created: 6/14/2002 11:12

F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

- 2. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982).
- 3. Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Phys. Lett. **98B**, 265 (1981).
- G.B. Gelmini and M. Roncadelli, Phys. Lett. **99B**, 411 (1981).
- R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977); also Phys. Rev. D16, 1791 (1977).
- 6. Our normalization here is the same as f_a used in G.G. Raffelt, Phys. Reports **198**, 1 (1990). See this *Review* for the relation to other conventions in the literature.
- 7. T.W. Donnelly et al., Phys. Rev. D18, 1607 (1978);
 S. Barshay et al., Phys. Rev. Lett. 46, 1361 (1981);
 A. Barroso and N.C. Mukhopadhyay, Phys. Lett. 106B, 91 (1981);
 R.D. Peccei, in *Proceedings of Neutrino '81*, Honolulu, Hawaii, Vol. 1, p. 149 (1981);
 L.M. Krauss and F. Wilczek, Phys. Lett. B173, 189 (1986).
- J. Schweppe *et al.*, Phys. Rev. Lett. **51**, 2261 (1983);
 T. Cowan *et al.*, Phys. Rev. Lett. **54**, 1761 (1985).
- R.D. Peccei, T.T. Wu, and T. Yanagida, Phys. Lett. B172, 435 (1986).
- W.A. Bardeen, R.D. Peccei, and T. Yanagida, Nucl. Phys. B279, 401 (1987).
- J.E. Kim, Phys. Rev. Lett. 43, 103 (1979);
 M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, Nucl. Phys. B166, 493 (1980).
- A.R. Zhitnitsky, Sov. J. Nucl. Phys. **31**, 260 (1980);
 M. Dine and W. Fischler, Phys. Lett. **120B**, 137 (1983).
- 13. J. Preskill, M. Wise, F. Wilczek, Phys. Lett. **120B**, 127 (1983);
 L. Abbott and P. Sikivie, Phys. Lett. **120B**, 133 (1983);
 M. Dine and W. Fischler, Phys. Lett. **120B**, 137 (1983);
 M.S. Turner, Phys. Rev. **D33**, 889 (1986).
- 14. S. Adler *et al.*, Phys. Rev. Lett. **79**, 2204 (1997).

HTTP://PDG.LBL.GOV	Page 6
--------------------	--------

- J. Feng, T. Moroi, H. Murayama, and E. Schnapka, UCB-PTH-97/47.
- 16. K. Choi and A. Santamaria, Phys. Lett. **B267**, 504 (1991).
- 17. T. Yanagida, in Proceedings of Workshop on the Unified Theory and the Baryon Number in the Universe, Tsukuba, Japan, 1979, edited by A. Sawada and A. Sugamoto (KEK, Tsukuba, 1979), p. 95;

M. Gell-Mann, P. Ramond, and R. Slansky, in *Supergravity*, Proceedings of the Workshop, Stony Brook, New York, 1979, edited by P. Van Nieuwenhuizen and D.Z. Freedman (North-Holland, Amsterdam, 1979), p. 315.

- For a recent analysis of the astrophysical bound on axionelectron coupling, see G. Raffelt and A. Weiss, Phys. Rev. D51, 1495 (1995). A bound on Majoron decay constant can be inferred from the same analysis..
- M. Kawasaki, P. Kernan, H.-S. Kang, R.J. Scherrer, G. Steigman, and T.P. Walker, Nucl. Phys. B419, 105 (1994);
 S. Dodelson, G. Gyuk, and M.S. Turner, Phys. Rev. D49, 5068 (1994);
 J.R. Rehm, G. Raffelt, and A. Weiss, Astron. Astrophys. 327, 443 (1997);
 M. Kawasaki, K. Kohri, and K. Sato, Phys. Lett. B430, 132 (1998).
- 20. M. White, G. Gelmini, and J. Silk, Phys. Rev. D51, 2669 (1995);
 S. Bharadwaj and S.K. Kethi, Astrophys. J. Supp. 114, 37 (1998).
- 21. E.G. Adelberger, B.R. Heckel, C.W. Stubbs, and W.F. Rogers, Ann. Rev. Nucl. and Part. Sci. **41**, 269 (1991).
- M. Kamionkowski and J. March-Russell, Phys. Lett. B282, 137 (1992);
 R. Holman *et al.*, Phys. Lett. B282, 132 (1992).
- R. Kallosh, A. Linde, D. Linde, and L. Susskind, Phys. Rev. **D52**, 912 (1995).
- See, for instance, T. Banks and M. Dine, Nucl. Phys. B479, 173 (1996); Nucl. Phys. B505, 445 (1997).

HTTP://PDG.LBL.GOV Page 7 Created: 6/14/2002 11:12

AXIONS AND OTHER VERY LIGHT BOSONS: PART II (ASTROPHYSICAL CONSTRAINTS)

(by G.G. Raffelt)

Low-mass weakly-interacting particles (neutrinos, gravitons, axions, baryonic or leptonic gauge bosons, *etc.*) are produced in hot plasmas and thus represent an energy-loss channel for stars. The strength of the interaction with photons, electrons, and nucleons can be constrained from the requirement that stellar-evolution time scales are not modified beyond observational limits. For detailed reviews see Refs. [1,2].

The energy-loss rates are steeply increasing functions of temperature T and density ρ . Because the new channel has to compete with the standard neutrino losses which tend to increase even faster, the best limits arise from low-mass stars, notably from horizontal-branch (HB) stars which have a helium-burning core of about 0.5 solar masses at $\langle \rho \rangle \approx 0.6 \times 10^4 \,\mathrm{g \, cm^{-3}}$ and $\langle T \rangle \approx 0.7 \times 10^8 \,\mathrm{K}$. The new energy-loss rate must not exceed about 10 ergs g⁻¹ s⁻¹ to avoid a conflict with the observed number ratio of HB stars in globular clusters. Likewise the ignition of helium in the degenerate cores of the preceding red-giant phase is delayed too much unless the same constraint holds at $\langle \rho \rangle \approx 2 \times 10^5 \,\mathrm{g \, cm^{-3}}$ and $\langle T \rangle \approx 1 \times 10^8 \,\mathrm{K}$. The white-dwarf luminosity function also yields useful bounds.

The new bosons X^0 interact with electrons and nucleons with a dimensionless strength g. For scalars it is a Yukawa coupling, for new gauge bosons (*e.g.*, from a baryonic or leptonic gauge symmetry) a gauge coupling. Axion-like pseudoscalars couple derivatively as $f^{-1}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi \,\partial^{\mu}\phi_{X}$ with f an energy scale. Usually this is equivalent to $(2m/f)\bar{\psi}\gamma_{5}\psi \,\phi_{X}$ with m the mass

HTTP://PDG.LBL.GOV Page 8 Created: 6/14/2002 11:12

of the fermion ψ so that g = 2m/f. For the coupling to electrons, globular-cluster stars yield the constraint

$$g_{Xe} \lesssim \begin{cases} 0.5 \times 10^{-12} & \text{for pseudoscalars } [3] \\ 1.3 \times 10^{-14} & \text{for scalars } [4] \end{cases},$$
(1)

if $m_X \lesssim 10 \text{ keV}$. The Compton process $\gamma + {}^4\text{He} \rightarrow {}^4\text{He} + X^0$ limits the coupling to nucleons to $g_{XN} \lesssim 0.4 \times 10^{-10}$ [4].

Scalar and vector bosons mediate long-range forces which are severely constrained by "fifth-force" experiments [5]. In the massless case the best limits come from tests of the equivalence principle in the solar system, leading to

$$g_{B,L} \lesssim 10^{-23} \tag{2}$$

for a baryonic or leptonic gauge coupling [6].

In analogy to neutral pions, axions A^0 couple to photons as $g_{A\gamma} \mathbf{E} \cdot \mathbf{B} \phi_A$ which allows for the Primakoff conversion $\gamma \leftrightarrow A^0$ in external electromagnetic fields. The most restrictive limit arises from globular-cluster stars [2]

$$g_{A\gamma} \lesssim 0.6 \times 10^{-10} \,\mathrm{GeV}^{-1}$$
 (3)

The often-quoted "red-giant limit" [7] is slightly weaker.

The duration of the SN 1987A neutrino signal of a few seconds proves that the newborn neutron star cooled mostly by neutrinos rather than through an "invisible channel" such as right-handed (sterile) neutrinos or axions [8]. Therefore,

$$3 \times 10^{-10} \lesssim g_{AN} \lesssim 3 \times 10^{-7}$$
 (4)

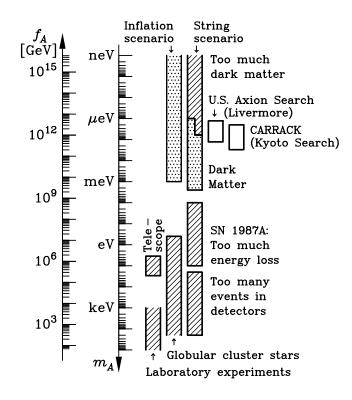
is excluded for the pseudoscalar Yukawa coupling to nucleons [2]. The "strong" coupling side is allowed because axions then escape only by diffusion, quenching their efficiency as an energy-loss channel [9]. Even then the range

$$10^{-6} \lesssim g_{AN} \lesssim 10^{-3}$$
 (5)

HTTP://PDG.LBL.GOV Page 9 Created: 6/14/2002 11:12

is excluded to avoid excess counts in the water Cherenkov detectors which registered the SN 1987A neutrino signal [11].

In terms of the Peccei-Quinn scale f_A , the axion couplings to nucleons and photons are $g_{AN} = C_N m_N / f_A$ (N = n or p)and $g_{A\gamma} = (\alpha/2\pi f_A) (E/N - 1.92)$ where C_N and E/N are model-dependent numerical parameters of order unity. With $m_A = 0.62 \text{ eV} (10^7 \text{ GeV}/f_A)$, Eq. (3) yields $m_A \leq 0.4 \text{ eV}$ for E/N = 8/3 as in GUT models or the DFSZ model. The SN 1987A limit is $m_A \leq 0.008 \text{ eV}$ for KSVZ axions while it varies between about 0.004 and 0.012 eV for DFSZ axions, depending on the angle β which measures the ratio of two Higgs vacuum expectation values [10]. In view of the large uncertainties it is good enough to remember $m_A \leq 0.01 \text{ eV}$ as a generic limit (Fig. 1).


In the early universe, axions come into thermal equilibrium only if $f_A \lesssim 10^8 \,\text{GeV}$ [12]. Some fraction of the relic axions end up in galaxies and galaxy clusters. Their decay $a \to 2\gamma$ contributes to the cosmic extragalactic background light and to line emissions from galactic dark-matter haloes and galaxy clusters. An unsuccessful "telescope search" for such features yields $m_a < 3.5 \,\text{eV}$ [13]. For $m_a \gtrsim 30 \,\text{eV}$, the axion lifetime is shorter than the age of the universe.

For $f_A \gtrsim 10^8 \,\text{GeV}$ cosmic axions are produced nonthermally. If inflation occurred after the Peccei-Quinn symmetry breaking or if $T_{\text{reheat}} < f_A$, the "misalignment mechanism" [14] leads to a contribution to the cosmic critical density of

$$\Omega_A h^2 \approx 1.9 \times 3^{\pm 1} \, (1 \,\mu \text{eV}/m_A)^{1.175} \,\Theta_{\text{i}}^2 F(\Theta_{\text{i}})$$
(6)

where h is the Hubble constant in units of $100 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$. The stated range reflects recognized uncertainties of the cosmic conditions at the QCD phase transition and of the temperaturedependent axion mass. The function $F(\Theta)$ with F(0) = 1 and

HTTP://PDG.LBL.GOV Page 10 Created: 6/14/2002 11:12

Figure 1: Astrophysical and cosmological exclusion regions (hatched) for the axion mass m_A or equivalently, the Peccei-Quinn scale f_A . An "open end" of an exclusion bar means that it represents a rough estimate; its exact location has not been established or it depends on detailed model assumptions. The globular cluster limit depends on the axion-photon coupling; it was assumed that E/N = 8/3 as in GUT models or the DFSZ model. The SN 1987A limits depend on the axion-nucleon couplings; the shown case corresponds to the KSVZ model and approximately to the DFSZ model. The dotted "inclusion regions" indicate where axions could plausibly be the cosmic dark matter. Most of the allowed range in the inflation scenario requires fine-tuned initial conditions. In the string scenario the plausible dark-matter range is controversial as indicated by the step in the low-mass end of the "inclusion bar" (see main text for a discussion). Also shown is the projected sensitivity range of the search experiments for galactic dark-matter axions.

HTTP://PDG.LBL.GOV Page 11 Created: 6/14/2002 11:12

 $F(\pi) = \infty$ accounts for anharmonic corrections to the axion potential. Because the initial misalignment angle $\Theta_{\rm i}$ can be very small or very close to π , there is no real prediction for the mass of dark-matter axions even though one would expect $\Theta_{\rm i}^2 F(\Theta_{\rm i}) \sim 1$ to avoid fine-tuning the initial conditions.

A possible fine-tuning of Θ_i is limited by inflation-induced quantum fluctuations which in turn lead to temperature fluctuations of the cosmic microwave background [15,16]. In a broad class of inflationary models one thus finds an upper limit to m_A where axions could be the dark matter. According to the most recent discussion [16] it is about 10^{-3} eV (Fig. 1).

If inflation did not occur at all or if it occurred before the Peccei-Quinn symmetry breaking with $T_{\text{reheat}} > f_A$, cosmic axion strings form by the Kibble mechanism [17]. Their motion is damped primarily by axion emission rather than gravitational waves. After axions acquire a mass at the QCD phase transition they quickly become nonrelativistic and thus form a cold dark matter component. Battye and Shellard [18] found that the dominant source of axion radiation are string loops rather than long strings. At a cosmic time t the average loop creation size is parametrized as $\langle \ell \rangle = \alpha t$ while the radiation power is $P = \kappa \mu$ with μ the renormalized string tension. The loop contribution to the cosmic axion density is [18]

$$\Omega_A h^2 \approx 88 \times 3^{\pm 1} \left[(1 + \alpha/\kappa)^{3/2} - 1 \right] (1 \,\mu \text{eV}/m_A)^{1.175} , \quad (7)$$

where the stated nominal uncertainty has the same source as in Eq. (6). The values of α and κ are not known, but probably $0.1 < \alpha/\kappa < 1.0$ [18], taking the expression in square brackets to 0.15–1.83. If axions are the dark matter, we have

$$0.05 \lesssim \Omega_A h^2 \lesssim 0.50 , \qquad (8)$$

HTTP://PDG.LBL.GOV Page 12 Created: 6/14/2002 11:12

where it was assumed that the universe is older than 10 Gyr, that the dark-matter density is dominated by axions with $\Omega_A \gtrsim 0.2$, and that $h \gtrsim 0.5$. This implies $m_A = 6-2500 \ \mu \text{eV}$ for the plausible mass range of dark-matter axions (Fig. 1).

Contrary to Ref. 18, Sikivie *et al.* [19] find that the motion of global strings is strongly damped, leading to a flat axion spectrum. In Battye and Shellard's treatment the axion radiation is strongly peaked at wavelengths of order the loop size. In Sikivie *et al.*'s picture more of the string radiation goes into kinetic axion energy which is redshifted so that ultimately there are fewer axions. In this scenario the contributions from string decay and vacuum realignment are of the same order of magnitude; they are both given by Eq. (6) with Θ_i of order one. As a consequence, Sikivie *et al.* allow for a plausible range of dark-matter axions which reaches to smaller masses as indicated in Fig. 1.

The work of both groups implies that the low-mass end of the plausible mass interval in the string scenario overlaps with the projected sensitivity range of the U.S. search experiment for galactic dark-matter axions (Livermore) [20] and of the Kyoto search experiment CARRACK [21] as indicated in Fig. 1. (See also Part III of this Review by Hagmann, van Bibber, and Rosenberg.)

In summary, a variety of robust astrophysical arguments and laboratory experiments (Fig. 1) indicate that $m_A \leq 10^{-2}$ eV. The exact value of this limit may change with a more sophisticated treatment of supernova physics and/or the observation of the neutrino signal from a future galactic supernova, but a dramatic modification is not expected unless someone puts forth a completely new argument. The stellar-evolution limits shown in Fig. 1 depend on the axion couplings to various particles and thus can be irrelevant in fine-tuned models where,

HTTP://PDG.LBL.GOV Page 13 Created: 6/14/2002 11:12

for example, the axion-photon coupling strictly vanishes. For nearly any m_A in the range generically allowed by stellar evolution, axions could be the cosmic dark matter, depending on the cosmological scenario realized in nature. It appears that our only practical chance to discover these "invisible" particles rests with the ongoing or future search experiments for galactic dark-matter.

References

- M.S. Turner, Phys. Reports **197**, 67 (1990);
 G.G. Raffelt, Phys. Reports **198**, 1 (1990).
- 2. G.G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. of Chicago Press, Chicago, 1996).
- D.A. Dicus, E.W. Kolb, V.L. Teplitz, and R.V. Wagoner, Phys. Rev. D18, 1829 (1978);
 G.G. Raffelt and A. Weiss, Phys. Rev. D51, 1495 (1995).
- J.A. Grifols and E. Massó, Phys. Lett. **B173**, 237 (1986);
 J.A. Grifols, E. Massó, and S. Peris, Mod. Phys. Lett. **A4**, 311 (1989).
- 5. E. Fischbach and C. Talmadge, Nature **356**, 207 (1992).
- L.B. Okun, Yad. Fiz. 10, 358 (1969) [Sov. J. Nucl. Phys. 10, 206 (1969)];
 S.I. Blinnikov *et al.*, Nucl. Phys. B458, 52 (1996).
- G.G. Raffelt, Phys. Rev. D33, 897 (1986);
 G.G. Raffelt and D. Dearborn, *ibid.* 36, 2211 (1987).
- J. Ellis and K.A. Olive, Phys. Lett. **B193**, 525 (1987);
 G.G. Raffelt and D. Seckel, Phys. Rev. Lett. **60**, 1793 (1988).
- M.S. Turner, Phys. Rev. Lett. **60**, 1797 (1988);
 A. Burrows, T. Ressel, and M. Turner, Phys. Rev. **D42**, 3297 (1990).
- H.-T. Janka, W. Keil, G. Raffelt, and D. Seckel, Phys. Rev. Lett. **76**, 2621 (1996);
 W. Keil *et al.*, Phys. Rev. **D56**, 2419 (1997).
- J. Engel, D. Seckel, and A.C. Hayes, Phys. Rev. Lett. 65, 960 (1990).

HTTP://PDG.LBL.GOV Page 14 Created: 6/14/2002 11:12

- 12. M.S. Turner, Phys. Rev. Lett. 59, 2489 (1987).
- M.A. Bershady, M.T. Ressell, and M.S. Turner, Phys. Rev. Lett. 66, 1398 (1991);
 M.T. Ressell, Phys. Rev. D44, 3001 (1991);
 J.M. Overduin and P.S. Wesson, Astrophys. J. 414, 449 (1993).
- 14. J. Preskill, M. Wise, and F. Wilczek, Phys. Lett. B120, 127 (1983);
 L. Abbott and P. Sikivie, *ibid.* 133;
 M. Dine and W. Fischler, *ibid.* 137;
 M.S. Turner, Phys. Rev. D33, 889 (1986).
- 15. D.H. Lyth, Phys. Lett. B236, 408 (1990);
 M.S. Turner and F. Wilczek, Phys. Rev. Lett. 66, 5 (1991);
 A. Linde, Phys. Lett. B259, 38 (1991).
- 16. E.P.S. Shellard and R.A. Battye, "Inflationary axion cosmology revisited", in preparation (1998);
 The main results can be found in: E.P.S. Shellard and R.A. Battye, astro-ph/9802216.
- 17. R.L. Davis, Phys. Lett. B180, 225 (1986);
 R.L. Davis and E.P.S. Shellard, Nucl. Phys. B324, 167 (1989).
- 18. R.A. Battye and E.P.S. Shellard, Nucl. Phys. B423, 260 (1994);
 Phys. Rev. Lett. 73, 2954 (1994) (E) *ibid.* 76, 2203 (1996);
 astro-ph/9706014, to be published in: Proceedings Dark Matter 96, Heidelberg, ed. by H.V. Klapdor-Kleingrothaus and Y. Ramacher.
- 19. D. Harari and P. Sikivie, Phys. Lett. B195, 361 (1987);C. Hagmann and P. Sikivie, Nucl. Phys. B363, 247 (1991).
- 20. C. Hagmann *et al.*, Phys. Rev. Lett. **80**, 2043 (1998).
- I. Ogawa, S. Matsuki, and K. Yamamoto, Phys. Rev. D53, R1740 (1996).

AXIONS AND OTHER VERY LIGHT BOSONS, PART III (EXPERIMENTAL LIMITS)

(by C. Hagmann, K. van Bibber, and L.J. Rosenberg)

In this section we review the experimental methodology and limits on light axions and light pseudoscalars in general. (A comprehensive overview of axion theory is given by H. Murayama in the Part I of this Review, whose notation we follow [1].) Within its scope are searches where the axion is assumed to be dark matter, searches where the Sun is presumed to be a source of axions, and purely laboratory experiments. We restrict the discussion to axions of mass $m_A < O(eV)$, as the allowed range for the axion mass is nominally $10^{-6} < m_A < 10^{-2}$ eV. Experimental work in this range predominantly has been through the axion-photon coupling $g_{A\gamma}$, to which the present review is confined. As discussed in Part II of this Review by G. Raffelt, the lower bound derives from a cosmological overclosure argument, and the upper bound from SN1987A [2]. Limits from stellar evolution overlap seamlessly above that, connecting with accelerator-based limits which ruled out the original axion. There it was assumed that the Peccei-Quinn symmetry-breaking scale was the electroweak scale, *i.e.*, $f_A \sim 250$ GeV, implying axions of mass $m_A \sim O(100 \,\text{keV})$. These earlier limits from nuclear transitions, particle decays, etc., while not discussed here, are included in the Listings.

While the axion mass is well determined by the Peccei-Quinn scale, *i.e.*, $m_A = 0.62 \text{ eV} (10^7 \text{ GeV}/f_A)$, the axionphoton coupling $g_{A\gamma}$ is not: $g_{A\gamma} = (\alpha/\pi f_A) g_{\gamma}$, with $g_{\gamma} = (E/N - 1.92)/2$, where E/N is a model-dependent number. It is noteworthy however, that two quite distinct models lead to axion-photon couplings which are not very different. For the case of axions imbedded in Grand Unified Theories, the DFSZ axion [3], $g_{\gamma} = 0.37$, whereas in one popular implementation of

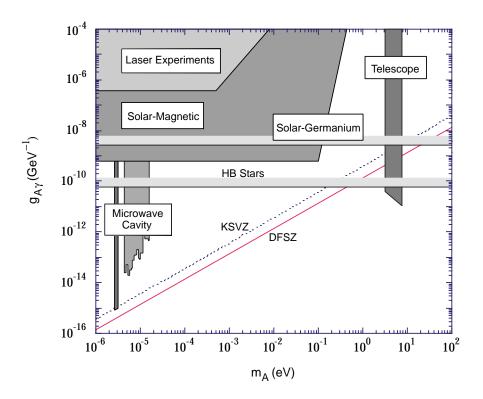
HTTP://PDG.LBL.GOV

Page 16

the "hadronic" class of axions, the KSVZ axion [4], $g_{\gamma} = -0.96$. The Lagrangian $L = g_{A\gamma} \mathbf{E} \cdot \mathbf{B} \phi_A$, with ϕ_A the axion field, permits the conversion of an axion into a single real photon in an external electromagnetic field, *i.e.*, a Primakoff interaction. In the case of relativistic axions, $k_{\gamma} - k_A \sim m_A^2/2\omega \ll \omega$, pertinent to several experiments below, coherent axion-photon mixing in long magnetic fields results in significant conversion probability even for very weakly coupled axions [5].

Below are discussed several experimental techniques constraining $g_{A\gamma}$, and their results. Also included are recent but yet-unpublished results, and projected sensitivities for experiments soon to be upgraded.

III.1. Microwave cavity experiments: Possibly the most promising avenue to the discovery of the axion presumes that axions constitute a significant fraction of the dark matter halo of our galaxy. The maximum likelihood density for the Cold Dark Matter (CDM) component of our galactic halo is $\rho_{\rm CDM} = 7.5 \times 10^{-25} \text{g/cm}^3 (450 \,\text{MeV/cm}^3)$ [6]. That the CDM halo is in fact made of axions (rather than e.g. WIMPs) is in principle an independent assumption, however should very light axions exist they would almost necessarily be cosmologically abundant [2]. As shown by Sikivie [7], halo axions may be detected by their resonant conversion into a quasi-monochromatic microwave signal in a high-Q cavity permeated by a strong magnetic field. The cavity is tunable and the signal is maximum when the frequency $\nu = m_A(1 + O(10^{-6}))$, the width of the peak representing the virial distribution of thermalized axions in the galactic gravitational potential. The signal may possess ultra-fine structure due to axions recently fallen into the galaxy and not yet thermalized [8]. The feasibility of the technique was established in early experiments of small sensitive volume, V = O(1 liter) [9,10] with High Electron Mobility Transistor


HTTP://PDG.LBL.GOV

Page 17

(HEMT) amplifiers, which set limits on axions in the mass range 4.5 < m_A < 16.3 µeV, but at power sensitivity levels 2–3 orders of magnitude too high to see KSVZ and DFSZ axions (the conversion power $P_{A\to\gamma} \propto g_{A\gamma}^2$). A recent large-scale experiment ($B \sim 7.5 \text{ T}, V \sim 200$ liter) has achieved sensitivity to KSVZ axions over a narrow mass range 2.77 < m_A < 3.3 µeV, and continues to take data [11]. The exclusion regions shown in Fig. 1 for Refs. [9–12] are all normalized to the best-fit Cold Dark Matter density $\rho_{\rm CDM} = 7.5 \times 10^{-25} \text{g/cm}^3 (450 \text{ MeV/cm}^3)$, and 90% CL. Recent developments in DC SQUID amplifiers [12] and Rydberg atom single-quantum detectors [13] promise dramatic improvements in noise temperature, which will enable rapid scanning of the axion mass range at or below the DFSZ limit. The region of the microwave cavity experiments is shown in detail in Fig. 2.

III.2. Telescope search for eV axions: For axions of mass greater than about 10^{-1} eV, their cosmological abundance is no longer dominated by vacuum misalignment or string radiation mechanisms, but rather by thermal production. Their contribution to the critical density is small, $\Omega \sim 0.01 \, (m_A/\text{eV})$. However, the spontaneous-decay lifetime of axions, $\tau(A \rightarrow$ 2γ ~ $10^{25} \text{sec} (m_A/\text{eV})^{-5}$ while irrelevant for μeV axions, is short enough to afford a powerful constraint on such thermally produced axions in the eV range, by looking for a quasimonochromatic photon line from galactic clusters. This line, corrected for Doppler shift, would be at half the axion mass and its width would be consistent with the observed virial motion, typically $\Delta \lambda / \lambda \sim 10^{-2}$. The expected line intensity would be of the order $I_A \sim 10^{-17} (m_A/3 \,\text{eV})^7 \text{erg cm}^{-2} \text{arcsec}^{-2} \text{\AA}^{-1} \text{sec}^{-1}$ for DFSZ axions, comparable to the continuum night emission. The conservative assumption is made that the relative density

HTTP://PDG.LBL.GOV Page 18 Created: 6/14/2002 11:12

Figure 1: Exclusion region in mass vs. axionphoton coupling $(m_A, g_{A\gamma})$ for various experiments. The limit set by globular cluster Horizontal Branch Stars ("HB Stars") is shown for Ref. 2.

of thermal axions fallen into the cluster gravitational potential reflects their overall cosmological abundance. A search for thermal axions in three rich Abell clusters was carried out at Kitt Peak National Laboratory [14]; no such line was observed between 3100–8300 Å ($m_A = 3$ –8 eV) after "on-off field" subtraction of the atmospheric molecular background spectra. A limit everywhere stronger than $g_{A\gamma} < 10^{-10} \text{GeV}^{-1}$ is set, which is seen from Fig. 1 to easily exclude DFSZ axions throughout the mass range.

HTTP://PDG.LBL.GOV Page 19 Created: 6/14/2002 11:12

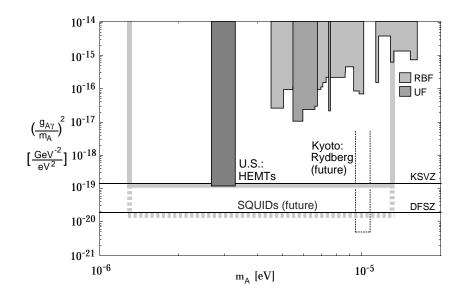


Figure 2: Exclusion region from the microwave cavity experiments, where the plot is flattened by presenting $(g_{A\gamma}/m_A)^2$ vs. m_A . The first-generation experiments (Rochester-BNL-FNAL, "RBF" [9]; University of Florida, "UF" [10]) and the US large-scale experiment in progress ("US" [11]) are all HEMT-based. Shown also is the full mass range to be covered by the latter experiment (shaded line), and the improved sensitivity when upgraded with DC SQUID amplifiers [12] (shaded dashed line). The expected performance of the Kyoto experiment based on a Rydberg atom single-quantum receiver (dotted line) is also shown [13].

III.3. A search for solar axions: As with the telescope search for thermally produced axions above, the search for solar axions was stimulated by the possibility of there being a "1 eV window" for hadronic axions (*i.e.*, axions with no tree-level coupling to leptons), a "window" subsequently closed by an

HTTP://PDG.LBL.GOV Page 20 Created: 6/14/2002 11:12

improved understanding of the evolution of globular cluster stars and SN1987A [2]. Hadronic axions would be copiously produced within our Sun's interior by a Primakoff process. Their flux at the Earth of ~ 10^{12} cm⁻²sec⁻¹ $(m_A/eV)^2$, which is independent of the details of the solar model, is sufficient for a definitive test via the axion reconversion to photons in a large magnetic field. However, their average energy is ~ 4 keV, implying an oscillation length in the vacuum of $2\pi (m_A^2/2\omega)^{-1} \sim O(\text{mm})$, precluding the mixing from achieving its theoretically maximum value in any practical magnet. It was recognized that one could endow the photon with an effective mass in a gas, $m_{\gamma} = \omega_{\rm pl}$, thus permitting the axion and photon dispersion relationships to be matched [15]. A first simple implementation of this proposal was carried out using a conventional dipole magnet with a conversion volume of variable-pressure helium gas and a xenon proportional chamber as the x-ray detector [16]. The magnet was fixed in orientation to take data for $\sim 1000 \text{ sec/day}$. Axions were excluded for $g_{A\gamma} < 3.6 \times 10^{-9} {\rm GeV^{-1}}$ for $m_A <$ $0.03 \,\mathrm{eV}$, and $g_{A\gamma} < 7.7 \times 10^{-9} \mathrm{GeV}^{-1}$ for $0.03 \,\mathrm{eV} < m_A < 0.11$ eV (95% CL). A more ambitious experiment has recently been commissioned, using a superconducting magnet on a telescope mount to track the Sun continuously. A preliminary exclusion limit of $g_{A\gamma} < 6 \times 10^{-10} \text{GeV}^{-1}$ (95% CL) has been set for $m_A < 0.03 \text{ eV} [17].$

Another search for solar axions has been carried out, using a single crystal germanium detector. It exploits the coherent conversion of axions into photons when their angle of incidence satisfies a Bragg condition with a crystalline plane. Analysis of 1.94 kg-yr of data from a 1 kg germanium detector yields a bound of $g_{A\gamma} < 2.7 \times 10^{-9} \text{GeV}^{-1}$ (95% CL), independent of mass up to $m_A \sim 1 \text{ keV}$ [18].

HTTP://PDG.LBL.GOV Page 21 Created: 6/14/2002 11:12

III.4. Photon regeneration ("invisible light shining through walls"): Photons propagating through a transverse field (with $\mathbf{E} \| \mathbf{B}$) may convert into axions. For light axions with $m_A^2 l/2\omega \ll 2\pi$, where l is the length of the magnetic field, the axion beam produced is colinear and coherent with the photon beam, and the conversion probability Π is given by $\Pi \sim (1/4)(g_{A\gamma}Bl)^2$. An ideal implementation for this limit is a laser beam propagating down a long, superconducting dipole magnet like those for high-energy physics accelerators. If another such dipole magnet is set up in line with the first, with an optical barrier interposed between them, then photons may be regenerated from the pure axion beam in the second magnet and detected [19]. The overall probability $P(\gamma \to A \to \gamma) = \Pi^2$. Such an experiment has been carried out, utilizing two magnets of length l = 4.4 m and B = 3.7 T. Axions with mass $m_A < 10^{-3}$ eV, and $g_{A\gamma} > 6.7 \times 10^{-7} \text{GeV}^{-1}$ were excluded at 95% CL [20,21]. With sufficient effort, limits comparable to those from stellar evolution would be achievable. Due to the $g_{A\gamma}^4$ rate suppression however, it does not seem feasible to reach standard axion couplings.

III.5. Polarization experiments: The existence of axions can affect the polarization of light propagating through a transverse magnetic field in two ways [22]. First, as the E_{\parallel} component, but not the E_{\perp} component will be depleted by the production of real axions, there will be in general a small rotation of the polarization vector of linearly polarized light. This effect will be a constant for all sufficiently light m_A such that the oscillation length is much longer than the magnet $(m_A^2 l/2\omega \ll 2\pi)$. For heavier axions, the effect oscillates and diminishes with increasing m_A , and vanishes for $m_A > \omega$. The second effect is birefringence of the vacuum, again because there can be a mixing of virtual axions in the E_{\parallel} state, but not for

HTTP://PDG.LBL.GOV Page 22 Created: 6/14/2002 11:12

the E_{\perp} state. This will lead to light which is initially linearly polarized becoming elliptically polarized. Higher-order QED also induces vacuum birefringence, and is much stronger than the contribution due to axions. A search for both polarizationrotation and induced ellipticity has been carried out with the same magnets described in Sec. (III.4) above [21,23]. As in the case of photon regeneration, the observables are boosted linearly by the number of passes the laser beam makes in an optical cavity within the magnet. The polarization-rotation resulted in a stronger limit than that from ellipticity, $g_{A\gamma} <$ $3.6 \times 10^{-7} \text{GeV}^{-1}$ (95% CL) for $m_A < 5 \times 10^{-4}$ eV. The limits from ellipticity are better at higher masses, as they fall off smoothly and do not terminate at m_A . There are two experiments in construction with greatly improved sensitivity which while still far from being able to detect standard axions, should measure the QED "light-by-light" contribution for the first time |24,25|. The overall envelope for limits from the laser-based experiments in Sec. (III.4) and Sec. (III.5) is shown schematically in Fig. 1.

References

- 1. H. Murayama, Part I (Theory) of this Review.
- 2. G. Raffelt, Part II (Astrophysical Constraints) of this Review.
- M. Dine *et al.*, Phys. Lett. **B104**, 199 (1981);
 A. Zhitnitsky, Sov. J. Nucl. Phys. **31**, 260 (1980).
- 4. J. Kim, Phys. Rev. Lett. 43, 103 (1979);
 M. Shifman *et al.*, Nucl. Phys. B166, 493 (1980).
- 5. G. Raffelt and L. Stodolsky, Phys. Rev. **D37**, 1237 (1988).
- 6. E. Gates *et al.*, Ap. J. **449**, 123 (1995).
- 7. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983);
 52(E), 695 (1984);
 Phys. Rev. D32, 2988 (1985).

- P. Sikivie and J. Ipser, Phys. Lett. **B291**, 288 (1992);
 P. Sikivie *et al.*, Phys. Rev. Lett. **75**, 2911 (1995).
- 9. S. DePanfilis *et al.*, Phys. Rev. Lett. **59**, 839 (1987);
 W. Wuensch *et al.*, Phys. Rev. **D40**, 3153 (1989).
- 10. C. Hagmann et al., Phys. Rev. D42, 1297 (1990).
- 11. C. Hagmann *et al.*, Phys. Rev. Lett. **80**, 2043 (1998).
- 12. M. Mück *et al.*, to be published in Appl. Phys. Lett.
- I. Ogawa *et al.*, Proceedings II. RESCEU Conference on "Dark Matter in the Universe and its Direct Detection," p. 175, Universal Academy Press, ed. M. Minowa (1997).
- M. Bershady *et al.*, Phys. Rev. Lett. **66**, 1398 (1991);
 M. Ressell, Phys. Rev. **D44**, 3001 (1991).
- 15. K. van Bibber *et al.*, Phys. Rev. **D39**, 2089 (1989).
- 16. D. Lazarus et al., Phys. Rev. Lett. 69, 2333 (1992).
- 17. M. Minowa, Proceedings International Workshop Non-Accelerator New Physics, Dubna (1997), and private communication (1998).
- 18. F. Avignone III et al., ibid.
- K. van Bibber *et al.*, Phys. Rev. Lett. **59**, 759 (1987).
 A similar proposal has been made for exactly massless pseudoscalars: A. Ansel'm, Sov. J. Nucl. Phys. **42**, 936 (1985).
- 20. G. Ruoso et al., Z. Phys. C56, 505 (1992).
- 21. R. Cameron *et al.*, Phys. Rev. **D47**, 3707 (1993).
- 22. L. Maiani *et al.*, Phys. Lett. **B175**, 359 (1986).
- 23. Y. Semertzidis et al., Phys. Rev. Lett. 64, 2988 (1990).
- 24. S. Lee et al., Fermilab proposal E-877 (1995).
- D. Bakalov *et al.*, Quantum Semiclass. Opt. **10**, 239 (1998).

A⁰ (Axion) MASS LIMITS from Astrophysics and Cosmology

These bounds depend on model-dependent assumptions (i.e. — on a combination of axion parameters).

VALUE (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT
$\bullet \bullet \bullet$ We do not use the	e following data for average	s, fits	, limits,	etc. • • •
>0.2	BARROSO	82	ASTR	Standard Axion
>0.25	¹ RAFFELT	82	ASTR	Standard Axion
>0.2	² DICUS	78 C	ASTR	Standard Axion
	MIKAELIAN	78	ASTR	Stellar emission
>0.3	² SATO	78	ASTR	Standard Axion
>0.2	VYSOTSKII	78	ASTR	Standard Axion
	5.5 MeV γ -ray line from the			

² Lower bound from requiring the red giants' stellar evolution not be disrupted by axion emission.

A^0 (Axion) and Other Light Boson (X^0) Searches in Stable Particle Decays

Ì	Limits are for bra	anching ratios.	. ,			-	
VALUE		<u>CL%</u> EVTS	DOCUMENT ID		TECN	COMMENT	
• • •	We do not use t	he following data	a for averages, fits,	limi	ts, etc.	•••	
< 1.1	imes 10 ⁻¹⁰	90	³ ADLER	00	B787	$K^+ \rightarrow \pi^+ A^0$	
<3.3	imes 10 ⁻⁵	90	⁴ ALTEGOER	98	NOMD	$\pi^{0} ightarrow \gamma X^{0}$,	
						$m_{\chi^0} < 120$	
<5.0	imes 10 ⁻⁸	90	⁵ KITCHING	97	B787	$\overset{\text{MeV}}{\kappa^+ \rightarrow} \pi^+ A^0$	
	10					$ \begin{array}{c} (A^0 \rightarrow \gamma \gamma) \\ (K^+ \rightarrow \pi^+ A^0) \end{array} $	
<5.2	$\times 10^{-10}$	90	⁶ ADLER	96	B787	$K^+ \rightarrow \pi^+ A^0$	
<2.8	$\times 10^{-4}$	90	⁷ AMSLER	96 B	CBAR	$\pi^0 \rightarrow \gamma X^0, \ m_{\chi^0} < 65 \; { m MeV}$	
<3	imes 10 ⁻⁴	90	⁷ AMSLER	06B	CRAR	$\eta \rightarrow \gamma X^0, \ m_{\chi 0} =$	
<5		50	ANGLER	500	CDAR	50-200 MeV	
<4	imes 10 ⁻⁵	90	⁷ AMSLER	96 B	CBAR		
						$m_{\chi^0} = 50 - 925$	
<6	imes 10 ⁻⁵	90	⁷ AMSLER	94B	CBAR	$\pi^{0} \stackrel{MeV}{\to} \gamma X^{0},$	
				•		m _{X0} =65-125 MeV	
<6	imes 10 ⁻⁵	90	⁷ AMSLER	040	CDAD	$ \begin{array}{c} MeV \\ \eta \to \gamma X^{0}, \end{array} $	
<0	× 10	90	AWISLER	94B	CDAR	$\eta \rightarrow \gamma \chi^{2}, m_{\chi^{0}} = 200 - 525$	
			⁸ MEIJERDREES	_	_	MeV	
<0.00	7	90	MEIJERDREES	594	CNTR	$\pi^{0} \rightarrow \gamma X^{0}, \ m_{X^{0}} = 25 \text{ MeV}$	
<0.00	2	90	⁸ MEIJERDREES	504		$\pi^0 \rightarrow \gamma X^0$,	
<0.00	2	90	MEIJERDREE	554	CNTR	$m_{\chi^0} = 100 \text{ MeV}$	
<2	imes 10 ⁻⁷	90	⁹ ATIYA	93 B	B787	$K^+ \rightarrow \pi^+ A^0$	
<3	imes 10 ⁻¹³		¹⁰ NG	93	COSM	$\pi^0 \rightarrow \gamma X^0$	
< 1.1	imes 10 ⁻⁸	90	¹¹ ALLIEGRO	92	SPEC	$K^+ \rightarrow \pi^+ A^0$	
<5	$\times 10^{-4}$	90	¹² ATIYA	92	B787	$ \begin{array}{c} \kappa^+ \rightarrow \pi^+ A^0 \\ (A^0 \rightarrow e^+ e^-) \\ \pi^0 \rightarrow \gamma X^0 \end{array} $	
<5 <4	$\times 10 \times 10^{-6}$	90 90	¹³ MEIJERDREES		SPEC	$\pi^{0} \rightarrow \gamma X^{0},$	
~ 7	X 10	50		552		$X^0 \rightarrow e^+ e^-$	
						$m_{\chi 0} = 100 \text{ MeV}$	
						·· ·	

<1	$\times 10^{-7}$	90		¹⁴ ATIYA	90 B	B787	Sup. by KITCH-
<1.3	imes 10 ⁻⁸	90		¹⁵ KORENCHE	87	SPEC	$ ING 97 \pi^+ \xrightarrow{e^+} e^+ \nu A^0 (A^0 \rightarrow e^+ e^-) $
<1	$\times 10^{-9}$	90	0	¹⁶ EICHLER	86	SPEC	Stopped $\pi^+ \rightarrow e^+ \nu A^0$
<2	imes 10 ⁻⁵	90		¹⁷ YAMAZAKI	84	SPEC	For 160< <i>m</i> <260
<(1.5-	4) × 10 ⁻⁶	90		¹⁷ YAMAZAKI	84	SPEC	MeV K decay, $m_{{\cal A}^0} \ll 100$ MeV
			0	¹⁸ ASANO	82	CNTR	Stopped $K^+ \rightarrow$
			0	¹⁹ ASANO	81 B	CNTR	$\pi^+ A^0$ Stopped $K^+ \rightarrow \pi^+ A^0$
				²⁰ ZHITNITSKII	79		Heavy axion

 3 ADLER 00 bound is for massless $A^0.$ 4 ALTEGOER 98 looked for X^0 from π^0 decay which penetrate the shielding and convert

to π^0 in the external Coulomb field of a nucleus. ⁵ KITCHING 97 limit is for B($K^+ \rightarrow \pi^+ A^0$)·B($A^0 \rightarrow \gamma \gamma$) and applies for $m_{A^0} \simeq 50$ MeV, $\tau_{A^0} < 10^{-10}$ s. Limits are provided for 0< $m_{A^0} < 100$ MeV, $\tau_{A^0} < 10^{-8}$ s.

 6 ADLER 96 looked for a peak in missing-mass distribution. This work is an update of ATIYA 93. The limit is for massless stable A^0 particles and extends to m_{A0} =80 MeV at the same level. See paper for dependence on finite lifetime.

⁷AMSLER 94B and AMSLER 96B looked for a peak in missing-mass distribution.

- 8 The MEIJERDREES 94 limit is based on inclusive photon spectrum and is independent of X^0 decay modes. It applies to $\tau(X^0) > 10^{-23}$ sec.
- 9 ATIYA 93B looked for a peak in missing mass distribution. The bound applies for stable A^0 of m_{A0} =150-250 MeV, and the limit becomes stronger (10⁻⁸) for m_{A0} =180-240 MeV.
- ¹⁰ NG 93 studied the production of X^0 via $\gamma\gamma \rightarrow \pi^0 \rightarrow \gamma X^0$ in the early universe at $T \simeq 1$ MeV. The bound on extra neutrinos from nucleosynthess $\Delta N_{
 m v} <$ 0.3 (WALKER 91) is employed. It applies to $m_{\chi 0} \ll 1~{
 m MeV}$ in order to be relativistic down to nucleosynthesis temperature. See paper for heavier X^0 .
- $^{11}\,{\rm ALLIEGRO}$ 92 limit applies for $m_{{\cal A}0}{=}150{-}340$ MeV and is the branching ratio times the decay probability. Limit is $< 1.5 \times 10^{-8}$ at 99%CL.
- 12 ATIYA 92 looked for a peak in missing mass distribution. The limit applies to $m_{\chi0}{=}0{-}130$ MeV in the narrow resonance limit. See paper for the dependence on
- lifetime. Covariance requires X^0 to be a vector particle. ¹³ MEIJERDREES 92 limit applies for $\tau_{X^0} = 10^{-23}$ – 10^{-11} sec. Limits between 2×10^{-4} and 4 \times 10 $^{-6}$ are obtained for $m_{\chi 0}$ = 25–120 MeV. Angular momentum conservation

requires that X^0 has spin ≥ 1 . ¹⁴ ATIYA 90B limit is for B($K^+ \rightarrow \pi^+ A^0$)·B($A^0 \rightarrow \gamma \gamma$) and applies for $m_{A^0} = 50$ MeV,

 $\tau_{A^0} < 10^{-10}$ s. Limits are also provided for $0 < m_{A^0} < 100$ MeV, $\tau_{A^0} < 10^{-8}$ s. 15 KORENCHENKO 87 limit assumes $m_{A^0}=$ 1.7 MeV, $\tau_{A^0}~\lesssim~10^{-12}$ s, and B(A^0 \rightarrow $e^+e^-) = 1.$

- ¹⁶EICHLER 86 looked for $\pi^+ \rightarrow e^+ \nu A^0$ followed by $A^0 \rightarrow e^+ e^-$. Limits on the branching fraction depend on the mass and and lifetime of A^0 . The quoted limits are valid when $\tau(A^0) \gtrsim 3. \times 10^{-10}$ s if the decays are kinematically allowed.
- ¹⁷YAMAZAKI 84 looked for a discrete line in $K^+ \rightarrow \pi^+ X$. Sensitive to wide mass range (5-300 MeV), independent of whether X decays promptly or not.

¹⁸ASANO 82 at KEK set limits for $B(K^+ \rightarrow \pi^+ A^0)$ for m_{A^0} <100 MeV as BR < 4. × 10⁻⁸ for $\tau(A^0 \rightarrow n\gamma's) > 1. \times 10^{-9} s$, BR < 1.4 × 10⁻⁶ for τ < 1. × 10⁻⁹ s. ¹⁹ASANO 81B is KEK experiment. Set $B(K^+ \rightarrow \pi^+ A^0) < 3.8 \times 10^{-8}$ at CL = 90%. ²⁰ZHITNITSKII 79 argue that a heavy axion predicted by YANG 78 (3 < m <40 MeV) contradicts experimental muon anomalous magnetic moments.

A^0 (Axion) Searches in Quarkonium Decays

Decay or transition of quarkonium. Limits are for branching ratio.								
VALUE	<u>CL%</u> EV	-	DOCUMENT ID		-	<u>COMMENT</u>		
• • • We do not i	use the fol	lowing	g data for averages	, fits,	limits,	etc. • • •		
$< \! 1.3 imes 10^{-5}$	90		²¹ BALEST	95	CLEO	$\Upsilon(1S) ightarrow A^0 \gamma$		
$< 4.0 \times 10^{-5}$	90		ANTREASYAN ²² ANTREASYAN			$\Upsilon(1S) ightarrow ~{\cal A}^0 \gamma$		
$< 5 \times 10^{-5}$	90		²³ DRUZHININ		ND			
$<2 \times 10^{-3}$	90		²⁴ DRUZHININ	87	ND	$\phi \rightarrow A^0 \gamma (A^0 \rightarrow \gamma \gamma)$		
$< 7 \times 10^{-6}$	90		²⁵ DRUZHININ	87	ND	$\phi \rightarrow A^0 \gamma$		
$< 3.1 \times 10^{-4}$	90	0	²⁶ ALBRECHT	86D	ARG	$egin{array}{lll} (A^0 & ightarrow \mbox{ missing}) \ arphi(1S) & ightarrow \ A^0 \gamma \ (A^0 & ightarrow \ e^+ e^-) \end{array}$		
$< 4 \times 10^{-4}$	90	0	²⁶ ALBRECHT	86 D	ARG	$(A \rightarrow e^+e^-)$ $\Upsilon(1S) \rightarrow A^0 \gamma$ $(A^0 \rightarrow \mu^+\mu^-)$		
${}^{<\!8}_{<\!1.3\times10^{-4}}_{<\!1.3\times10^{-3}}$	90 90	1 0	²⁷ ALBRECHT ²⁸ ALBRECHT		ARG ARG	$(\Lambda \rightarrow \mu^{-} \mu^{-}, \pi^{+} \pi^{-}, K^{+} K^{-})$ $\Upsilon(1S) \rightarrow A^{0} \gamma$ $\Upsilon(1S) \rightarrow A^{0} \gamma$ $(A^{0} \rightarrow e^{+} e^{-}, \gamma \gamma)$		
$<2. \times 10^{-3}$	90		²⁹ BOWCOCK	86	CLEO	$\Upsilon(2S) ightarrow ~\Upsilon(1S) ightarrow$		
	90 90 90 90 90 90		 ³⁰ MAGERAS ³¹ ALAM ³² NICZYPORUK ³³ EDWARDS ³⁴ SIVERTZ ³⁴ SIVERTZ 	82	CUSB CLEO LENA CBAL CUSB CUSB	$\Upsilon(1S) \rightarrow A^0 \gamma$		

²¹ BALEST 95 looked for a monochromatic γ from $\Upsilon(1S)$ decay. The bound is for $m_{A^0} < 5.0$ GeV. See Fig. 7 in the paper for bounds for heavier m_{A^0} . They also quote a bound on branching ratios 10^{-3} - 10^{-5} of three-body decay $\gamma X \overline{X}$ for $0 < m_X < 3.1$ GeV.

²² The combined limit of ANTREASYAN 90C and EDWARDS 82 excludes standard axion with $m_{A^0} < 2m_e$ at 90% CL as long as $C_{\gamma}C_{J/\psi} > 0.09$, where C_V ($V = \Upsilon$, J/ψ) is the reduction factor for $\Gamma(V \rightarrow A^0 \gamma)$ due to QCD and/or relativistic corrections. The same data excludes 0.02 < x < 260 (90% CL) if $C_{\gamma} = C_{J/\psi} = 0.5$, and further combining with ALBRECHT 86D result excludes $5 \times 10^{-5} < x < 260$. x is the ratio of the vacuum expectation values of the two Higgs fields. These limits use conventional assumption $\Gamma(A^0 \rightarrow ee) \propto x^{-2}$. The alternative assumption $\Gamma(A^0 \rightarrow ee) \propto x^2$ gives a somewhat different excluded region 0.00075 < x < 44.

 23 The first DRUZHININ 87 limit is valid when $\tau_{A^0}/m_{A^0}~<~3\times10^{-13}$ s/MeV and $m_{A^0}~<$ 20 MeV.

 24 The second DRUZHININ 87 limit is valid when $\tau_{A^0}/m_{A^0}<5\times10^{-13}$ s/MeV and $m_{A^0}<20$ MeV.

²⁵ The third DRUZHININ 87 limit is valid when $\tau_{A^0}/m_{A^0} > 7 \times 10^{-12}$ s/MeV and $m_{A^0} < 200$ MeV. ²⁶ $\tau_{A^0} < 1 \times 10^{-13}$ s and $m_{A^0} < 1.5$ GeV. Applies for $A^0 \rightarrow \gamma \gamma$ when $m_{A^0} < 100$ MeV. ²⁷ $\tau_{A^0} > 1 \times 10^{-7}$ s. ²⁸ Independent of τ_{A^0} . ²⁹ BOWCOCK 86 looked for A^0 that decays into e^+e^- in the cascade decay $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ followed by $\Upsilon(1S) \rightarrow A^0\gamma$. The limit for $B(\Upsilon(1S) \rightarrow A^0\gamma)B(A^0 \rightarrow e^+e^-)$ depends on m_{A^0} and τ_{A^0} . The quoted limit for $m_{A^0}=1.8$ MeV is at $\tau_{A^0} \sim 2. \times 10^{-12}$ s, where the limit is the worst. The same limit 2. $\times 10^{-3}$ applies for all lifetimes for masses $2m_e < m_{A^0} < 2m_\mu$ when the results of this experiment are combined with the results of ALAM 83.

³⁰ MAGERAS 86 looked for $\Upsilon(1S) \rightarrow \gamma A^0$ ($A^0 \rightarrow e^+e^-$). The quoted branching fraction limit is for $m_{A^0} = 1.7$ MeV, at $\tau(A^0) \sim 4. \times 10^{-13}$ s where the limit is the ²¹ worst.

³¹ ALAM 83 is at CESR. This limit combined with limit for B($J/\psi \rightarrow A^0 \gamma$) (EDWARDS 82) excludes standard axion.

³² NICZYPORUK 83 is DESY-DORIS experiment. This limit together with lower limit 9.2×10^{-4} of B($\Upsilon \rightarrow A^0 \gamma$) derived from B($J/\psi(1S) \rightarrow A^0 \gamma$) limit (EDWARDS 82) excludes standard axion.

³³EDWARDS 82 looked for $J/\psi \rightarrow \gamma A^0$ decays by looking for events with a single γ [of energy $\sim 1/2$ the $J/\psi(1S)$ mass], plus nothing else in the detector. The limit is inconsistent with the axion interpretation of the FAISSNER 81B result.

³⁴SIVERTZ 82 is CESR experiment. Looked for $\Upsilon \rightarrow \gamma A^0$, A^0 undetected. Limit for 1S (3S) is valid for $m_{\Delta 0}$ <7 GeV (4 GeV).

A^0 (Axion) Searches in Positronium Decays

Decay or transition	on of posi	tronium. Limits are	for t	oranchin	g ratio.
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	ne followi	ng data for averages	, fits	, limits,	etc. • • •
$<2 \times 10^{-4}$	90	MAENO	95	CNTR	$o\text{-Ps} \rightarrow A^0 \gamma$ $m_{A^0} = 850 - 1013 \text{ keV}$
$< 3.0 \times 10^{-3}$	90	³⁵ ASAI	94	CNTR	$c - Ps \xrightarrow{\gamma} A^0 \gamma$ $m_{A^0} = 30 - 500 \text{ keV}$
$< 2.8 \times 10^{-5}$	90	³⁶ AKOPYAN	91	CNTR	$\begin{array}{ccc} o \text{-Ps} \xrightarrow{\gamma} & A^0 \gamma \\ (A^0 \rightarrow & \gamma \gamma), \end{array}$
$< 1.1 \times 10^{-6}$	90	³⁷ ASAI	91	CNTR	$egin{array}{lll} m_{{\cal A}^0} &< 30 \ { m keV} \ { m o}\mbox{-}{ m Ps} & ightarrow & {\cal A}^0 \ \gamma, \ m_{{\cal A}^0} &< 800 \ { m keV} \end{array}$
$< 3.8 \times 10^{-4}$	90	GNINENKO	90	CNTR	o-Ps $\rightarrow A^0 \gamma, m_{A^0} <$
$<$ (1–5) \times 10 ⁻⁴	95	³⁸ TSUCHIAKI	90	CNTR	30 keV c-Ps → $A^0 \gamma$, $m_{A^0} =$ 300–900 keV
$< 6.4 \times 10^{-5}$	90	³⁹ ORITO	89	CNTR	$o - Ps \rightarrow A^0 \gamma,$ $m_{A^0} < 30 \text{ keV}$
		⁴⁰ AMALDI ⁴¹ CARBONI	85 83	CNTR CNTR	Ortho-positronium Ortho-positronium

 35 The ASAI 94 limit is based on inclusive photon spectrum and is independent of ${
m A}^0$ decay modes. ³⁶ The AKOPYAN 91 limit applies for a short-lived A^0 with $\tau_A^0 < 10^{-13} m_{A^0}$ [keV] s.

³⁷ASAI 91 limit translates to $g_{A^0 e^+ e^-}^2 / 4\pi < 1.1 \times 10^{-11} (90\% CL)$ for $m_{A^0}^2 < 800$

- ³⁸ The TSUCHIAKI 90 limit is based on inclusive photon spectrum and is independent of A^0 decay modes.
- ³⁹ORITO 89 limit translates to $g^2_{A^0ee}/4\pi < 6.2 \times 10^{-10}$. Somewhat more sensitive limits are obtained for larger m_{A^0} : $B < 7.6 \times 10^{-6}$ at 100 keV.
- ⁴⁰ AMALDI 85 set limits B($A^0\gamma$) / B($\gamma\gamma\gamma$) < (1–5) × 10⁻⁶ for m_{A^0} = 900–100 keV which are about 1/10 of the CARBONI 83 limits.
- ⁴¹ CARBONI 83 looked for orthopositronium $\rightarrow A^0 \gamma$. Set limit for A^0 electron coupling squared, $g(eeA^0)^2/(4\pi) < 6. \times 10^{-10}$ -7. $\times 10^{-9}$ for m_{A^0} from 150–900 keV (CL = 99.7%). This is about 1/10 of the bound from g-2 experiments.

A^0 (Axion) Search in Photoproduction

VALUE	DOCUMENT ID	COMMENT
• • • We do not use the follow	ving data for averages, fits	, limits, etc. • • •
	⁴² BASSOMPIE 95	$m_{oldsymbol{A}0}^{}=1.8\pm0.2~{ m MeV}$
42 DACCOMPLEDDE OF :		

 $^{
m 42}$ BASSOMPIERRE 95 is an extension of BASSOMPIERRE 93. They looked for a peak in the invariant mass of $e^+\,e^-$ pairs in the region $m^{}_{e^+\,e^-}$ = 1.8 \pm 0.2 MeV. They obtained bounds on the production rate A^0 for $\tau(A^0) = 10^{-18} - 10^{-9}$ sec. They also found an excess of events in the range $m_{e^+e^-} = 2.1 - 3.5$ MeV.

A^0 (Axion) Production in Hadron Collisions

Limits are for $\sigma(A^0) \ / \ \sigma(\pi^0)$.								
VALUE	CL%	EVTS	DOCUMENT ID		TECN	COMMENT		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
			⁴³ AHMAD			e^+ production		
			⁴⁴ LEINBERGER	97	SPEC	$A^0 ightarrow e^+ e^-$		
			⁴⁵ GANZ			$A^0 ightarrow e^+ e^-$		
			⁴⁶ KAMEL			³² S emulsion, $A^0 \rightarrow$		
			⁴⁷ BLUEMLEIN	92	BDMP	$A^{0} \overset{e^+e^-}{N_Z} \rightarrow \ell^+ \ell^- N_Z$		
			** MEIJERDREES			$\pi^- p \xrightarrow{-} n A^0, A^0 \xrightarrow{-} a^+ a^-$		
			⁴⁹ BLUEMLEIN	91	BDMP	$A^0 \stackrel{e^+e^-}{ ightarrow} e^+e^-$, 2 γ		
			⁵⁰ FAISSNER	89	OSPK	Beam dump, $\Delta^0 \rightarrow e^+ e^-$		
			⁵¹ DEBOER	88	RVUE	$A^0 \xrightarrow{e^+ e^-} e^+ e^-$		
			⁵² EL-NADI	88	EMUL	$A^0 \rightarrow e^+ e^-$		
			⁵³ FAISSNER	88	OSPK	Beam dump, $A^{m 0} ightarrow 2\gamma$		
			⁵⁴ BADIER	86	BDMP	$A^0 \rightarrow e^+ e^-$		
$<2. \times 10^{-11}$	90	0	⁵⁵ BERGSMA	85	CHRM	CERN beam dump		
$< 1. \times 10^{-13}$	90	0	⁵⁵ BERGSMA			CERN beam dump		
		24	⁵⁶ FAISSNER	83	OSPK	Beam dump, ${\cal A}^{m 0} o ~2\gamma$		
			⁵⁷ FAISSNER	83 B	RVUE	LAMPF beam dump		
			⁵⁸ FRANK	83 B	RVUE	LAMPF beam dump		
HTTP://PDG	LBL.	GOV	Page 29		Crea	ted: 6/14/2002 11:12		

			⁵⁹ HOFFMAN	83 CNTR	$\pi p \rightarrow n A^0$
					$(A^0 \rightarrow e^+ e^-)$
			⁶⁰ FETSCHER	82 RVUE	See FAISSNER 81B
		12	⁶¹ FAISSNER	81 OSPK	CERN PS ν wideband
		15	⁶² FAISSNER	81B OSPK	Beam dump, $A^0 \rightarrow 2\gamma$
		8	⁶³ KIM		26 GeV $pN \rightarrow A^0X$
		0	⁶⁴ FAISSNER		Beam dump,
					$A^0 \rightarrow e^+ e^-$
$< 1. \times 10^{-8}$	90		⁶⁵ JACQUES	80 HLBC	28 GeV protons
$< 1. \times 10^{-14}$	90		⁶⁵ JACQUES	80 HLBC	Beam dump
			66 SOUKAS	80 CALO	28 GeV <i>p</i> beam dump
			⁶⁷ BECHIS	79 CNTR	
$< 1. \times 10^{-8}$	90		⁶⁸ COTEUS	79 OSPK	Beam dump
$< 1. \times 10^{-3}$	95		⁶⁹ DISHAW	79 CALO	400 GeV <i>pp</i>
$<1. \times 10^{-8}$	90		ALIBRAN	78 HYBR	Beam dump
$< 6. \times 10^{-9}$	95		ASRATYAN	78b CALO	Beam dump
$< 1.5 imes 10^{-8}$	90		⁷⁰ BELLOTTI	78 HLBC	Beam dump
$< 5.4 imes 10^{-14}$	90		⁷⁰ BELLOTTI	78 HLBC	$m_{A^0} = 1.5 \text{ MeV}$
$< 4.1 imes 10^{-9}$	90		⁷⁰ BELLOTTI	78 HLBC	$m_{A^0} = 1 \text{ MeV}$
$< 1. \times 10^{-8}$	90		⁷¹ BOSETTI	78b HYBR	Beam dump
			⁷² DONNELLY	78	·
$< 0.5 \times 10^{-8}$	90		HANSL	78D WIRE	Beam dump
			⁷³ MICELMAC		·
			⁷⁴ vysotskii	78	

- 43 AHMAD 97 reports a result of APEX Collaboration which studied positron production in $^{238}\text{U}+^{232}\text{Ta}$ and $^{238}\text{U}+^{181}\text{Ta}$ collisions, without requiring a coincident electron. No narrow lines were found for 250 $<\!\!\!E_{a^+}<$ 750 keV.
- ⁴⁴LEINBERGER 97 (ORANGE Collaboration) at GSI looked for a narrow sum-energy e^+e^- -line at $\sim 635 \text{ keV}$ in $^{238}\text{U}+^{181}\text{Ta}$ collision. Limits on the production probability for a narrow sum-energy e^+e^- line are set. See their Table 2.
- ⁴⁵ GANZ 96 (EPos II Collaboration) has placed upper bounds on the production cross section of e^+e^- pairs from $^{238}U^+^{181}$ Ta and $^{238}U^+^{232}$ Th collisions at GSI. See Table 2 for limits both for back-to-back and isotropic configurations of e^+e^- pairs. These limits rule out the existence of peaks in the e^+e^- sum-energy distribution, reported by an earlier version of this experiment.

⁴⁶ KAMEL 96 looked for e^+e^- pairs from the collison of ³²S (200 GeV/nucleon) and emulsion. No evidence of mass peaks is found in the region of sensitivity $m_{ee} > 2$ MeV.

- ⁴⁷ BLUEMLEIN 92 is a proton beam dump experiment at Serpukhov with a secondary target to induce Bethe-Heitler production of e^+e^- or $\mu^+\mu^-$ from the produce A^0 . See Fig. 5 for the excluded region in m_{A^0} -x plane. For the standard axion, 0.3 <x<25 is excluded at 95% CL. If combined with BLUEMLEIN 91, 0.008 <x<32 is excluded.
- is excluded at 95% CL. If combined with BLUEMLEIN 91, 0.008 <x<32 is excluded. ⁴⁸ MEIJERDREES 92 give $\Gamma(\pi^- p \rightarrow nA^0) \cdot B(A^0 \rightarrow e^+ e^-)/\Gamma(\pi^- p \rightarrow all) < 10^{-5}$ (90% CL) for $m_{A^0} = 100$ MeV, $\tau_{A^0} = 10^{-11} - 10^{-23}$ sec. Limits ranging from 2.5 × 10^{-3} to 10^{-7} are given for $m_{A^0} = 25$ -136 MeV.
- ⁴⁹ BLUEMLEIN 91 is a proton beam dump experiment at Serpukhov. No candidate event for $A^0 \rightarrow e^+ e^-$, 2γ are found. Fig. 6 gives the excluded region in m_{A^0} -x plane (x = $\tan\beta = v_2/v_1$). Standard axion is excluded for 0.2 < m_{A^0} < 3.2 MeV for most x > 1, 0.2–11 MeV for most x < 1.
- x > 1, 0.2–11 MeV for most x < 1. ⁵⁰ FAISSNER 89 searched for $A^0 \rightarrow e^+ e^-$ in a proton beam dump experiment at SIN. No excess of events was observed over the background. A standard axion with mass $2m_e$ –20 MeV is excluded. Lower limit on f_{A^0} of $\simeq 10^4$ GeV is given for $m_{A^0} = 2m_e$ –20 MeV.

- ⁵¹ DEBOER 88 reanalyze EL-NADI 88 data and claim evidence for three distinct states with mass ~ 1.1, ~ 2.1, and ~ 9 MeV, lifetimes 10^{-16} - 10^{-15} s decaying to $e^+e^$ and note the similarity of the data with those of a cosmic-ray experiment by Bristol group (B.M. Anand, Proc. of the Royal Society of London, Section A **A22** 183 (1953)). For a criticism see PERKINS 89, who suggests that the events are compatible with π^0 Dalitz decay. DEBOER 89B is a reply which contests the criticism.
- 52 EL-NADI 88 claim the existence of a neutral particle decaying into $e^+\,e^-$ with mass 1.60 \pm 0.59 MeV, lifetime (0.15 \pm 0.01) \times 10⁻¹⁴ s, which is produced in heavy ion interactions with emulsion nuclei at \sim 4 GeV/c/nucleon.
- ⁵³ FAISSNER 88 is a proton beam dump experiment at SIN. They found no candidate event for $A^0 \rightarrow \gamma \gamma$. A standard axion decaying to 2γ is excluded except for a region $x \simeq 1$. Lower limit on f_{A^0} of 10^2-10^3 GeV is given for $m_{A^0} = 0.1-1$ MeV.
- ⁵⁴ BADIER 86 did not find long-lived A^0 in 300 GeV π^- Beam Dump Experiment that decays into e^+e^- in the mass range $m_{A^0} = (20-200)$ MeV, which excludes the A^0 decay constant $f(A^0)$ in the interval (60–600) GeV. See their figure 6 for excluded region on $f(A^0)$ - m_{A^0} plane.
- ⁵⁵ BERGSMA 85 look for $A^0 \rightarrow 2\gamma$, e^+e^- , $\mu^+\mu^-$. First limit above is for $m_{A^0} = 1$ MeV; second is for 200 MeV. See their figure 4 for excluded region on $f_{A^0} - m_{A^0}$ plane, where f_{A^0} is A^0 decay constant. For Peccei-Quinn PECCEI 77 A^0 , m_{A^0} <180 keV and τ >0.037 s. (CL = 90%). For the axion of FAISSNER 81B at 250 keV, BERGSMA 85 expect 15 events but observe zero.
- ⁵⁶ FAISSNER 83 observed 19 1- γ and 12 2- γ events where a background of 4.8 and 2.3 respectively is expected. A small-angle peak is observed even if iron wall is set in front of the decay region.
- ⁵⁷ FAISSNER 83B extrapolate SIN γ signal to LAMPF ν experimental condition. Resulting 370 γ 's are not at variance with LAMPF upper limit of 450 γ 's. Derived from LAMPF limit that $[d\sigma(A^0)/d\omega \text{ at } 90^\circ]m_{A^0}/\tau_{A^0} < 14 \times 10^{-35} \text{ cm}^2 \text{ sr}^{-1} \text{ MeV ms}^{-1}$. See comment on FRANK 83B.
- ⁵⁸ FRANK 83B stress the importance of LAMPF data bins with negative net signal. By statistical analysis say that LAMPF and SIN-A0 are at variance when extrapolation by phase-space model is done. They find LAMPF upper limit is 248 not 450 γ 's. See comment on FAISSNER 83B.
- ⁵⁹ HOFFMAN 83 set CL = 90% limit $d\sigma/dt B(e^+e^-) < 3.5 \times 10^{-32} \text{ cm}^2/\text{GeV}^2$ for 140 $< m_{A^0} < 160 \text{ MeV}$. Limit assumes $\tau(A^0) < 10^{-9} \text{ s}$.
- ⁶⁰ FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no evidence for axion since 2- γ peak rate remarkably decreases if iron wall is set in front of the decay region.
- ⁶¹ FAISSNER 81 see excess μe events. Suggest axion interactions.
- ⁶² FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 ± 5.0 events of 2γ decay of long-lived neutral penetrating particle with $m_{2\gamma} \lesssim 1$ MeV. Axion interpretation with η - A^0 mixing gives $m_{A^0} = 250 \pm 25$ keV, $\tau_{(2\gamma)} = (7.3 \pm 3.7) \times 10^{-3}$ s from above rate. See critical remarks below in comments of FETSCHER 82, FAISSNER 83, FAISSNER 83B, FRANK 83B, and BERGSMA 85. Also see in the next subsection ALEK-SEEV 82, CAVAIGNAC 83, and ANANEV 85.
- ⁶³ KIM 81 analyzed 8 candidates for $A^0 \rightarrow 2\gamma$ obtained by Aachen-Padova experiment at CERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetime is $(0.86 \sim 5.6) \times 10^{-3}$ s depending on models. Faissner (private communication), says axion production underestimated and mass overestimated. Correct value around 200 keV.
- ⁶⁴ FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for $A^0 \rightarrow e^+ e^-$ decay. Assuming $A^0/\pi^0 = 5.5 \times 10^{-7}$, obtained decay rate limit 20/(A^0 mass) MeV/s (CL = 90%), which is about 10^{-7} below theory and interpreted as upper limit to $m_{A^0} < 2m_{e^-}$.

- ⁶⁵ JACQUES 80 is a BNL beam dump experiment. First limit above comes from nonobservation of excess neutral-current-type events $[\sigma(\text{production})\sigma(\text{interactaction}) < 7. \times 10^{-68} \text{ cm}^4$, CL = 90%]. Second limit is from nonobservation of axion decays into 2γ 's or e^+e^- , and for axion mass a few MeV.
- ⁶⁶ SOUKAS 80 at BNL observed no excess of neutral-current-type events in beam dump.
- ⁶⁷ BECHIS 79 looked for the axion production in low energy electron Bremsstrahlung and the subsequent decay into either 2γ or e^+e^- . No signal found. CL = 90% limits for model parameter(s) are given.
- ⁶⁸ COTEUS 79 is a beam dump experiment at BNL.
- ⁶⁹ DISHAW 79 is a calorimetric experiment and looks for low energy tail of energy distributions due to energy lost to weakly interacting particles.
- ⁷⁰ BELLOTTI 78 first value comes from search for $A^0 \rightarrow e^+e^-$. Second value comes from search for $A^0 \rightarrow 2\gamma$, assuming mass $< 2m_{e^-}$. For any mass satisfying this, limit is above value×(mass⁻⁴). Third value uses data of PL 60B 401 and quotes σ (production) σ (interaction) $< 10^{-67}$ cm⁴.
- ⁷¹BOSETTI 78B quotes σ (production) σ (interaction) < 2. × 10⁻⁶⁷ cm⁴.
- ⁷² DONNELLY 78 examines data from reactor neutrino experiments of REINES 76 and GURR 74 as well as SLAC beam dump experiment. Evidence is negative.
- ⁷³ MICELMACHER 78 finds no evidence of axion existence in reactor experiments of REINES 76 and GURR 74. (See reference under DONNELLY 78 below).
- ⁷⁴ VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sun and 200 keV from red supergiants.

A^0 (Axion) Searches in Reactor Experiments

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the followi	ng data for averages	s, fits	, limits,	etc. • • •
				Reactor; $A^0 \rightarrow e^+ e^-$
				Reactor, ${\cal A}^{f 0} o ~\gamma \gamma$
		86	SPEC	Reactor; $A^0 \rightarrow \gamma \gamma$
	⁷⁸ DATAR			Light water reactor
	⁷⁹ VUILLEUMIEF	R 81	CNTR	Reactor, ${\cal A}^{f 0} o ~2\gamma$

- ⁷⁵ ALTMANN 95 looked for A^0 decaying into e^+e^- from the Bugey 5 nuclear reactor. They obtain an upper limit on the A^0 production rate of $\omega(A^0)/\omega(\gamma) \times B(A^0 \rightarrow e^+e^-) < 10^{-16}$ for $m_{A^0} = 1.5$ MeV at 90% CL. The limit is weaker for heavier A^0 . In the case of a standard axion, this limit excludes a mass in the range $2m_e < m_{A^0} < 4.8$ MeV at 90% CL. See Fig. 5 of their paper for exclusion limits of axion-like resonances Z^0 in the (m_{X^0}, f_{X^0}) plane.
- ⁷⁶ KETOV 86 searched for A^0 at the Rovno nuclear power plant. They found an upper limit on the A^0 production probability of 0.8 $[100 \text{ keV}/m_{A^0}]^6 \times 10^{-6}$ per fission. In the standard axion model, this corresponds to $m_{A^0} > 150$ keV. Not valid for $m_{A^0} \gtrsim 1$ MeV.
- ⁷⁷ KOCH 86 searched for $A^0 \rightarrow \gamma \gamma$ at nuclear power reactor Biblis A. They found an upper limit on the A^0 production rate of $\omega(A^0)/\omega(\gamma(M1)) < 1.5 \times 10^{-10}$ (CL=95%). Standard axion with $m_{A^0} = 250$ keV gives 10^{-5} for the ratio. Not valid for $m_{A^0} > 1022$ keV.

⁷⁸ DATAR 82 looked for $A^0 \rightarrow 2\gamma$ in neutron capture $(np \rightarrow dA^0)$ at Tarapur 500 MW reactor. Sensitive to sum of I = 0 and I = 1 amplitudes. With ZEHNDER 81 [(I = 0) - (I = 1)] result, assert nonexistence of standard A^0 .

⁷⁹VUILLEUMIER 81 is at Grenoble reactor. Set limit m_{A^0} <280 keV.

A^0 (Axion) and Other Light Boson (X^0) Searches in Nuclear Transitions

Limits are for branching ratio.								
VALUE		<u>CL%</u> E\	/TS	DOCUMENT ID		TECN	COMMENT	
• • • W	/e do not i	use the fo	ollowin	g data for averages	s, fits	, limits,	etc. • • •	
				⁸⁰ DEBOER	97 C	RVUE	M1 transitions	
< 5.5	$\times 10^{-10}$	95		⁸¹ TSUNODA	95	CNTR	252 Cf fission, $A^0 \rightarrow ee$	
< 1.2	imes 10 ⁻⁶	95		⁸² MINOWA	93	CNTR	139 La* \rightarrow 139 La A0	
< 2	imes 10 ⁻⁴	90		⁸³ HICKS	92	CNTR	35 S decay, ${\cal A}^0 o ~\gamma \gamma$	
< 1.5	imes 10 ⁻⁹	95		⁸⁴ ASANUMA	90	CNTR	²⁴¹ Am decay	
<(0.4–1	$0) \times 10^{-3}$	95		⁸⁵ DEBOER	90	CNTR		
<(0.2–1) × 10 ⁻³	90		⁸⁶ BINI	89	CNTR	$16_{O^*}^{A0} \rightarrow 16_{O}^{A0}_{OX}^{A0}_{O}_{OX}^{A0}_{O}_{OX}^{A0$	
				⁸⁷ AVIGNONE	88	CNTR	$\begin{array}{c} X^{0} \rightarrow e^{+}e^{-} \\ Cu^{*} \rightarrow CuA^{0}(A^{0} \rightarrow a^{0}) \end{array}$	
	4			00			$2\gamma, A^{0} e \rightarrow \gamma e,$ $A^{0} Z \rightarrow \gamma Z)$	
< 1.5	imes 10 ⁻⁴	90		⁸⁸ DATAR	88	CNTR		
< 5	imes 10 ⁻³	90		⁸⁹ DEBOER	88 C	CNTR	$16^{A0}_{O^*} \xrightarrow{e^+e^-} 16^{O}_{O}_{X0}$	
< 3.4	imes 10 ⁻⁵	95		⁹⁰ DOEHNER	88	SPEC	$X^{0} \xrightarrow{e^{+}e^{-}} e^{+}e^{-}$ $^{2}H^{*}, A^{0} \xrightarrow{e^{+}e^{+}e^{-}}$	
< 4	$\times 10^{-4}$			⁹¹ SAVAGE	88	CNTR	Nuclear decay (isovec- tor)	
< 3	imes 10 ⁻³	95		⁹¹ SAVAGE	88	CNTR		
< 0.10	6	90		⁹² HALLIN	86	SPEC	⁶ Li isovector decay	
<10.8		90		⁹² HALLIN	86	SPEC	¹⁰ B isoscalar decays	
< 2.2		90		⁹² HALLIN	86	SPEC	¹⁴ N isoscalar decays	
< 4	imes 10 ⁻⁴	90	0	⁹³ SAVAGE		CNTR		
				⁹⁴ ANANEV			Li [*] , deut [*] $A^0 \rightarrow 2\gamma$	
				⁹⁵ CAVAIGNAC	83	CNTR	97 Nb*, deut* transition ${}^{0} \rightarrow 2\gamma$	
				⁹⁶ ALEKSEEV	8 2B	CNTR	Li*, deut* transition ${\cal A}^0 o 2\gamma$	
				⁹⁷ LEHMANN	82	CNTR	$\begin{array}{ccc} Cu^* \xrightarrow{\rightarrow} & Cu \mathcal{A}^0 \\ (\mathcal{A}^0 \xrightarrow{\rightarrow} & 2\gamma) \end{array}$	
			0	⁹⁸ ZEHNDER	82	CNTR	Li*, Nb* decay, <i>n</i> -capt.	
			0	⁹⁹ ZEHNDER	81	CNTR	$Ba^* \rightarrow BaA^0$	
				¹⁰⁰ CALAPRICE	79		$(A^0 \rightarrow 2\gamma)$ Carbon	
80								

- ⁸⁰ DEBOER 97C reanalyzed the existent data on Nuclear M1 transitions and find that a 9 MeV boson decaying into e⁺ e⁻ would explain the excess of events with large opening angles. See also DEBOER 01 for follow-up experiments.
 ⁸¹ TSUNODA 95 looked for axion emission when ²⁵²Cf undergoes a spontaneous fission,
- ⁸¹ TSUNODA 95 looked for axion emission when ²⁵²Cf undergoes a spontaneous fission, with the axion decaying into e^+e^- . The bound is for m_{A0} =40 MeV. It improves to 2.5×10^{-5} for m_{A0} =200 MeV.
- ⁸² MINOWA 93 studied chain process, ¹³⁹Ce \rightarrow ¹³⁹La^{*} by electron capture and M1 transition of ¹³⁹La^{*} to the ground state. It does not assume decay modes of A^0 . The bound applies for $m_{A^0} < 166$ keV.

 83 HICKS 92 bound is applicable for $\tau_{\chi0}~<4\times10^{-11}$ sec.

- ⁸⁴ The ASANUMA 90 limit is for the branching fraction of X^0 emission per ²⁴¹Am α decay and valid for $\tau_{X^0} < 3 \times 10^{-11}$ s.
- ⁸⁵ The DEBOER 90 limit is for the branching ratio ⁸Be^{*} (18.15 MeV, 1⁺) \rightarrow ⁸Be A^0 , $A^0 \rightarrow e^+e^-$ for the mass range $m_{\Delta 0} = 4$ –15 MeV.
- ⁸⁶ The BINI 89 limit is for the branching fraction of ¹⁶O*(6.05 MeV, 0⁺) \rightarrow ¹⁶OX⁰, $X^0 \rightarrow e^+e^-$ for $m_X = 1.5$ -3.1 MeV. $\tau_{X^0} \lesssim 10^{-11}$ s is assumed. The spin-parity of X is restricted to 0⁺ or 1⁻.
- ⁸⁷ AVIGNONE 88 looked for the 1115 keV transition $C^* \rightarrow CuA^0$, either from $A^0 \rightarrow 2\gamma$ in-flight decay or from the secondary A^0 interactions by Compton and by Primakoff processes. Limits for axion parameters are obtained for $m_{A^0} < 1.1$ MeV.
- ⁸⁸ DATAR 88 rule out light pseudoscalar particle emission through its decay $A^0 \rightarrow e^+ e^$ in the mass range 1.02–2.5 MeV and lifetime range 10^{-13} – 10^{-8} s. The above limit is for $\tau = 5 \times 10^{-13}$ s and m = 1.7 MeV; see the paper for the τ -m dependence of the limit.
- ⁸⁹ The limit is for the branching fraction of ¹⁶O*(6.05 MeV, 0⁺) \rightarrow ¹⁶OX⁰, X⁰ \rightarrow e^+e^- against internal pair conversion for $m_{X^0} = 1.7$ MeV and $\tau_{X^0} < 10^{-11}$ s. Similar limits are obtained for $m_{X^0} = 1.3$ -3.2 MeV. The spin parity of X⁰ must be either 0⁺ or 1⁻. The limit at 1.7 MeV is translated into a limit for the X⁰-nucleon coupling constant: $g_{X^0 NN}^2/4\pi < 2.3 \times 10^{-9}$.
- 90 The DOEHNER 88 limit is for $m_{A^0}=1.7$ MeV, $\tau(A^0)<10^{-10}$ s. Limits less than 10^{-4} are obtained for $m_{A^0}=1.2$ –2.2 MeV.
- ⁹¹ SAVAGE 88 looked for A^{0} that decays into $e^{+}e^{-}$ in the decay of the 9.17 MeV $J^{P} = 2^{+}$ state in ¹⁴N, 17.64 MeV state $J^{P} = 1^{+}$ in ⁸Be, and the 18.15 MeV state $J^{P} = 1^{+}$ in ⁸Be. This experiment constrains the isovector coupling of A^{0} to hadrons, if $m_{A^{0}} = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^{0} to hadrons, if $m_{A^{0}} = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^{0} to hadrons, if $m_{A^{0}} = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^{0} to hadrons, if $m_{A^{0}} = (1.1 \rightarrow 2.2)$
 - 2.6) MeV. Both limits are valid only if $au(A^0) \lesssim 1 imes 10^{-11}$ s.
- ⁹² Limits are for Γ($A^0(1.8 \text{ MeV})$)/Γ(π M1); i.e., for 1.8 MeV axion emission normalized to the rate for internal emission of e^+e^- pairs. Valid for $\tau_{A^0} < 2 \times 10^{-11}$ s. ⁶Li isovector decay data strongly disfavor PECCEI 86 model I, whereas the ¹⁰B and ¹⁴N isoscalar decay data strongly reject PECCEI 86 model II and III.
- ⁹³ SAVAGE 86B looked for A^{0} that decays into $e^{+}e^{-}$ in the decay of the 9.17 MeV $J^{P} = 2^{+}$ state in ¹⁴N. Limit on the branching fraction is valid if $\tau_{A^{0}} \lesssim 1. \times 10^{-11}$ s for $m_{A^{0}} = (1.1-1.7)$ MeV. This experiment constrains the iso-vector coupling of A^{0} to hadrons. ⁹⁴ ANANEV 85 with IBR-2 pulsed reactor exclude standard A^{0} at CL = 95% masses below 470 keV (Li^{*} decay) and below $2m_{e}$ for deuteron^{*} decay.
- ⁹⁵CAVAIGNAC 83 at Bugey reactor exclude axion at any m_{97} Nb*decay and axion with m_{A0} between 275 and 288 keV (deuteron* decay).
- ⁹⁶ ALEKSEEV 82 with IBR-2 pulsed reactor exclude standard A^0 at CL = 95% mass-ranges m_{A0} <400 keV (Li^{*} decay) and 330 keV < m_{A0} <2.2 MeV. (deuteron* decay).
- ⁹⁷LEHMANN 82 obtained $A^0 \rightarrow 2\gamma$ rate $< 6.2 \times 10^{-5}/s$ (CL = 95%) excluding m_{A^0} between 100 and 1000 keV.
- ⁹⁸ ZEHNDER 82 used Goesgen 2.8GW light-water reactor to check A^0 production. No 2γ peak in Li^{*}, Nb^{*} decay (both single *p* transition) nor in *n* capture (combined with previous Ba^{*} negative result) rules out standard A^0 . Set limit $m_{A^0} < 60$ keV for any A^0 .
- ⁹⁹ $\stackrel{A^0}{ZEHNDER 81}$ looked for Ba^{*} \rightarrow A^0 Ba transition with $A^0 \rightarrow 2\gamma$. Obtained 2γ coincidence rate $< 2.2 \times 10^{-5}$ /s (CL = 95%) excluding $m_{A^0} > 160$ keV (or 200 keV depending on Higgs mixing). However, see BARROSO 81.

¹⁰⁰ CALAPRICE 79 saw no axion emission from excited states of carbon. Sensitive to axion mass between 1 and 15 MeV.

A ⁰ (Axion) Limits from Its Electron Coupling Limits are for $\tau(A^0 \rightarrow e^+ e^-)$.											
VALUE (s)	, <u>CL%</u>	DOCUMENT ID		TECN	COMMENT						
• • • We do not use the follow	wing da	ta for averages, fits,	limit	s, etc. •	• •						
none $4\times10^{-16}4.5\times10^{-12}$	90	¹⁰¹ BROSS	91	BDMP	$e N \rightarrow e A^0 N \ (A^0 \rightarrow e e)$						
		¹⁰² GUO	90	BDMP	$eN \rightarrow eA^{0}N \\ (A^{0} \rightarrow ee)$						
		¹⁰³ BJORKEN	88	CALO	$A \rightarrow e^+ e^- \text{ or } 2\gamma$						
		¹⁰⁴ BLINOV	88	MD1	$ee ightarrow eeA^0 \ (A^0 ightarrow ee)$						
none $1\times10^{-14}1\times10^{-10}$	90	¹⁰⁵ RIORDAN	87	BDMP	$eN \rightarrow eA^{0}N$ $(A^{0} \rightarrow ee)$						
none $1\times10^{-14}1\times10^{-11}$	90	¹⁰⁶ BROWN	86	BDMP	$eN \rightarrow eA^{0}N$ $(A^{0} \rightarrow ee)$						
none 6 \times 10 $^{-14}$ –9 \times 10 $^{-11}$	95	¹⁰⁷ DAVIER	86	BDMP	$eN \rightarrow eA^{0}N' (A^{0} \rightarrow ee)$						
none $3\times10^{-13}1\times10^{-7}$	90	¹⁰⁸ KONAKA	86	BDMP	$e N \rightarrow e A^0 N \\ (A^0 \rightarrow e e)$						

¹⁰¹ The listed BROSS 91 limit is for $m_{A^0} = 1.14 \text{ MeV}$. B($A^0 \rightarrow e^+e^-$) = 1 assumed. Excluded domain in the τ_{A^0} - m_{A^0} plane extends up to $m_{A^0} \approx 7 \text{ MeV}$ (see Fig. 5). Combining with electron g-2 constraint, axions coupling only to e^+e^- ruled out for $m_{A^0} < 4.8 \text{ MeV}$ (90%CL).

- 102 GUO 90 use the same apparatus as BROWN 86 and improve the previous limit in the shorter lifetime region. Combined with g-2 constraint, axions coupling only to e^+e^- are ruled out for $m_{\Delta 0} < 2.7$ MeV (90% CL).
- ¹⁰³ BJORKEN 88 reports limits on axion parameters (f_A , m_A , τ_A) for m_{A^0} < 200 MeV from electron beam-dump experiment with production via Primakoff photoproduction, bremsstrahlung from electrons, and resonant annihilation of positrons on atomic electrons.
- ¹⁰⁴ BLINOV 88 assume zero spin, m = 1.8 MeV and lifetime $< 5 \times 10^{-12}$ s and find $\Gamma(A^0 \rightarrow \gamma \gamma) B(A^0 \rightarrow e^+ e^-) < 2$ eV (CL=90%).
- ¹⁰⁵ Assumes $A^0 \gamma \gamma$ coupling is small and hence Primakoff production is small. Their figure 2 shows limits on axions for $m_{\Delta 0}$ < 15 MeV.
- ¹⁰⁶Uses electrons in hadronic showers from an incident 800 GeV proton beam. Limits for m_{A0} < 15 MeV are shown in their figure 3.
- ${}^{107}m_{A^0} = 1.8$ MeV assumed. The excluded domain in the $\tau_{A^0} m_{A^0}$ plane extends up to $m_{A^0} \approx 14$ MeV, see their figure 4.
- ¹⁰⁸ The limits are obtained from their figure 3. Also given is the limit on the $A^0 \gamma \gamma A^0 e^+ e^-$ coupling plane by assuming Primakoff production.

Search for A^0 (Axion) Resonance in Bhabha Scattering

The limit is for $\Gamma(A^0)[B(A^0 \rightarrow e^+e^-)]^2$.		
VALUE (10^{-3} eV)	CL%	DOCUMENT ID TECN COMMENT
• • • We do not use th	e follow	ing data for averages, fits, limits, etc. $ullet$ $ullet$
< 1.3	97	¹⁰⁹ HALLIN 92 CNTR $m_{A^0} = 1.75 - 1.88$ MeV
none 0.0016–0.47	90	¹¹⁰ HENDERSON 92C CNTR $m_{A^0} = 1.5 - 1.86$ MeV
< 2.0	90	¹¹¹ WU 92 CNTR $m_{A^0} = 1.56 - 1.86$ MeV
< 0.013	95	TSERTOS 91 CNTR $m_{A^0} = 1.832$ MeV
none 0.19-3.3	95	¹¹² WIDMANN 91 CNTR $m_{A^0} = 1.78 - 1.92$ MeV
< 5	97	BAUER 90 CNTR $m_{A^0} = 1.832$ MeV
none 0.09–1.5	95	¹¹³ JUDGE 90 CNTR $m_{A^0} = 1.832$ MeV,
< 1.9	97	¹¹⁴ TSERTOS 89 CNTR $m_{A^0} = 1.82$ MeV
<(10–40)	97	¹¹⁴ TSERTOS 89 CNTR $m_{A^0} = 1.51 - 1.65$ MeV
<(1–2.5)	97	¹¹⁴ TSERTOS 89 CNTR $m_{A^0}^{A^0} = 1.80-1.86$ MeV
< 31	95	LORENZ 88 CNTR $m_{A^0} = 1.646$ MeV
< 94	95	LORENZ 88 CNTR $m_{A^0} = 1.726$ MeV
< 23	95	LORENZ 88 CNTR $m_{A^0} = 1.782$ MeV
< 19	95	LORENZ 88 CNTR $m_{A^0} = 1.837$ MeV
< 3.8	97	¹¹⁵ TSERTOS 88 CNTR $m_{A^0}^7 = 1.832$ MeV
		116 VANKLINKEN 88 CNTR
		¹¹⁷ MAIER 87 CNTR
<2500	90	MILLS 87 CNTR $m_{A^0} = 1.8 \text{ MeV}$
100		¹¹⁸ VONWIMMER.87 CNTR

¹⁰⁹ HALLIN 92 quote limits on lifetime, $8 \times 10^{-14} - 5 \times 10^{-13}$ sec depending on mass, assuming $B(A^0 \rightarrow e^+e^-) = 100\%$. They say that TSERTOS 91 overstated their sensitivity by a factor of 3.

¹¹⁰ HENDERSON 92C exclude axion with lifetime τ_{A0} =1.4 \times 10⁻¹² - 4.0 \times 10⁻¹⁰ s, assuming B($A^0 \rightarrow e^+e^-$)=100%. HENDERSON 92C also exclude a vector boson with τ =1.4 × 10⁻¹² - 6.0 × 10⁻¹⁰ s.

¹¹¹ WU 92 quote limits on lifetime > 3.3×10^{-13} s assuming B($A^0 \rightarrow e^+e^-$)=100%. They say that TSERTOS 89 overestimate the limit by a factor of $\pi/2$. WU 92 also quote a bound for vector boson, $\tau > 8.2 \times 10^{-13}$ s.

¹¹² WIDMANN 91 bound applies exclusively to the case B($A^0 \rightarrow e^+e^-$)=1, since the detection efficiency varies substantially as $\Gamma(A^0)_{total}$ changes. See their Fig. 6.

¹¹³ JUDGE 90 excludes an elastic pseudoscalar e^+e^- resonance for 4.5×10^{-13} s $< \tau(A^0)$ $<~7.5\times10^{-12}\,{\rm s}$ (95% CL) at $m_{{\cal A}^0}\,=\,1.832$ MeV. Comparable limits can be set for $m_{A0} = 1.776 - 1.856$ MeV.

 114 See also TSERTOS 88B in references. 115 The upper limit listed in TSERTOS 88 is too large by a factor of 4. See TSERTOS 88B, footnote 3.

¹¹⁶ VANKLINKEN 88 looked for relatively long-lived resonance ($\tau = 10^{-10}$ – 10^{-12} s). The sensitivity is not sufficient to exclude such a narrow resonance.

¹¹⁷ MAIER 87 obtained limits $R\Gamma \lesssim 60 \text{ eV} (100 \text{ eV})$ at $m_{A^0} \simeq 1.64 \text{ MeV} (1.83 \text{ MeV})$ for energy resolution $\Delta E_{\rm cm} \simeq 3 \text{ keV}$, where R is the resonance cross section normalized to that of Bhabha scattering, and $\Gamma = \Gamma_{ee}^2/\Gamma_{total}$. For a discussion implying that $\Delta E_{\rm cm} \simeq 10$ keV, see TSERTOS 89.

 118 VONWIMMERSPERG 87 measured Bhabha scattering for $E_{\rm cm}=$ 1.37–1.86 MeV and found a possible peak at 1.73 with $\int \sigma dE_{\rm cm}=$ 14.5 \pm 6.8 keV·b. For a comment and a reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see CONNELL 88.

		nance in e^+e^- , e^+e^-)· $\Gamma(A^0 \rightarrow \gamma)$			
VALUE (10^{-3} eV)	CL%	DOCUMENT ID	,,,,	TECN	COMMENT
••• We do not ι	ise the followi	ng data for average	s, fits	s, limits,	etc. • • •
< 0.18	95	VO	94	CNTR	т _{д0} =1.1 МеV
< 1.5	95	VO			$m_{A^0} = 1.4 \text{ MeV}$
<12	95	VO			$m_{A^0} = 1.7 \text{ MeV}$
< 6.6	95	¹¹⁹ TRZASKA			$m_{\Delta 0} = 1.8 \text{ MeV}$
< 4.4	95	WIDMANN			$m_{\Delta 0}^{\prime} = 1.78 - 1.92 \text{ MeV}$
		¹²⁰ FOX	89	CNTR	Л
< 0.11	95	¹²¹ MINOWA	89	CNTR	$m_{A0}^{}=1.062~{ m MeV}$
<33	97	CONNELL	88	CNTR	$m_{A^0} = 1.580 \text{ MeV}$
<42	97	CONNELL	88		$m_{A^0} = 1.642 \text{ MeV}$
<73	97	CONNELL	88		$m_{A^0} = 1.782 \text{ MeV}$
<79	97	CONNELL			$m_{A^0}^2 = 1.832 \text{ MeV}$
¹¹⁹ TRZASKA 91	also give limi	ts in the range (6.			³ eV (95%CL) for $m_{A^0} =$

 $1.6-2.0 \, \text{MeV}.$ 120 FOX 89 measured positron annihilation with an electron in the source material into two photons and found no signal at 1.062 MeV ($< 9 \times 10^{-5}$ of two-photon annihilation at rest).

 $^{121}\,{\rm Similar}$ limits are obtained for $m_{{\cal A}^0}=$ 1.045–1.085 MeV.

Search for X⁰ (Light Boson) Resonance in $e^+e^- ightarrow \gamma\gamma\gamma$

The limit is for	$\Gamma(X^0 \rightarrow$	$e^+e^-)\cdot\Gamma(X^0 \rightarrow f)$	γγγ),	/F _{total} .	C invariance forbids spin-0		
X^0 coupling to	both e^+e	e ⁻ and $\gamma \gamma \gamma$.					
$VALUE (10^{-3} \text{ eV})$	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
< 0.2	95	¹²² VO	94	CNTR	m _{X0} =1.1–1.9 MeV		
< 1.0	95	¹²³ VO	94	CNTR	$m_{\chi 0}^{\prime} = 1.1 \text{ MeV}$		
< 2.5	95	¹²³ VO			$m_{\chi^0} = 1.4 \text{ MeV}$		
<120	95	¹²³ VO			$m_{\chi 0} = 1.7 \text{ MeV}$		
< 3.8	95	¹²⁴ SKALSEY			$m_{\chi^0} = 1.5 \text{ MeV}$		
¹²² VO 94 looked for $X^0 \rightarrow \gamma \gamma \gamma$ decaying at rest. The precise limits depend on m_{χ^0} . See Fig. 2(b) in paper.							
123 VO 94 looked for		$\gamma\gamma$ decaving in fligh	t.				
				d 7.5 for	1.64 MeV. The spin of X^0		
is assumed to be o		7					

Light Boson (X^0) Search in Nonresonant e^+e^- Annihilation at Rest

Limits are fo	or the ratio	of $n \sim \pm$	\mathbf{x}^0	production	relative to a	\sim
Linnus are in	or the ratio	$OI H' \gamma +$		production	relative to y	΄γ.

		, · ·			/ /
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he follow	ing data for averages	, fits	, limits,	etc. • • •
< 4.2	90	¹²⁵ MITSUI	96	CNTR	γX^0
< 4	68	¹²⁶ SKALSEY	95	CNTR	γX^0
<40	68	¹²⁷ SKALSEY	95	RVUE	γX^{0}
< 0.18	90	¹²⁸ ADACHI			$\gamma \gamma X^0$, $X^0 ightarrow \gamma \gamma$
< 0.26	90	¹²⁹ ADACHI			$\gamma \gamma X^0$, $X^0 \rightarrow \gamma \gamma$
< 0.33	90	¹³⁰ ADACHI	94	CNTR	$\gamma X^0, X^0 \rightarrow \gamma \gamma \gamma$

¹²⁵ MITSUI 96 looked for a monochromatic γ . The bound applies for a vector X^0 with C=-1 and $m_{X^0} < 200$ keV. They derive an upper bound on eeX^0 coupling and hence on the branching ratio B(o-Ps $\rightarrow \gamma\gamma X^0$) $< 6.2 \times 10^{-6}$. The bounds weaken for heavier χ^0

126 $_{\text{SKALSEY}}^{X0}$ 95 looked for a monochromatic γ without an accompanying γ in $e^+e^$ annihilation. The bound applies for scalar and vector X^0 with C = -1 and $m_{\chi 0} =$ 100–1000 keV. 127 $_{\text{SKALSEY}}^{100-1000}$ keV.

- ¹²⁷ SKALSEY 95 reinterpreted the bound on γA^0 decay of o-Ps by ASAI 91 where 3% of delayed annihilations are not from 3S_1 states. The bound applies for scalar and vector X^0 with C = -1 and $m_{\chi 0} = 0$ -800 keV.
- ¹²⁸ ADACHI 94 looked for a peak in the $\gamma\gamma$ invariant mass distribution in $\gamma\gamma\gamma\gamma$ production from e^+e^- annihilation. The bound applies for $m_{\chi 0} = 70-800$ keV.
- ¹²⁹ ADACHI 94 looked for a peak in the missing-mass mass distribution in $\gamma\gamma$ channel, using $\gamma\gamma\gamma\gamma\gamma$ production from e^+e^- annihilation. The bound applies for m_{χ^0} <800 keV.
- ¹³⁰ ADACHI 94 looked for a peak in the missing mass distribution in $\gamma\gamma\gamma$ channel, using $\gamma\gamma\gamma\gamma\gamma$ production from e^+e^- annihilation. The bound applies for $m_{\chi^0} = 200-900$ keV.

Searches for Goldstone Bosons (X^0)

(Including F	lorizontal I	Boso	ns and Majorons.) I	_imit	s are for	branching ratios.
VALUE	CL% EVT		DOCUMENT ID			COMMENT
• • • We do not	use the foll	owii	ng data for averages	, fits	, limits,	etc. ● ● ●
			¹³¹ DIAZ	98	THEO	$H^0 \xrightarrow{X^0 X^0, A^0} \xrightarrow{X^0 X^0, Majoron} X^0 X^0 X^0$
			¹³² BOBRAKOV	91		Electron quasi-magnetic interaction
$< 3.3 \times 10^{-2}$	95		¹³³ ALBRECHT	90e	ARG	$\tau \rightarrow \mu X^0$. Familon
$< 1.8 \times 10^{-2}$	95		¹³³ ALBRECHT	90E	ARG	$ au ightarrow e X^0$. Familon
$< 6.4 imes 10^{-9}$	90		¹³⁴ ATIYA			$K^+ \rightarrow \pi^+ X^0$.
${<}1.1 imes 10^{-9}$	90		¹³⁵ BOLTON	88	СВОХ	Familon $\mu^+ \rightarrow e^+ \gamma X^0.$ Eamilon
	90 90 90 90 90	0	136 CHANDA 137 CHOI 138 PICCIOTTO 139 GOLDMAN 140 BRYMAN 141 EICHLER 142 JODIDIO 143 BALTRUSAIT.	86B 86 86	CNTR RVUE SPEC SPEC MRK3	Majoron, SN 1987A $\pi \rightarrow e\nu X^0$, Majoron $\mu \rightarrow e\gamma X^0$. Familon $\mu \rightarrow eX^0$. Familon $\mu^+ \rightarrow e^+ X^0$. Familon $\mu^+ \rightarrow e^+ X^0$. Familon $\tau \rightarrow \ell X^0$. Familon
			¹⁴⁴ DICUS	83	COSM	$ u(hvy) ightarrow u(light) X^0$

- ¹³¹ DIAZ 98 studied models of spontaneously broken lepton number with both singlet and triplet Higgses. They obtain limits on the parameter space from invisible decay $Z \rightarrow H^0 A^0 \rightarrow X^0 X^0 X^0 X^0 X^0$ and $e^+e^- \rightarrow Z H^0$ with $H^0 \rightarrow X^0 X^0$.
- ¹³²BOBRAKOV 91 searched for anomalous magnetic interactions between polarized electrons expected from the exchange of a massless pseudoscalar boson (arion). A limit $x_e^2 < 2 \times 10^{-4}$ (95%CL) is found for the effective anomalous magneton parametrized as $x_e (G_F / 8\pi \sqrt{2})^{1/2}$.
- ¹³³ALBRECHT 90E limits are for B($\tau \rightarrow \ell X^0$)/B($\tau \rightarrow \ell \nu \overline{\nu}$). Valid for $m_{\chi^0} <$ 100 MeV. The limits rise to 7.1% (for μ), 5.0% (for e) for $m_{\chi^0} =$ 500 MeV.
- ¹³⁴ ATIYA 90 limit is for $m_{\chi^0} = 0$. The limit B < 1×10^{-8} holds for m_{χ^0} < 95 MeV. For the reduction of the limit due to finite lifetime of χ^0 , see their Fig. 3.
- 135 BOLTON 88 limit corresponds to $F > 3.1 \times 10^9$ GeV, which does not depend on the chirality property of the coupling.
- ¹³⁶ CHANDA 88 find v_T < 10 MeV for the weak-triplet Higgs vev. in Gelmini-Roncadelli model, and v_S > 5.8×10^6 GeV in the singlet Majoron model.
- ¹³⁷ CHOI 88 used the observed neutrino flux from the supernova SN 1987A to exclude the neutrino Majoron Yukawa coupling *h* in the range $2 \times 10^{-5} < h < 3 \times 10^{-4}$ for the interaction $L_{\text{int}} = \frac{1}{2} i h \overline{\psi}_{\nu}^{c} \gamma_{5} \psi_{\nu} \phi_{X}$. For several families of neutrinos, the limit applies for $(\Sigma h_{i}^{4})^{1/4}$.
- ¹³⁸ PICCIOTTO 88 limit applies when m_{χ^0} < 55 MeV and τ_{χ^0} > 2ns, and it decreases to 4 × 10⁻⁷ at m_{χ^0} = 125 MeV, beyond which no limit is obtained.
- ¹³⁹ GOLDMAN 87 limit corresponds to $F > 2.9 \times 10^9$ GeV for the family symmetry breaking scale from the Lagrangian $L_{\text{int}} = (1/F)\overline{\psi}_{\mu}\gamma^{\mu}$ $(a+b\gamma_5)$ $\psi_e\partial_{\mu}\phi_{\chi^0}$ with $a^2+b^2 = 1$. This is not as sensitive as the limit $F > 9.9 \times 10^9$ GeV derived from the search for $\mu^+ \rightarrow e^+ \chi^0$ by JODIDIO 86, but does not depend on the chirality property of the coupling.
- ¹⁴⁰ Limits are for $\Gamma(\mu \rightarrow eX^0)/\Gamma(\mu \rightarrow e\nu\overline{\nu})$. Valid when $m_{\chi^0} = 0$ -93.4, 98.1-103.5 MeV.
- ¹⁴¹ EICHLER 86 looked for $\mu^+ \rightarrow e^+ X^0$ followed by $X^0 \rightarrow e^+ e^-$. Limits on the branching fraction depend on the mass and and lifetime of X^0 . The quoted limits are valid when $\tau_{X^0} \lesssim 3. \times 10^{-10}$ s if the decays are kinematically allowed.
- ¹⁴² JODIDIO 86 corresponds to $F > 9.9 \times 10^9$ GeV for the family symmetry breaking scale with the parity-conserving effective Lagrangian $L_{\text{int}} = (1/F) \overline{\psi}_{\mu} \gamma^{\mu} \psi_{e} \partial^{\mu} \phi_{\chi 0}$.
- ¹⁴³ BALTRUSAITIS 85 search for light Goldstone boson(X^0) of broken U(1). CL = 95% limits are B($\tau \rightarrow \mu^+ X^0$)/B($\tau \rightarrow \mu^+ \nu \nu$) <0.125 and B($\tau \rightarrow e^+ X^0$)/B($\tau \rightarrow e^+ \nu \nu$) <0.04. Inferred limit for the symmetry breaking scale is m > 3000 TeV.
- ¹⁴⁴ The primordial heavy neutrino must decay into ν and familon, f_A , early so that the red-shifted decay products are below critical density, see their table. In addition, $K \rightarrow \pi f_A$ and $\mu \rightarrow e f_A$ are unseen. Combining these excludes $m_{\text{heavy}\nu}$ between 5×10^{-5} and 5×10^{-4} MeV (μ decay) and $m_{\text{heavy}\nu}$ between 5×10^{-5} and 0.1 MeV (K-decay).

Majoron Searches in Neutrinoless Double β Decay

Limits are for the half-life of neutrinoless $\beta\beta$ decay with a Majoron emission. Previous indications for neutrinoless double beta decay with majoron emission have been superseded. No experiment currently claims any such evidence. Also see the recent rviews ZUBER 98 and FAESSLER 98B.

$t_{1/2}$	(10 ²¹ yr)	<u>CL</u> %	ISOTOPE	TRANSITION	METHOD	DOCUMENT ID	
>7	200	90	128 _{Te}		CNTR	¹⁴⁵ BERNATOW	. 92
• •	• We do no	t use th	e following	data for averag	ges, fits, limits, etc		
>	0.0035	90	160 _{Gd}	0 u	$^{160}\mathrm{Gd}_2\mathrm{SiO}_5$:Ce	¹⁴⁶ DANEVICH	01
>	0.013	90	160_{Gd}	$0\nu 2\chi$	¹⁶⁰ Gd ₂ SiO ₅ :Ce	¹⁴⁷ DANEVICH	01
>	1.4	90	¹³⁰ Te	$0\nu\chi$	Cryog. det.	¹⁴⁸ ALESSAND	00
>	0.7	90	¹³⁰ Te	$0\nu 2\chi$	Cryog. det.	¹⁴⁹ ALESSAND	00
>	2.3	90	⁸² Se	$0\nu\chi$	NEMO 2	¹⁵⁰ ARNOLD	00
>	0.31	90	⁹⁶ Zr	$0\nu\chi$	NEMO 2	¹⁵¹ ARNOLD	00
>	0.6	90	100 _{Mo}	$0\nu\chi$	NEMO 2	¹⁵² ARNOLD	00
>	0.92	90	116 Cd	$0\nu\chi$	NEMO 2	¹⁵³ ARNOLD	00
>	0.63	90	⁸² Se	$0\nu 2\chi$	NEMO 2	¹⁵⁴ ARNOLD	00
>	0.063	90	⁹⁶ Zr	$0\nu 2\chi$	NEMO 2	¹⁵⁴ ARNOLD	00
>	0.16	90	100 _{Mo}	$0\nu 2\chi$	NEMO 2	¹⁵⁴ ARNOLD	00
>	0.35	90	^{116}Cd	$0\nu 2\chi$	NEMO 2	¹⁵⁴ ARNOLD	00
>	3.7	90	¹¹⁶ Cd	$0 \nu \chi$	¹¹⁶ CdWO ₄ scint	. ¹⁵⁵ DANEVICH	00
>	0.59	90	^{116}Cd	$0\nu 2\chi$	¹¹⁶ CdWO ₄ scint	. ¹⁵⁶ DANEVICH	00
>	0.35	90	⁹⁶ Zr	$0 \nu \chi$	NEMO-2	¹⁵⁷ ARNOLD	99
>	1.2	90	^{116}Cd	$0\nu\chi$	SCIN	¹⁵⁸ DANEVICH	98
>	0.26	90	¹¹⁶ Cd	$0\nu 2\chi$	SCIN	¹⁵⁹ DANEVICH	98
>	7.2	90	¹³⁶ Xe	$0\nu 2\chi$	ТРС	¹⁶⁰ LUESCHER	98
>	7.91	90	76 _{Ge}		SPEC	¹⁶¹ GUENTHER	96
>	17	90	^{76}Ge		CNTR	BECK	93
>	0.79	68	100 _{Mo}		SPEC	¹⁶² TANAKA	93
>	0.19	68	¹³⁶ Xe		CNTR	BARABASH	89
>	1.0	90	⁷⁶ Ge		CNTR	FISHER	89
>	0.33	90	100 _{Mo}		CNTR	ALSTON	88
>	1.4	90	⁷⁶ Ge		CNTR	CALDWELL	87
>	0.44	90	⁸² Se		SPEC	ELLIOTT	87
>	1.2	90	⁷⁶ Ge		CNTR	FISHER	87
					CNTR	¹⁶³ VERGADOS	82

 145 BERNATOWICZ 92 studied double- β decays of 128 Te and 130 Te, and found the ratio $\tau(^{130}\text{Te})/\tau(^{128}\text{Te}) = (3.52 \pm 0.11) \times 10^{-4}$ in agreement with relatively stable theoretical predictions. The bound is based on the requirement that Majoron-emitting decay cannot be larger than the observed double-beta rate of ^{128}Te of $(7.7 \pm 0.4) \times 10^{24}$ year. We calculated 90% CL limit as $(7.7 - 1.28 \times 0.4 = 7.2) \times 10^{24}$.

¹⁴⁶ DANEVICH 01 obtain limit for the $0\nu\chi$ decay with Majoron emission of ¹⁶⁰Gd using Gd₂SiO₅:Ce crystal scintillators.

¹⁴⁷ DANEVICH 01 obtain limit for the $0\nu 2\chi$ decay with 2 Majoron emission of ¹⁶⁰Gd.

¹⁴⁸ ALESSANDRELLO 00 obtain limit for the $0\nu\chi$ decay with Majoron emission of ¹³⁰ Te using cryogenic calorimeter. Derive $\langle g_{\nu\chi} \rangle < 2.6-6.7 \times 10^{-4}$ with several nuclear matrix elements.

¹⁴⁹ ALESSANDRELLO 00 obtain limit for the $0\nu 2\chi$ decay with two Majoron emission of 130 Te using cryogenic calorimeter.

- 150 ARNOLD 00 reports limit for the 0 $u\chi$ decay with Majoron emission derived from tracking calorimeter NEMO 2. Using ^{82}Se source: $\langle g_{\nu\,\chi}\rangle < 1.6\times 10^{-4}.$ Matrix element from GUENTHER 96.
- ¹⁵¹Using ⁹⁶Zr source: $\langle g_{\nu \gamma} \rangle < 2.6 \times 10^{-4}$. Matrix element from ARNOLD 99.
- ¹⁵² Using ¹⁰⁰Mo source: $\langle g_{\nu\chi} \rangle < 2.0 \times 10^{-4}$. Matrix element from GUENTHER 96.
- ¹⁵³Using ¹¹⁶Cd source: $\langle g_{\nu \gamma} \rangle < 2.1 \times 10^{-4}$. Matrix element from GUENTHER 96.
- 154 ARNOLD 00 reports limit for the 0u2 χ decay with two Majoron emission derived from tracking calorimeter NEMO 2.
- 155 DANEVICH 00 obtain limit for the 0 $u\chi$ decay with Majoron emission of 116 Cd using enriched CdWO_4 scinlattors. Derive $\langle g_{\nu\,\gamma}\rangle < 6.5 \times 10^{-5}$ (matrix elements of ARNOLD 96)
 - and 12×10^{-5} (matrix elements of HIRSCH 96). Replaces DANEVICH 98.
- 156 DANEVICH 00 obtain limit for the $0\nu2\chi$ decay with two Majoron emission of $^{116}{\rm Cd}$ using enriched CdWO₄ scinlattors. Replaces DANEVICH 98.
- 157 ARNOLD 99 use enriched 96 Zr and give a limit based on the matrix elements of STAUDT 90.
- 158 DANEVICH 98 use cadmium tungstate crystals, enriched to 83% in 116 Cd. The spectrum was analysed in the region of expected majoron emission. Using a variety of nuclear matrix elements, they obtain a limit $\langle g_{\nu\,\chi}\rangle<\!\!(1\!-\!3)\times10^{-4}.$
- 159 DANEVICH 98 obtain a limit on the 0ν decay with emission of 2 majorons.
- 160 LUESCHER 98 report a limit for the 0u decay with Majoron emission of 136 Xe using Xe TPC. This result is more stringent than BARABASH 89. Using the matrix elements of ENGEL 88, they obtain a limit on $\langle g_{\nu\chi} \rangle$ of 2.0 imes 10⁻⁴.
- 161 See Table 1 in GUENTHER 96 for limits on the Majoron coupling in different models.
- ¹⁶² TANAKA 93 also quote limit 5.3 × 10¹⁹ years on two Majoron emission. ¹⁶³ VERGADOS 82 sets limit $g_H < 4 \times 10^{-3}$ for (dimensionless) lepton-number violating coupling, g_H , of scalar boson (Majoron) to neutrinos, from analysis of data on double β decay of ⁴⁸Ca.

Invisible A⁰ (Axion) MASS LIMITS from Astrophysics and Cosmology

$v_1 = v_2$ is usually assume	ed (<i>v_i =</i> vacuum exp	ecta	tion valı	ies). For a review of these
limits, see RAFFELT 90C	and TURNER 90.	In th	ie comm	ent lines below, D and K
refer to DFSZ and KSVZ	axion types, discusse	ed in	the abo	ve minireview.
VALUE (eV)	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the followi		, fits	, limits,	etc. ● ● ●
3 to 20	¹⁶⁴ MOROI	98	COSM	K, hot dark matter
< 0.007	¹⁶⁵ BORISOV	97	ASTR	D, neutron star
< 4	¹⁶⁶ KACHELRIESS	5 97	ASTR	D, neutron star cooling
$<$ (0.5–6) $ imes$ 10 $^{-3}$	¹⁶⁷ KEIL	97		SN 1987A
< 0.018	¹⁶⁸ RAFFELT	95	ASTR	D, red giant
< 0.010	¹⁶⁹ ALTHERR	94	ASTR	D, red giants, white dwarfs
	¹⁷⁰ CHANG	93	ASTR	
< 0.01	WANG	92	ASTR	D, white dwarf
< 0.03	WANG	92C	ASTR	D, C-O burning
none 3–8	¹⁷¹ BERSHADY	91	ASTR	D, K,
<10	¹⁷² KIM	91 C	COSM	intergalactic light D, K, mass density of the universe, super- symmetry
	¹⁷³ RAFFELT	91 B	ASTR	D,K, SN 1987A
$< 1 \times 10^{-3}$	¹⁷⁴ RESSELL	91	ASTR	K, intergalactic light
none 10^{-3} -3	BURROWS	90	ASTR	D,K, SN 1987A
HTTP://PDG.LBL.GOV	Page 41		Crea	ted: 6/14/2002 11:12

	175 ENGEL		
	¹⁷⁵ ENGEL	90 ASTR	
< 0.02	¹⁷⁶ RAFFELT	90d ASTR	D, red giant
$< 1 \times 10^{-3}$	177 BURROWS	89 ASTR	D,K, SN 1987A
$<$ (1.4–10) $ imes$ 10 $^{-3}$	¹⁷⁸ ERICSON	89 ASTR	D,K, SN 1987A
$< 3.6 \times 10^{-4}$	¹⁷⁹ MAYLE	89 ASTR	D,K, SN 1987A
<12	CHANDA	88 ASTR	D, Sun
$< 1 \times 10^{-3}$	RAFFELT	88 ASTR	D,K, SN 1987A
	¹⁸⁰ RAFFELT	88B ASTR	red giant
< 0.07	FRIEMAN	87 ASTR	D, red giant
< 0.7	¹⁸¹ RAFFELT	87 ASTR	K, red giant
< 2–5	TURNER		K, thermal production
< 0.01	¹⁸² DEARBORN	86 ASTR	D, red giant
< 0.06	RAFFELT		D, red giant
< 0.00	¹⁸³ RAFFELT		K, red giant
	RAFFELT		
< 0.03	¹⁸⁴ KAPLAN	86B ASTR	•
< 1		85 ASTR	-
< 0.003-0.02	ΙΨΑΜΟΤΟ	84 ASTR	
$> 1 \times 10^{-5}$	ABBOTT	83 COSM	D,K, mass density of the
$> 1 \times 10^{-5}$	DINE	83 COSM	universe
> 1 × 10 °	DINE	65 CUSIVI	D,K, mass density of the universe
< 0.04	ELLIS	83b ASTR	D, red giant
$> 1 \times 10^{-5}$	PRESKILL		D,K, mass density of the
ý <u>-</u> <u>-</u>			universe
< 0.1	BARROSO	82 ASTR	D, red giant
< 1	¹⁸⁵ FUKUGITA	82 ASTR	D, stellar cooling
< 0.07	FUKUGITA	82b ASTR	D, red giant

¹⁶⁴ MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) can be a viable hot dark matter of Universe, as long as the model-dependent $g_{A\gamma}$ is accidentally small enough as originally emphasized by KAPLAN 85; see Fig. 1.

 165 BORISOV 97 bound is on the axion-electron coupling $g_{ae} < 1 \times 10^{-13}$ from the photoproduction of axions off of magnetic fields in the outer layers of neutron stars.

- ¹⁶⁶ KACHELRIESS 97 bound is on the axion-electron coupling $g_{ae} < 1 \times 10^{-10}$ from the production of axions in strongly magnetized neutron stars. The authors also quote a stronger limit, $g_{ae} < 9 \times 10^{-13}$ which is strongly dependent on the strength of the magnetic field in white dwarfs.
- ¹⁶⁷ KEIL 97 uses new measurements of the axial-vector coupling strength of nucleons, as well as a reanalysis of many-body effects and pion-emission processes in the core of the neutron star, to update limits on the invisible-axion mass.
- ¹⁶⁸ RAFFELT 95 reexamined the constraints on axion emission from red giants due to the axion-electron coupling. They improve on DEARBORN 86 by taking into proper account degeneracy effects in the bremsstrahlung rate. The limit comes from requiring the red giant core mass at helium ignition not to exceed its standard value by more than 5% (0.025 solar masses).
- ¹⁶⁹ ALTHERR 94 bound is on the axion-electron coupling $g_{ae} < 1.5 \times 10^{-13}$, from energy loss via axion emission.
- ¹⁷⁰ CHANG 93 updates ENGEL 90 bound with the Kaplan-Mahohar ambiguity in $z=m_u/m_d$ (see the Note on the Quark Masses in the Quark Particle Listings). It leaves the window $f_A=3\times10^5-3\times10^6$ GeV open. The constraint from Big-Bang Nucleosynthesis is satisfied in this window as well.
- ¹⁷¹ BERSHADY 91 searched for a line at wave length from 3100–8300 Å expected from 2γ decays of relic thermal axions in intergalactic light of three rich clusters of galaxies.
- ¹⁷² KIM 91C argues that the bound from the mass density of the universe will change drastically for the supersymmetric models due to the entropy production of saxion (scalar component in the axionic chiral multiplet) decay. Note that it is an *upperbound* rather than a lowerbound.

¹⁷³ RAFFELT 91B argue that previous SN 1987A bounds must be relaxed due to corrections to nucleon bremsstrahlung processes.

 $^{174}\,\rm RESSELL$ 91 uses absence of any intracluster line emission to set limit.

¹⁷⁵ ENGEL 90 rule out $10^{-10} \lesssim g_{AN} \lesssim 10^{-3}$, which for a hadronic axion with EMC motivated axion-nucleon couplings corresponds to 2.5×10^{-3} eV $\lesssim m_{A^0} \lesssim 2.5 \times 10^4$ eV. The constraint is loose in the middle of the range, i.e. for $g_{AN} \sim 10^{-6}$.

¹⁷⁶ RAFFELT 90D is a re-analysis of DEARBORN 86.

¹⁷⁷ The region $m_{A0} \gtrsim 2$ eV is also allowed.

¹⁷⁸ ERICSON 89 considered various nuclear corrections to axion emission in a supernova core, and found a reduction of the previous limit (MAYLE 88) by a large factor.

- ¹⁷⁹ MAYLE 89 limit based on naive quark model couplings of axion to nucleons. Limit based on couplings motivated by EMC measurements is 2–4 times weaker. The limit from axion-electron coupling is weak: see HATSUDA 88B.
- 180 RAFFELT 88B derives a limit for the energy generation rate by exotic processes in heliumburning stars $\epsilon~<100~{\rm erg~g^{-1}~s^{-1}}$, which gives a firmer basis for the axion limits based on red giant cooling.
- ¹⁸¹ RAFFELT 87 also gives a limit $g_{A\gamma}$ < 1×10^{-10} GeV⁻¹.
- 182 DEARBORN 86 also gives a limit $g_{A\gamma}~<~1.4\times10^{-11}~{\rm GeV}^{-1}.$

¹⁸³ RAFFELT 86 gives a limit $g_{A\gamma} < 1.1 \times 10^{-10}$ GeV⁻¹ from red giants and $< 2.4 \times 10^{-9}$ GeV⁻¹ from the sum

 ${\rm GeV}^{-1}$ from the sun. ${\rm ^{184}\,KAPLAN}$ 85 says $m_{A^0}~<$ 23 eV is allowed for a special choice of model parameters. ${\rm ^{185}\,FUKUGITA}$ 82 gives a limit $g_{A\gamma}~<~2.3\times 10^{-10}~{\rm GeV}^{-1}$.

Search for Relic Invisible Axions

Limits are for $[G_{A\gamma\gamma}/m_{A^0}]^2 \rho_A$ where $G_{A\gamma\gamma}$ denotes the axion two-photon coupling, $L_{\text{int}} = \frac{G_{A\gamma\gamma}}{4} \phi_A F_{\mu\nu} \tilde{F}^{\mu\nu} = G_{A\gamma\gamma} \phi_A \mathbf{E} \cdot \mathbf{B}$, and ρ_A is the axion energy density near the earth. <u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> ••• We do not use the following data for averages, fits, limits, etc. ••• $<5.5 \times 10^{-43}$ 95 <u>186</u> HAGMANN 98 CNTR $m_{A^0} = 2.9 - 3.3 \times 10^{-6}$ eV 187 KIM 98 THEO $<2 \times 10^{-41}$ <u>188</u> HAGMANN 90 CNTR $m_{A^0} = (5.4 - 5.9)10^{-6}$ eV $<1.3 \times 10^{-42}$ 95 <u>189</u> WUENSCH 89 CNTR $m_{A^0} = (4.5 - 10.2)10^{-6}$ eV $<2 \times 10^{-41}$ 95 <u>189</u> WUENSCH 89 CNTR $m_{A^0} = (11.3 - 16.3)10^{-6}$ eV

¹⁸⁶ Based on the conversion of halo axions to microwave photons. Limit assumes ρ_A =0.45 GeV cm⁻³. At 90%CL this result excludes a version of KSVZ axions as dark matter in the halo of our Galaxy, for the quoted axion mass range. See ASZTALOS 01 for more details.

 $^{187}\,\rm KIM$ 98 calculated the axion-to-photon couplings for various axion models and compared them to the HAGMANN 90 bounds. This analysis demonstrates a strong model dependence of ${\cal G}_{A\gamma\gamma}$ and hence the bound from relic axion search.

 188 HAGMANN 90 experiment is based on the proposal of SIKIVIE 83.

¹⁸⁹ WUENSCH 89 looks for condensed axions near the earth that could be converted to photons in the presence of an intense electromagetic field via the Primakoff effect, following the proposal of SIKIVIE 83. The theoretical prediction with $[G_{A\gamma\gamma}/m_{A^0}]^2 = 2 \times 10^{-14} \text{ MeV}^{-4}$ (the three generation DFSZ model) and $\rho_A = 300 \text{ MeV/cm}^3$ that

makes up galactic halos gives $(G_{A\gamma\gamma}/m_{A^0})^2 \rho_A = 4 \times 10^{-44}$. Note that our definition of $G_{A\gamma\gamma}$ is $(1/4\pi)$ smaller than that of WUENSCH 89.

Invisible A^0 (Axion) Limits from Photon Coupling

Limits are for the axion-two-photon coupling $G_{A\gamma\gamma}$ defined by $L = G_{A\gamma\gamma}\phi_A \mathbf{E}\cdot\mathbf{B}$. Related limits from astrophysics can be found in the "Invisible A^0 (Axion) Mass Limits from Astrophysics and Cosmology" section.

1 5		0,				
VALUE (GeV $^{-1}$)	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	followin	ng data for averages,	, fits,	limits,	etc. ● ● ●	
$< 1.7 \times 10^{-9}$	90	¹⁹⁰ BERNABEI	01 B		т _д 0 <100 eV	
$< 1.5 \times 10^{-4}$	90	¹⁹¹ ASTIER	00 B	NOMD	$m_{A^0} < 40 \text{ eV}$	
		¹⁹² MASSO	00		induced photon coupling	
$< 2.7 \times 10^{-9}$	95	¹⁹³ AVIGNONE	98		$m_{{\it A}0}^{} < 1~{ m keV}$	
$< 6.0 \times 10^{-10}$	95	¹⁹⁴ MORIYAMA	98		$m_{A^0} < 0.03 \text{ eV}$	
$< 3.6 \times 10^{-7}$	95	¹⁹⁵ CAMERON	93		$m_{A^0}^2 < 10^{-3} \text{ eV},$	
$< 6.7 \times 10^{-7}$	95	¹⁹⁶ CAMERON	93		optical rotation $m_{A^0} < 10^{-3}$ eV,	
$< 3.6 imes 10^{-9}$	99.7	¹⁹⁷ LAZARUS	92		photon regeneration $m_{A^0} < 0.03 \text{ eV}$	
$< 7.7 \times 10^{-9}$	99.7	¹⁹⁷ LAZARUS	92		$m_{A^0} = 0.03 - 0.11 \text{ eV}$	
$< 7.7 \times 10^{-7}$	99	¹⁹⁸ RUOSO	92		$m_{A^0}^2 < 10^{-3} \text{ eV}$	
$<\!\!2.5 imes 10^{-6}$		¹⁹⁹ SEMERTZIDIS	90		$m_{A^0}^{A^0} < 7 \times 10^{-4} \text{ eV}$	

¹⁹⁰ BERNABEI 01B looked for Primakoff coherent conversion of solar axions into photons via Bragg scattering in Nal crystal in DAMA dark matter detector.

¹⁹¹ ASTIER 00B looked for production of axions from the interaction of high-energy photons with the horn magnetic field and their subsequent re-conversion to photons via the interaction with the NOMAD dipole magnetic field.

¹⁹² MASSO 00 studied limits on axion-proton coupling using the induced axion-photon coupling through the proton loop and CAMERON 93 bound on the axion-photon coupling using optical rotation. They obtained the bound $g_p^2/4\pi < 1.7 \times 10^{-9}$ for the coupling σ , $\overline{\rho} \sigma = n \phi$.

 $g_p \overline{p} \gamma_5 p \phi_A$.

¹⁹³ AVIGNONE 98 result is based on the coherent conversion of solar axions to photons via the Primakoff effect in a single crystal germanium detector.

 194 Based on the conversion of solar axions to X-rays in a strong laboratory magnetic field.

¹⁹⁵ Experiment based on proposal by MAIANI 86.

¹⁹⁶ Experiment based on proposal by VANBIBBER 87.

¹⁹⁷LAZARUS 92 experiment is based on proposal found in VANBIBBER 89.

¹⁹⁸ RUOSO 92 experiment is based on the proposal by VANBIBBER 87.

¹⁹⁹ SEMERTZIDIS 90 experiment is based on the proposal of MAIANI 86. The limit is obtained by taking the noise amplitude as the upper limit. Limits extend to $m_{A0} =$

$$4 imes 10^{-3}$$
 where ${\it G}_{{\it A}\gamma\gamma}~<~1 imes 10^{-4}$ GeV $^{-1}$.

Limit on Invisible A^0 (Axion) Electron Coupling

The limit is for $G_{Aee}\partial_{\mu}\phi_{A}\overline{e}\gamma^{\mu}\gamma_{5}e$ in GeV⁻¹, or equivalenty, the dipole-dipole po- G^2 te

ential
$$\frac{-Aee}{4\pi}$$
 $((\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) - 3(\boldsymbol{\sigma}_1 \cdot \boldsymbol{n}) (\boldsymbol{\sigma}_2 \cdot \boldsymbol{n}))/r^3$ where $\boldsymbol{n} = \boldsymbol{r}/r$.

The limits below apply to invisible axion of $m_A \leq 10^{-6} \, \mathrm{eV}$.

VALUE (GeV $^{-1}$)	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use th	e follow	ving data for averages	s, fits	, limits,	etc. ● ● ●	
$< 5.3 imes 10^{-5}$	66	200 _{NI}	94		Induced magnetism	
$< 6.7 \times 10^{-5}$	66	²⁰⁰ CHUI	93		Induced magnetism	
$< 3.6 \times 10^{-4}$	66	²⁰¹ PAN	92		Torsion pendulum	
$< 2.7 \times 10^{-5}$	95	²⁰⁰ BOBRAKOV	91		Induced magnetism	
$< 1.9 \times 10^{-3}$	66	²⁰² WINELAND	91	NMR		
$< 8.9 \times 10^{-4}$	66	²⁰¹ RITTER	90		Torsion pendulum	
$< 6.6 imes 10^{-5}$	95	²⁰⁰ VOROBYOV	88		Induced magnetism	
200				<i>с</i> ,		

 200 These experiments measured induced magnetization of a bulk material by the spindependent potential generated from other bulk material with aligned electron spins, where the magnetic field is shielded with superconductor.

²⁰¹ These experiments used a torsion pendulum to measure the potential between two bulk matter objects where the spins are polarized but without a net magnetic field in either of them.

²⁰² WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine splitting using nuclear magnetic resonance.

Invisible A^0 (Axion) Limits from Nucleon Coupling

Limits are for the axion mass in eV.

VALUE (eV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e followii	ng data for averages, fit	s, limits,	etc. • • •
$< 3.2 \times 10^4$			CNTR	Solar axion
<745	90	²⁰⁴ KRCMAR 98	CNTR	Solar axion

 203 KRCMAR 01 looked for solar axions emitted by the M1 transition of ⁷Li after the electron capture by ⁷Be and the emission of 384 keV line neutrino, using their resonant capture on ⁷Li in the laboratory. The mass bound assumes $m_{\mu}/m_d = 0.56$ and the flavor-singlet axial-vector matrix element S=0.4.

²⁰⁴ KRCMAR 98 looked for solar axions emitted by the M1 transition of thermally excited ⁵⁷Fe nuclei in the Sun, using their possible resonant capture on ⁵⁷Fe in the laboratory, following MORIYAMA 95B. The mass bound assumes $m_{\mu}/m_d = 0.56$ and the flavorsinglet axial-vector matrix element $S=3F-D\simeq 0.5$.

Axion Limits from *T*-violating Medium-Range Forces

The limit is for the coupling g in a T-violating potential between nucleons or nucleon and electron of the form $V = \frac{g\hbar^2}{8\pi m_p} (\boldsymbol{\sigma} \cdot \boldsymbol{\hat{r}}) \left(\frac{1}{r^2} + \frac{m_A c}{\hbar r}\right) e^{-m_A cr/\hbar}$

	,			
VALUE	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for average	s, fits	, limits,	etc. • • •
	²⁰⁵ NI	99		paramagnetic Tb F ₃
	²⁰⁶ POSPELOV	98	THEO	neutron EDM
	²⁰⁷ YOUDIN	96		
	²⁰⁸ RITTER	93		torsion pendulum
	²⁰⁹ VENEMA	92		nuclear spin-precession
	²¹⁰ WINELAND	91	NMR	frequencies
205				

²⁰⁵ NI 99 searched for a *T*-violating medium-range force acting on paramagnetic Tb F₃ salt. See their Fig. 1 for the result.

²⁰⁶ POSPELOV 98 studied the possible contribution of *T*-violating Medium-Range Force to the neutron electric dipole moment, which is possible when axion interactions violate *CP*. The size of the force among nucleons must be smaller than gravity by a factor of $2 \times 10^{-10} (1 \text{ cm}/\lambda_A)$, where $\lambda_A = \hbar/m_A c$.

²⁰⁷ YOUDIN 96 compared the precession frequencies of atomic ¹⁹⁹Hg and Cs when a large mass is positioned near the cells, relative to an applied magnetic field. See Fig. 3 for their limits.

²⁰⁸ RITTER 93 used a torsion pendulum to study the influence of bulk mass with polarized electrons on the pendulum.

 209 VENEMA 92 looked for an effect of Earth's gravity on nuclear spin-precession frequencies of $^{199}{\rm Hg}$ and $^{201}{\rm Hg}$ atoms.

 210 WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine resonances in stored 9 Be⁺ ions using nuclear magnetic resonance.

REFERENCES FOR Searches for Axions (A^0) and Other Very Light Bosons

ASZTALOS	01	PR D64 092003	S. Asztalos <i>et al.</i>	(DAMA Collab.)
BERNABEI	01B	PL B515 6	R. Bernabei <i>et al.</i>	
DANEVICH	01	NP A694 375	F.A. Danevich <i>et al.</i>	
DEBOER	01	JP G27 L29	F.W.N. de Boer <i>et al.</i>	
KRCMAR	01	PR D64 115016	M. Krcmar <i>et al.</i>	(BNL E787 Collab.)
ADLER	00	PRL 84 3768	S. Adler <i>et al.</i>	
ALESSAND	00	PL B486 13	A. Alessandrello <i>et al.</i>	
ARNOLD	00	NP A678 341	R. Arnold <i>et al.</i>	
ASTIER	00B	PL B479 371	P. Astier <i>et al.</i>	(NOMAD Collab.)
DANEVICH	00	PR C62 045501	F.A. Danevich <i>et al.</i>	
MASSO ARNOLD NI ALTEGOER AVIGNONE DANEVICH DIAZ FAESSLER HAGMANN KIM KRCMAR LUESCHER	00 99 98 98 98 98 98 98 98 98 98 98 98	PR D61 011701R NP A658 299 PRL 82 2439 PL B428 197 PRL 81 5068 NP A643 317 NP B527 44 JP G24 2139 PRL 80 2043 PR D58 055006 PL B442 38 PL B434 407	E. Masso R. Arnold <i>et al.</i> WT. Ni <i>et al.</i> J. Altegoer <i>et al.</i> F.T. Avignone <i>et al.</i> F.A. Danevich <i>et al.</i> M.A. Diaz <i>et al.</i> A. Faessler, F. Simkovic C. Hagmann <i>et al.</i> J.E. Kim M. Krcmar <i>et al.</i> R. Luescher <i>et al.</i>	(NEMO Collab.)
MORIYAMA	98	PL B434 147	S. Moriyama <i>et al.</i>	
MOROI	98	PL B440 69	T. Moroi, H. Murayama	
POSPELOV	98	PR D58 097703	M. Pospelov	
ZUBER	98	PRPL 305 295	K. Zuber	

HTTP://PDG.LBL.GOV

Page 46

AHMAD	97	PRL 78 618	I. Ahmad <i>et al.</i>	(APEX Collab.)
BORISOV	97	JETP 83 868	A.V. Borisov, V.Y. Grishinia	(MOSU)
DEBOER	97C	JP G23 L85	F.W.N. de Boer <i>et al.</i>	(),
KACHELRIESS	97	PR D56 1313	M. Kachelriess, C. Wilke, G. Wi	unner (BOCH)
KEIL	97	PR D56 2419	W. Keil <i>et al.</i>	()
KITCHING	97	PRL 79 4079	P. Kitching et al.	(BNL E787 Collab.)
LEINBERGER	97	PL B394 16	U. Leinberger et al.	(ORANGE Collab.)
ADLER	96	PRL 76 1421	S. Adler <i>et al.</i>	(BNL E787 Collab.)
AMSLER	96B	ZPHY C70 219	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ARNOLD	96	ZPHY C72 239	R. Arnold <i>et al.</i>	(BCEN, CAEN, JINR+)
GANZ	96	PL B389 4		SI, HEID, FRAN, JAGL+)
GUENTHER	96	PR D54 3641	M. Gunther <i>et al.</i>	(MPIH, SASSO)
HIRSCH	96	PR D53 1329	M. Hirsch, H.V. Klapdor-Kleingr	
KAMEL	96	PL B368 291	S. Kamel	(SHAMS)
MITSUI	96	EPL 33 111	T. Mitsui <i>et al.</i>	(TOKY)
YOUDIN	96	PRL 77 2170	A.N. Youdin <i>et al.</i>	(AMHT, WASH)
ALTMANN	95	ZPHY C68 221	M. Altmann <i>et al.</i>	(MUNT, LAPP, CPPM)
BALEST	95 95	PR D51 2053	R. Balest <i>et al.</i>	
BASSOMPIE		PL B355 584		(CLEO Collab.)
MAENO	95 95		G. Bassompierre <i>et al.</i>	(LAPP, LCGT, LYON)
		PL B351 574	T. Maeno <i>et al.</i>	(TOKY)
MORIYAMA RAFFELT	95B	PRL 75 3222 PR D51 1495	S. Moriyama	
	95 05		G. Raffelt, A. Weiss	(MPIM, MPIA)
SKALSEY	95	PR D51 6292	M. Skalsey, R.S. Conti	(MICH)
TSUNODA	95	EPL 30 273	T. Tsunoda <i>et al.</i>	(TOKY)
ADACHI	94	PR A49 3201	S. Adachi <i>et al.</i>	(TMU)
ALTHERR	94	ASP 2 175	T. Altherr, E. Petitgirard, T. de	
AMSLER	94B	PL B333 271	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ASAI	94	PL B323 90	S. Asai <i>et al.</i>	(TOKY)
MEIJERDREES		PR D49 4937	M.R. Drees <i>et al.</i>	(BRCO, OREG, TRIU)
NI	94	Physica B194 153	W.T. Ni <i>et al.</i>	(NTHU)
VO	94	PR C49 1551	D.T. Vo et al.	(ISU, LBL, LLNL, UCD)
ATIYA	93	PRL 70 2521	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
Also	93C	PRL 71 305 (erratum)	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
ATIYA	93B	PR D48 R1	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
BASSOMPIE		EPL 22 239	G. Bassompierre <i>et al.</i>	(LAPP, TORI, LYON)
BECK	93	PRL 70 2853	M. Beck <i>et al.</i>	(MPIH, KIAE, SASSO)
CAMERON	93	PR D47 3707	R.E. Cameron <i>et al.</i>	(ROCH, BNL, FNAL+)
CHANG	93	PL B316 51	S. Chang, K. Choi	
CHUI	93	PRL 71 3247	T.C.P. Chui, W.T. Ni	(NTHU)
MINOWA	93	PRL 71 4120	M. Minowa <i>et al.</i>	(TOKY)
NG	93	PR D48 2941	K.W. Ng	(AST)
RITTER	93	PRL 70 701	R.C. Ritter <i>et al.</i>	
TANAKA	93	PR D48 5412	J. Tanaka, H. Ejiri	(OSAK)
ALLIEGRO	92	PRL 68 278	C. Alliegro <i>et al.</i>	(BNL, FNAL, $PSI+$)
ATIYA	92	PRL 69 733	M.S. Atiya <i>et al.</i>	(BNL, LANL, PRIN+)
BERNATOW	92	PRL 69 2341	T. Bernatowicz et al.	(WUSL, TATA)
BLUEMLEIN	92	IJMP A7 3835	J. Blumlein <i>et al.</i>	(BERL, BUDA, JINR+)
HALLIN	92	PR D45 3955	A.L. Hallin <i>et al.</i>	(PRIN)
HENDERSON	92C	PRL 69 1733	S.D. Henderson <i>et al.</i>	(YALE, BNL)
HICKS	92	PL B276 423	K.H. Hicks, D.E. Alburger	(OHIO, BNL)
LAZARUS	92	PRL 69 2333	D.M. Lazarus <i>et al.</i>	(BNL, ROCH, FNAL)
MEIJERDREES	92	PRL 68 3845	R. Meijer Drees <i>et al.</i>	(SINDRUM I Collab.)
PAN	92	MPL A7 1287	S.S. Pan, W.T. Ni, S.C. Chen	(NTHU)
RUOSO	92	ZPHY C56 505	G. Ruoso <i>et al.</i> (RO	OCH, BNL, FNAL, TRST)
SKALSEY	92	PRL 68 456	M. Skalsey, J.J. Kolata	(MICH, NDAM)
VENEMA	92	PRL 68 135	B.J. Venema <i>et al.</i>	
WANG	92	MPL A7 1497	J. Wang	(ILL)
WANG	92C	PL B291 97	J. Wang	(ILL)
WU	92	PRL 69 1729	X.Y. Wu et al.	(BNL, YALE, CUNY)
AKOPYAN	91	PL B272 443	M.V. Akopyan <i>et al.</i>	` (INRM)
ASAI	91	PRL 66 2440	S. Asai <i>et al.</i>	(ÎCEPP)
BERSHADY	91	PRL 66 1398	M.A. Bershady, M.T. Ressell, M	.S. Turner (CHIC+)
BLUEMLEIN	91	ZPHY C51 341	J. Blumlein <i>et al.</i>	(BERL, BUDA, JINR+)
BOBRAKOV	91	JETPL 53 294	V.F. Bobrakov <i>et al.</i>	(PNPI)
		Translated from ZETFP	53 283.	
BROSS	91	PRL 67 2942	A.D. Bross <i>et al.</i>	(FNAL, ILL)
KIM	91C	PRL 67 3465	J.E. Kim	(SEOUL)
RAFFELT	91B	PRL 67 2605	G. Raffelt, D. Seckel	(MPIM, BART)
RESSELL	91	PR D44 3001	M.T. Ressell	(CHIC, FNAL)
TRZASKA	91	PL B269 54	W.H. Trzaska <i>et al.</i>	(TAMU)
TSERTOS	91	PL B266 259	H. Tsertos <i>et al.</i>	(ILLG, GSI)
WALKER	91	APJ 376 51	T.P. Walker <i>et al.</i>	(HSCA, OSU, CHIC+)
WIDMANN	91	ZPHY A340 209	E. Widmann <i>et al.</i>	(STUT, GSI, STUTM)

Page 47 Created: 6/14/2002 11:12

WINELAND	91	PRL 67 1735	D.J. Wineland <i>et al.</i> (NBSB)
ALBRECHT	90E	PL B246 278	H. Albrecht <i>et al.</i> (ARGUS Collab.)
ANTREASYAN		PL B251 204	D. Antreasyan <i>et al.</i> (Crystal Ball Collab.)
ASANUMA	90C	PL B237 588	
ATIYA	90	PRL 64 21	M.S. Atiya <i>et al.</i> (BNL E787 Collab.)
ATIYA	90B	PRL 65 1188	M.S. Atiya <i>et al.</i> (BNL E787 Collab.)
BAUER	90	NIM B50 300	W. Bauer <i>et al.</i> (STUT, VILL, GSI)
BURROWS	90	PR D42 3297	A. Burrows, M.T. Ressell, M.S. Turner (ARIZ+)
DEBOER	90	JPG 16 L1	F.W.N. de Boer, J. Lehmann, J. Steyaert (LOUV)
ENGEL	90	PRL 65 960	J. Engel, D. Seckel, A.C. Hayes (BART, LANL)
GNINENKO	90	PL B237 287	S.N. Gninenko et al. (INRM)
GUO	90	PR D41 2924	R. Guo et al. (NIU, LANL, FNAL, CASE+)
HAGMANN	90	PR D42 1297	
JUDGE	90	PRL 65 972	S.M. Judge <i>et al.</i> (ILLG, GSI)
RAFFELT	90C	PRPL 198 1	G.G. Raffelt (MPIM)
RAFFELT	90D	PR D41 1324	G.G. Raffelt (MPIM)
RITTER	90	PR D42 977	R.C. Ritter <i>et al.</i> (VIRG)
SEMERTZIDIS	90	PRL 64 2988	Y.K. Semertzidis <i>et al.</i> (ROCH, BNL, FNAL+)
STAUDT	90	EPL 13 31	A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus
TSUCHIAKI	90	PL B236 81	M. Tsuchiaki <i>et al.</i> (ICEPP)
TURNER	90	PRPL 197 67	M.S. Turner (FNAL)
BARABASH	89	PL B223 273	A.S. Barabash <i>et al.</i> (ITEP, INRM)
BINI	89	PL B221 99	M. Bini <i>et al.</i> (FIRZ, CERN, AARH)
BURROWS	89	PR D39 1020	A. Burrows, M.S. Turner, R.P. Brinkmann (ARIZ+)
Also	88	PRL 60 1797	M.S. Turner (FNAL, EFI)
DEBOER	89B	PRL 62 2639	F.W.N. de Boer, R. van Dantzig (ANIK)
ERICSON	89	PL B219 507	T.E.O. Ericson, J.F. Mathiot (CERN, IPN)
FAISSNER	89	ZPHY C44 557	H. Faissner <i>et al.</i> (AACH3, BERL, PSI)
FISHER	89	PL B218 257	P.H. Fisher <i>et al.</i> (CIT, NEUC, PSI)
FOX	89	PR C39 288	J.D. Fox et al. (FSU)
MAYLE	89	PL B219 515	R. Mayle <i>et al.</i> (LLL, CERN, MINN, FNAL+)
Also	88	PL B203 188	R. Mayle <i>et al.</i> (LLL, CERN, MINN, FNAL+)
MINOWA	89	PRL 62 1091	H. Minowa <i>et al.</i> (ICEPP)
ORITO	89	PRL 63 597	S. Orito <i>et al.</i> (ICEPP)
PERKINS	89	PRL 62 2638	D.H. Perkins (OXF)
TSERTOS	89	PR D40 1397	H. Tsertos <i>et al.</i> (GSI, ILLG)
VANBIBBER	89	PR D39 2089	K. van Bibber <i>et al.</i> (LLL, TAMU, LBL)
WUENSCH	89	PR D40 3153	W.U. Wuensch <i>et al.</i> (ROCH, BNL, FNAL)
Also	87	PRL 59 839	S. de Panfilis <i>et al.</i> (ROCH, BNL, FNAL)
ALSTON	88	PRL 60 1928	M. Alston-Garnjost <i>et al.</i> (LBL, MTHO+)
AVIGNONE	88	PR D37 618	F.T. Avignone <i>et al.</i> (PRIN, SCUC, ORNL+)
			-
BJORKEN	88	PR D38 3375	J.D. Bjorken <i>et al.</i> (FNAL, SLAC, VPI)
BLINOV	88	SJNP 47 563	A.E. Blinov <i>et al.</i> (NOVO)
DOLTON	00	Translated from YAF 47	
BOLTON	88	PR D38 2077	R.D. Bolton <i>et al.</i> (LANL, STAN, CHIC+)
Also	86	PRL 56 2461	R.D. Bolton <i>et al.</i> (LANL, STAN, CHIC+)
Also	86	PRL 57 3241	D. Grosnick <i>et al.</i> (CHIC, LANL, STAN+)
CHANDA	88	PR D37 2714	R. Chanda, J.F. Nieves, P.B. Pal (UMD, UPR+)
CHOI	88	PR D37 3225	K. Choi <i>et al.</i> (JHU)
CONNELL	88	PRL 60 2242	S.H. Connell <i>et al.</i> (WITW)
DATAR	88	PR C37 250	V.M. Datar <i>et al.</i> (IPN)
DEBOER	88	PRL 61 1274	F.W.N. de Boer, R. van Dantzig (ANIK)
Also	89	PRL 62 2644 erratum	F.W.N. de Boer, R. van Dantzig (ANIK)
			-
Also	89 00 D	PRL 62 2638	D.H. Perkins (OXF)
Also	89B	PRL 62 2639	F.W.N. de Boer, R. van Dantzig (ANIK)
DEBOER	88C	JPG 14 L131	F.W.N. de Boer <i>et al.</i> (LOUV)
DOEHNER	88	PR D38 2722	J. Dohner <i>et al.</i> (HEIDP, ANL, ILLG)
EL-NADI	88	PRL 61 1271	M. el Nadi, O.E. Badawy (CAIR)
ENGEL	88	PR C37 731	J. Engel, P. Vogel, M.R. Zirnbauer
FAISSNER	88	ZPHY C37 231	H. Faissner <i>et al.</i> (AACH3, BERL, SIN)
HATSUDA	88B	PL B203 469	T. Hatsuda, M. Yoshimura (KEK)
LORENZ	88	PL B214 10	E. Lorenz <i>et al.</i> (MPIM, PSI)
MAYLE	88	PL B203 188	R. Mayle <i>et al.</i> (LLL, CERN, MINN, FNAL+)
			C.E. Picciotto <i>et al.</i> $(LLL, CLKN, MINN, FNAL+)$
	88	PR D37 1131	
RAFFELT	88	PRL 60 1793	G. Raffelt, D. Seckel (UCB, LLL, UCSC)
RAFFELT	88B	PR D37 549	G.G. Raffelt, D.S.P. Dearborn (UCB, LLL)
SAVAGE	88	PR D37 1134	M.J. Savage, B.W. Filippone, L.W. Mitchell (CIT)
TSERTOS	88	PL B207 273	A. Tsertos <i>et al.</i> (GSI, ILLG)
TSERTOS	88B	ZPHY A331 103	A. Tsertos <i>et al.</i> (GSI, ILLG)
VANKLINKEN	88	PL B205 223	J. van Klinken <i>et al.</i> (GRON, GSI)
VANKLINKEN	88B	PRL 60 2442	J. van Klinken (GRON)
VONWIMMER.		PRL 60 2443	U. von Wimmersperg (BNL)
VOROBYOV	88	PL B208 146	P.V. Vorobiev, Y.I. Gitarts (NOVO)
	-	-	()

Page 48 Created: 6/14/2002 11:12

CALDWELL	87	PRL 59 419	D.O. Caldwell et al. (UCSB, LBL)
DRUZHININ	87	ZPHY C37 1	V.P. Druzhinin <i>et al.</i> (NOVO)
ELLIOTT	87	PRL 59 1649	S.R. Elliott, A.A. Hahn, M.K. Moe (UCI)
FISHER	87	PL B192 460	P.H. Fisher <i>et al.</i> (CIT, NEUC, SIN)
FRIEMAN	87	PR D36 2201	J.A. Frieman, S. Dimopoulos, M.S. Turner (SLAC+)
GOLDMAN	87	PR D36 1543	T. Goldman <i>et al.</i> (LANL, CHIC, STAN+)
KORENCHE		SJNP 46 192	S.M. Korenchenko <i>et al.</i> (JINR)
	•••	Translated from YAF 46	
MAIER	87	ZPHY A326 527	K. Maier <i>et al.</i> (STUT, GSI)
MILLS	87	PR D36 707	A.P. Mills, J. Levy (BELL)
RAFFELT	87	PR D36 2211	G.G. Raffelt, D.S.P. Dearborn (LLL, UCB)
RIORDAN	87	PRL 59 755	E.M. Riordan <i>et al.</i> (ROCH, $CIT+$)
TURNER	87	PRL 59 2489	M.S. Turner (FNAL, EFI)
VANBIBBER	87	PRL 59 759	K. van Bibber <i>et al.</i> (LLL, CIT, MIT+)
VONWIMMER	87	PRL 59 266	U. von Wimmersperg <i>et al.</i> (WITW)
ALBRECHT	86D	PL B179 403	H. Albrecht et al. (ARGUS Collab.)
BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i> (NA3 Collab.)
BOWCOCK	86	PRL 56 2676	T.J.V. Bowcock <i>et al.</i> (ČLEO Collab.)
BROWN	86	PRL 57 2101	C.N. Brown <i>et al.</i> (FNAL, WASH, KYOT $+$)
BRYMAN	86B	PRL 57 2787	D.A. Bryman, E.T.H. Clifford (TRIU)
DAVIER	86	PL B180 295	M. Davier, J. Jeanjean, H. Nguyen Ngoc (LALO)
DEARBORN	86	PRL 56 26	D.S.P. Dearborn, D.N. Schramm, G. Steigman (LLL+)
EICHLER	86	PL B175 101	R.A. Eichler <i>et al.</i> (SINDRUM Collab.)
HALLIN	86	PRL 57 2105	A.L. Hallin <i>et al.</i> (PRIN)
JODIDIO	86	PR D34 1967	A. Jodidio <i>et al.</i> (LBL, NWES, TRIU)
Also	88	PR D37 237 erratum	A. Jodidio <i>et al.</i> (LBL, NWES, TRIU)
KETOV	86	JETPL 44 146	S.N. Ketov <i>et al.</i> (KIAE)
		Translated from ZETFP	44 114.
КОСН	86	NC 96A 182	H.R. Koch, O.W.B. Schult (JULI)
KONAKA	86	PRL 57 659	A. Konaka <i>et al.</i> (KYOT, KEK)
MAGERAS	86	PRL 56 2672	G. Mageras <i>et al.</i> (MPIM, COLU, STON)
MAIANI	86	PL B175 359	L. Maiani, R. Petronzio, E. Zavattini (CERN)
PECCEI	86	PL B172 435	R.D. Peccei, T.T. Wu, T. Yanagida (DESY)
RAFFELT	86	PR D33 897	G.G. Raffelt (MPIM)
RAFFELT	86B	PL 166B 402	G.G. Raffelt (MPIM)
SAVAGE	86B	PRL 57 178	M.J. Savage <i>et al.</i> (CIT)
AMALDI	85	PL 153B 444	U. Amaldi <i>et al.</i> (CERN)
ANANEV	85	SJNP 41 585	V.D. Ananev <i>et al.</i> (JINR)
	05	Translated from YAF 41	
BALTRUSAIT.		PRL 55 1842	R.M. Baltrusaitis <i>et al.</i> (Mark III Collab.)
BERGSMA	85	PL 157B 458	F. Bergsma <i>et al.</i> (CHARM Collab.)
KAPLAN	85	NP B260 215	D.B. Kaplan (HARV)
IWAMOTO	84 84	PRL 53 1198	N. Iwamoto (UCSB, WUSL)
YAMAZAKI	84	PRL 52 1089	T. Yamazaki <i>et al.</i> (INUS, KEK)
ABBOTT	83	PL 120B 133	L.F. Abbott, P. Sikivie (BRAN, FLOR)
	83	PR D27 1665	M.S. Alam <i>et al.</i> (VAND, CORN, ITHA, HARV+)
CARBONI CAVAIGNAC	83 83	PL 123B 349	G. Carboni, W. Dahme (CERN, MUNI)
DICUS	83	PL 121B 193 PR D28 1778	J.F. Cavaignac <i>et al.</i> (ISNG, LAPP)
			D.A. Dicus, V.L. Teplitz (TEXA, UMD) M. Dine, W. Fischler (IAS, PENN)
DINE	83 02P	PL 120B 137	
ELLIS FAISSNER	83B	NP B223 252	J. Ellis, K.A. Olive (CERN)
	83 02 P	PR D28 1198 PR D28 1787	H. Faissner <i>et al.</i> (AACH) H. Faissner <i>et al.</i> (AACH3)
FAISSNER	83B 83B		
FRANK HOFFMAN	83	PR D28 1790 PR D28 660	J.S. Frank <i>et al.</i> (LANL, YALE, LBL+) C.M. Hoffman <i>et al.</i> (LANL, ARZS)
NICZYPORUK		ZPHY C17 197	
PRESKILL	83	PL 120B 127	B. Niczyporuk <i>et al.</i> (LENA Collab.) J. Preskill, M.B. Wise, F. Wilczek (HARV, UCSBT)
SIKIVIE	83	PRL 51 1415	
Also	84	PRL 52 695 erratum	P. Sikivie (FLOR) P. Sikivie (FLOR)
ALEKSEEV	82	JETP 55 591	E.A. Alekseeva <i>et al.</i> (KIAE)
ALENGLEV	02	Translated from ZETF 8	
ALEKSEEV	82B	JETPL 36 116	G.D. Alekseev <i>et al.</i> (MOSU, JINR)
-	-	Translated from ZETFP	
ASANO	82	PL 113B 195	Y. Asano <i>et al.</i> (KEK, TOKY, INUS, OSAK)
BARROSO	82	PL 116B 247	A. Barroso, G.C. Branco (LISB)
DATAR	82	PL 114B 63	V.M. Datar <i>et al.</i> (BHAB)
EDWARDS	82	PRL 48 903	C. Edwards <i>et al.</i> (Crystal Ball Collab.)
FETSCHER	82	JPG 8 L147	W. Fetscher (ETH)
FUKUGITA	82	PRL 48 1522	M. Fukugita, S. Watamura, M. Yoshimura (KEK)
FUKUGITA	82B	PR D26 1840	M. Fukugita, S. Watamura, M. Yoshimura (KEK)
LEHMANN	82	PL 115B 270	P. Lehmann <i>et al.</i> (SACL)
RAFFELT	82	PL 119B 323	G. Raffelt, L. Stodolsky (MPIM)
SIVERTZ	82	PR D26 717	J.M. Sivertz <i>et al.</i> (CUSB Collab.)
VERGADOS	82	PL 109B 96	J.D. Vergados (CERN)

Page 49 Created: 6/14/2002 11:12

ZEHNDER	82	PL 110B 419		A. Zehnder, K. Gabathuler, J.	I Vi	uilleumier (ETH+)
ASANO	81B	PL 107B 159				TOKY, INUS, OSAK)
BARROSO	81	PL 106B 91		A. Barroso, N.C. Mukhopadhya		(SIN)
FAISSNER	81	ZPHY C10 95		H. Faissner <i>et al.</i>	5	(AACH3)
FAISSNER	81B	PL 103B 234		H. Faissner <i>et al.</i>		(AACH3)
KIM	81	PL 105B 55		B.R. Kim, C. Stamm		(AACH3)
VUILLEUMIER	81	PL 101B 341		J.L. Vuilleumier <i>et al.</i>		(CIT, MUNI)
ZEHNDER	81	PL 104B 494		A. Zehnder		(ETH)
FAISSNER	80	PL 96B 201		H. Faissner <i>et al.</i>		(AACH3)
JACQUES	80	PR D21 1206		P.F. Jacques <i>et al.</i>		(RUTG, STEV, COLU)
SOUKAS	80	PRL 44 564			BNL,	HARV, ORNL, PENN)
BECHIS	79	PRL 42 1511		D.J. Bechis <i>et al.</i>		(UMD, COLU, AFRR)
CALAPRICE	79	PR D20 2708		F.P. Calaprice <i>et al.</i>		(PRIN)
COTEUS	79	PRL 42 1438		P. Coteus <i>et al.</i>		(COLU, ILL, BNL)
DISHAW	79	PL 85B 142		J.P. Dishaw <i>et al.</i>		(SLAC, CIT)
ZHITNITSKII	79	SJNP 29 517		A.R. Zhitnitsky, Y.I. Skovpen		(NOVO)
ALIBRAN	78	Translated from Y PL 74B 134	AF 29	P. Alibran <i>et al.</i>		(Course allo Collab)
ASRATYAN	78B	PL 74B 134 PL 79B 497		Albran <i>et al.</i> A.E. Asratyan <i>et al.</i>		(Gargamelle Collab.) (ITEP, SERP)
BELLOTTI	78	PL 76B 223		E. Bellotti, E. Fiorini, L. Zanc	. ++i	(ITEF, SERF) (MILA)
BOSETTI	78B	PL 74B 143		P.C. Bosetti <i>et al.</i>	JUI	(BEBC Collab.)
DICUS	78C	PR D18 1829		D.A. Dicus <i>et al.</i>		(TEXA, VPI, STAN)
DONNELLY	78	PR D18 1607		T.W. Donnelly <i>et al.</i>		(TEXX, VII, STAN) (STAN)
Also	76	PRL 37 315		F. Reines, H.S. Gurr, H.W. So	obel	(UCI)
Also	74	PRL 33 179		H.S. Gurr, F. Reines, H.W. So		(UCI)
HANSL	78D	PL 74B 139		T. Hansl <i>et al.</i>	0.000.	(CDHS Collab.)
MICELMAC	78	LNC 21 441		G.V. Mitselmakher, B. Ponteco	orvo	(JINR)
MIKAELIAN	78	PR D18 3605		K.O. Mikaelian		(FNAL, NWES)
SATO	78	PTP 60 1942		K. Sato		(KYOT)
VYSOTSKII	78	JETPL 27 502		M.I. Vysotsky <i>et al.</i>		(ASCI)
		Translated from Z	ETFP			
YANG	78	PRL 41 523		T.C. Yang		(MASA)
PECCEI	77	PR D16 1791		R.D. Peccei, H.R. Quinn		(STAN, SLAC)
Also	77B	PRL 38 1440		R.D. Peccei, H.R. Quinn		(STAN, SLAC)
REINES	76	PRL 37 315		F. Reines, H.S. Gurr, H.W. So		(UCI)
GURR	74	PRL 33 179		H.S. Gurr, F. Reines, H.W. So	obel	(UCI)
ANAND	53	PRSL A22 183		B.M. Anand		
		—— от	HER	RELATED PAPERS -		

85 NP B260 689 M. Srednicki

SREDNICKI85NPB260689M.SrednickiBARDEEN78PL74B229W.A.Bardeen, SH.H.Tye	(UCSB) (FNAL)
---	------------------