W

J = 1

THE MASS OF THE W BOSON

Revised April 2002 by C. Caso (University of Genova) and A. Gurtu (Tata Institute).

Till 1995 the production and study of the W boson was the exclusive domain of the $\overline{p}p$ colliders at CERN and FNAL. W production in these hadron colliders is tagged by a high p_T lepton from W decay. Owing to unknown parton-parton effective energy and missing energy in the longitudinal direction, the experiments reconstruct only the transverse mass of the Wand derive the W mass from comparing the transverse mass distribution with Monte Carlo predictions as a function of M_W .

Beginning 1996 the energy of LEP increased to above 161 GeV, the threshold for W-pair production. A precise knowledge of the e^+e^- centre of mass energy enables one to reconstruct the W mass even if one of them decays leptonically. At LEP two methods have been used to obtain the W mass. In the first method the measured W-pair production cross sections, $\sigma(e^+e^- \rightarrow W^+W^-)$, have been used to determine the W mass using the predicted dependence of this cross section on M_W (see Fig. 1). At 161 GeV, which is just above the W-pair production threshold, this dependence is a much more sensitive function of the W mass than at the higher energies (172 to 208 GeV) at which LEP has run during 1996–2000. In the second method, which is used at the higher energies, the W mass has been determined by directly reconstructing the Wfrom its decay products.

Each LEP experiment has combined their own mass values properly taking into account the common systematic errors. In order to compute the LEP average W mass each experiment

Figure 1: The W-pair cross section as a function of the center-of-mass energy. The data points are the LEP averages. The solid lines are predictions from different models of WW production. For comparison the figure contains also the cross section if the ZWW coupling did not exist (dashed line), or if only the t-channel ν_e exchange diagram existed (dotted-dashed line). (Figure from http://lepewwg.web.cern.ch/ LEPEWWG/lepww/4f/summer01/s01_sww_no_tgc.eps)

has provided its measured W mass for the qqqq and $qq\ell\nu$ channels at each center-of-mass energy along with a detailed break-up of errors (statistical and uncorrelated, partially correlated and fully correlated systematics [1]). These have been

HTTP://PDG.LBL.GOV Page 2 Created: 6/17/2002 12:41

properly combined to obtain a *preliminary* LEP W mass = 80.450 ± 0.039 GeV [2]. Errors due uncertainties in LEP energy (17 MeV) and possible effect of color reconnection (CR) and Bose–Einstein (BE) correlations between quarks from different W's (40 MeV and 25 MeV respectively) are included. The mass difference between qqqq and $qq\ell\nu$ final states (due to possible CR and BE effects) is $+9 \pm 44$ MeV.

The two Tevatron experiments have also carried out the exercise of identifying common systematic errors (25 MeV) and averaging with CERN UA2 data obtain an average W mass [2]= 80.454 ± 0.060 GeV.

Combining the above W mass values from LEP and hadron colliders, which are based on all published and unpublished results, and assuming no common systematics between them, yields an average W mass of 80.451 ± 0.033 GeV.

Finally a fit to this directly determined W mass together with measurements on the ratio of W to Z mass (M_W/M_Z) and on their mass difference $(M_Z - M_W)$ yields a world average W-boson mass of 80.448 ± 0.031 GeV.

The Standard Model prediction from the electroweak fit, excluding the direct W mass measurements from LEP and Tevatron, gives a W-boson mass of 80.373 ± 0.023 GeV [3].

OUR FIT in the listing below is obtained by combining only published LEP and $p-\overline{p}$ Collider results using the same procedure as above.

References

 The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, and the LEP W Working Group, LEPEWWG/MASS/2001-02, July 11, 2001, accessible at http:// lepewwg.web.cern.ch/LEPEWWG/lepww/mw/Summer01/).

HTTP://PDG.LBL.GOV Page 3 Created: 6/17/2002 12:41

- D. Charlton, "Experimental Tests of the Standard Model," Int. Europhysics Conference on High Energy Physics, July 12–18, 2001 (Budapest, Hungary).
- 3. The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Heavy Flavour and Electroweak Groups, CERN-EP-2001-098, hep-ex/0112021 (December 2001).

W MASS

To obtain the world average, common systematics between experiments are properly taken into account. The procedure for averaging the LEP data is given in the note LEPEWWG/MASS/2002-01 (March 11, 2002), accessible at http://lepewwg.web.cern.ch/LEPEWWG/lepww/mw/pdg_2002/. The LEP average W mass is 80.400 \pm 0.056 GeV. In order to average the Tevatron data a common systematic error of 25 MeV is taken which leads to a Tevatron average W mass value of 80.454 \pm 0.062 GeV.

OUR FIT uses these average LEP and Tevatron W mass values together with the Z mass, the W to Z mass ratio, and mass difference measurements.

VALUE (GeV)	EVTS	DOCUMENT ID	<u></u>	TECN	COMMENT
80.423 \pm 0.039 OUR F	Т				
$80.432 \pm \ 0.066 \pm 0.045$	2789	¹ ABBIENDI	01F C	OPAL	$E_{cm}^{ee} = 161 + 172 + 183$
$80.359 \pm 0.074 \pm 0.049$	3077	² ABREU	01K D	DLPH	$E_{cm}^{ee} = 161 + 172 + 183$ +189 GeV
80.433 ± 0.079	53841	³ AFFOLDER	01E C	DF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
80.482 ± 0.091	45394	⁴ ABBOTT	00 D	00	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
$80.418 \pm \ 0.061 \pm 0.047$	2977	⁵ BARATE	00T A	ALEP	$E_{\rm cm}^{ee} = 161 + 172 + 183$ +189 GeV
$80.61~\pm~0.15$	801	⁶ ACCIARRI	99 L	.3	$E_{\rm cm}^{ee} = 161 + 172 + 183$
$\bullet \bullet \bullet$ We do not use the	e followin	g data for averages	, fits, li	limits, e	etc. • • •
79.9 \pm 2.2 \pm 2.3	700	⁷ ADLOFF	01A H	11	$e^- p \rightarrow \nu_e X, \sqrt{s} \approx$
$80.9 \pm 3.7 \pm 3.7$	700	⁸ ADLOFF	00в H	11	$e^+p \rightarrow \overline{\nu}_e X, \sqrt{s} \approx$
$81.4^{+2.7}_{-2.6}\pm2.0^{+3.3}_{-3.0}$	1086	⁹ BREITWEG	00d Z	ZEUS	$e^+p \rightarrow \overline{\nu}_e X, \sqrt{s} \approx$
$80.38 \pm 0.12 \pm 0.05$	701	¹⁰ ABBIENDI	99C O	OPAL	Repl. by ABBIENDI 01F
$80.270 \pm \ 0.137 \pm 0.048$	809	¹¹ ABREU	99T D	DLPH	Repl. by ABREU 01K
$80.423 \pm \ 0.112 \pm 0.054$	812	¹² BARATE	99 A	ALEP	Repl. by BARATE 00T
$80.44~\pm~0.10~\pm0.07$	28323	¹³ АВВОТТ	980 D	00	Repl. by ABBOTT 00
$80.80 \ \begin{array}{c} + & 0.48 \\ - & 0.42 \end{array} \ \pm 0.03$	20	¹⁴ ACCIARRI	97 L	.3	Repl. by ACCIARRI 99
$80.5 \ \ {}^+_{-} \ {}^{1.4}_{2.4} \ \ \pm 0.3$	94	¹⁵ ACCIARRI	97м L	.3	Repl. by ACCIARRI 99
$80.71 \ \begin{array}{c} + & 0.34 \\ - & 0.35 \end{array} \ \pm 0.09$	101	¹⁶ ACCIARRI	97s L	.3	Repl. by ACCIARRI 99
HTTP://PDG.LBL.	GOV	Page 4		Creat	ed: 6/17/2002 12:41

80.35 80.41	$_{\pm}^{\pm}$	0.14 0.18	±0.23	5982 8986	¹⁷ ABACHI ¹⁸ ABE	96E 95P (D0 CDF	Repl. by ABBOTT 00 Repl. by AF-
80.84	\pm	0.22	± 0.83	2065	¹⁹ ALITTI	92B	UA2	See W/Z ratio below
80.79	\pm	0.31	± 0.84		²⁰ ALITTI	90b I	UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
80.0	±	3.3	± 2.4	22	²¹ ABE	891 (CDF	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
82.7	\pm	1.0	± 2.7	149	²² ALBAJAR	89 I	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
81.8	+	6.0 5.3	± 2.6	46	²³ ALBAJAR	89 (UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
89	±	3	± 6	32	²⁴ ALBAJAR	89 I	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
81.	\pm	5.		6	ARNISON	83 I	UA1	$E_{\rm cm}^{ee}$ = 546 GeV
80.	+1	10. 6.		4	BANNER	83B (UA2	Repl. by ALITTI 90B

- ¹ ABBIENDI 01F obtain this value properly combining results obtained from a direct W mass reconstruction at 172, 183, and 189 GeV with that from measurement of the W-pair production cross section at 161 GeV. The systematic error includes ± 0.017 GeV due to LEP energy uncertainty and ± 0.028 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- ²ABREU 01K obtain this value properly combining results obtained from a direct W mass reconstruction at 172, 183, and 189 GeV with those from measurements of W-pair production cross sections at 161, 172, and 183 GeV. The systematic error includes ± 0.017 GeV due to the beam energy uncertainty and ± 0.033 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- ³ AFFOLDER 01E fit the transverse mass spectrum of 30115 $W \rightarrow e\nu_e$ events ($M_W = 80.473 \pm 0.065 \pm 0.092$ GeV) and of 14740 $W \rightarrow \mu\nu_{\mu}$ events ($M_W = 80.465 \pm 0.100 \pm 0.103$ GeV) obtained in the run IB (1994-95). Combining the electron and muon results, accounting for correlated uncertainties, yields $M_W = 80.470 \pm 0.089$ GeV. They combine this value with their measurement of ABE 95P reported in run IA (1992-93) to obtain the quoted value.
- ⁴ABBOTT 00 use $W \rightarrow e\nu_e$ events to measure the W mass with a fit to the transverse mass distribution. The result quoted here corresponds to electrons detected both in the forward and in the central calorimeters for the data recorded in 1992–1995. For the large rapidity electrons recorded in 1994–1995, the analysis combines results obtained from m_T , $p_T(e)$, and $p_T(\nu)$.
- ⁵ BARATE 00T obtain this value properly combining results obtained from a direct W mass reconstruction at 172, 183, and 189 GeV with those from measurements of W-pair production cross sections at 161 and 172 GeV. The systematic error includes ± 0.017 GeV due to LEP energy uncertainty and ± 0.019 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- ⁶ ACCIARRI 99 obtain this value properly combining results obtained from a direct W mass reconstruction at 172 and 183 GeV with those from the measurements of the total W-pair production cross sections at 161 and 172 GeV. The value of the mass obtained from the direct reconstruction at 172 and 183 GeV is $M(W) = 80.58 \pm 0.14 \pm 0.08$ GeV.
- ⁷ ADLOFF 01A fit the Q^2 dependence (150 < Q^2 < 30000 GeV²) of the charged-current double-differential cross sections with a propagator mass fit. The second error includes 2.1 GeV due to the theoretical uncertainties.
- ⁸ ADLOFF 00B fit the Q^2 dependence (300 < Q^2 < 15000 GeV²) of the charged-current double-differential cross sections with a propagator mass fit. The second error is due to the theoretical uncertainties.
- the theoretical uncertainties. ⁹ BREITWEG 00D fit the Q^2 dependence (200 < Q^2 < 22500 GeV²) of the chargedcurrent differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
- $^{10}\,ABBIENDI$ 99C obtain this value properly combining results from a direct W mass reconstruction at 172 and 183 GeV with that from the measurement of the total W-pair production cross section at 161 GeV. The systematic error includes an uncertainty of

 $\pm0.02~\text{GeV}$ due to the possible color-reconnection and Bose-Einstein effects in the purely hadronic final states and an uncertainty of $\pm0.02~\text{GeV}$ due to the beam energy.

- ¹¹ ABREU 99T obtain this value properly combining results obtained from a direct W mass reconstruction at 172 and 183 GeV with those from measurement of W-pair production cross sections at 161, 172, and 183 GeV. The systematic error includes ± 0.021 GeV due to the beam energy uncertainty and ± 0.030 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- 12 BARATE 99 obtain this value properly combining results from a direct W mass reconstruction at 172 and 183 GeV with those from the measurements of the total W-pair production cross sections at 161 and 172 GeV. The systematic error includes ± 0.023 GeV due to LEP energy uncertainty and ± 0.021 GeV due to theory uncertainty on account of possible color reconnection and Bose-Einstein correlations.
- ¹³ABBOTT 980 fit the transverse mass distribution of 28323 $W \rightarrow e\nu_e$ events. The systematic error includes a detector related uncertainty of ±60 MeV and a model uncertainty of ±30 MeV. Combining with ABACHI 96E DØ obtain a W mass value of 80.43 ± 0.11 GeV.
- ¹⁴ ACCIARRI 97 derive this value from their measured W-W production cross section $\sigma_{WW} = 2.89 \substack{+0.81 \\ -0.70} \pm 0.14$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. Statistical and systematic errors are added in quadrature and the last error of ± 0.03 GeV arises from the beam energy uncertainty. The same result is given by a fit of the production cross sections to the data.
- ¹⁵ ACCIARRI 97M derive this value from their measured WW production cross section $\sigma_{WW} = 12.27^{+1.41}_{-1.32} \pm 0.23$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. Combining with ACCIARRI 97 authors find $M(W) = 80.78^{+0.45}_{-0.41} \pm 0.03$ GeV where the last error is due to beam energy uncertainty.
- ¹⁶ ACCIARRI 97S obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. When both W mass and width are varied they obtain $M(W) = 80.72 \substack{+0.31 \\ -0.33} \pm 0.09$ GeV. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.05 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining with ACCIARRI 97 and ACCIARRI 97M authors find: $M(W) = 80.75 \substack{+0.26 \\ -0.27} \pm 0.03$ (LEP) GeV.
- ¹⁷ABACHI 96E fit the transverse mass distribution of 5982 $W \rightarrow e\nu_e$ decays. An error of ± 160 MeV due to the uncertainty in the absolute energy scale of the EM calorimeter is included in the total systematics.
- ¹⁸ABE 95P use 3268 $W \rightarrow \mu \nu_{\mu}$ events to find $M = 80.310 \pm 0.205 \pm 0.130$ GeV and 5718 $W \rightarrow e \nu_e$ events to find $M = 80.490 \pm 0.145 \pm 0.175$ GeV. The result given here combines these while accounting for correlated uncertainties.
- ¹⁹ ALITTI 92B result has two contributions to the systematic error (±0.83); one (±0.81) cancels in m_W/m_Z and one (±0.17) is noncancelling. These were added in quadrature. We choose the ALITTI 92B value without using the LEP m_Z value, because we perform our own combined fit.
- ²⁰ There are two contributions to the systematic error (±0.84): one (±0.81) which cancels in m_W/m_Z and one (±0.21) which is non-cancelling. These were added in quadrature.

 21 ABE 891 systematic error dominated by the uncertainty in the absolute energy scale.

²² ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e\nu$ events.

²³ALBAJAR 89 result is from a total sample of 67 $W \rightarrow \mu \nu$ events.

²⁴ ALBAJAR 89 result is from $W \rightarrow \tau \nu$ events.

W/Z MASS RATIO

The fit uses the W and Z mass, mass difference, and mass ratio measurements.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.88196±0.00043 OUR FIT				
$0.8821 \ \pm 0.0011 \ \pm 0.0008$	28323	²⁵ АВВОТТ	98N D0	$E_{ m cm}^{p\overline{p}}=$ 1.8 TeV
$0.88114 \!\pm\! 0.00154 \!\pm\! 0.00252$	5982	²⁶ АВВОТТ	98P D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$0.8813\ \pm 0.0036\ \pm 0.0019$	156	²⁷ ALITTI	92b UA2	$E_{cm}^{p\overline{p}}$ = 630 GeV

²⁵ ABBOTT 98N obtain this from a study of 28323 $W \rightarrow e\nu_e$ and 3294 $Z \rightarrow e^+e^-$ decays. Of this latter sample, 2179 events are used to calibrate the electron energy scale. ²⁶ ABBOTT 98P obtain this from a study of 5982 $W \rightarrow e\nu_e$ events. The systematic error includes an uncertainty of ± 0.00175 due to the electron energy scale.

 $^{\rm 27}\,\rm Scale$ error cancels in this ratio.

$m_Z - m_W$

The fit uses the W and Z mass, mass difference, and mass ratio measurements.

VALUE	(GeV)		DOCUMENT ID		TECN	COMMENT
10.764	4±0.03	OUR FIT				
10.4	±1.4	±0.8	ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
11.3	± 1.3	± 0.9	ANSARI	87	UA2	E ^{pp} _{cm} = 546,630 GeV

m_{W^+}	-	m_{W^-}
-----------	---	-----------

Test of CPT invariance.

VALUE (GeV)	EVTS	DOCUMENT ID	TECN	COMMENT
-0.19±0.58	1722	ABE	90g CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV

W WIDTH

The CDF and DØ widths labelled "extracted value" are obtained by measuring $R = [\sigma(W)/\sigma(Z)] [\Gamma(W \rightarrow \ell \nu_{\ell})]/(B(Z \rightarrow \ell \ell)\Gamma(W))$ where the bracketed quantities can be calculated with plausible reliability. $\Gamma(W)$ is then extracted by using a value of $B(Z \rightarrow \ell \ell)$ measured at LEP. The UA1 and UA2 widths used $R = [\sigma(W)/\sigma(Z)] [\Gamma(W \rightarrow \ell \nu_{\ell})/\Gamma(Z \rightarrow \ell \ell)] \Gamma(Z)/\Gamma(W)$ and the measured value of $\Gamma(Z)$. The Standard Model prediction is 2.067 \pm 0.021 (ROSNER 94).

To obtain OUR FIT, the correlation between systematics is properly taken into account for the LEP experiments (note LEPEWWG/MASS/2002-01 dated March 11, 2002, accessible at

http://lepewwg.web.cern.ch/LEPEWWG/lepww/mw/pdg_2002/).

VALUE (GeV) CL%	EVTS	DOCUMENT ID	TECN	COMMENT
2.118 ± 0.042 OUR FIT				
2.12 \pm 0.04 OUR AVE	RAGE			
$2.04 \pm 0.16 \pm 0.09$	2756	²⁸ ABBIENDI	01F OPAL	$E_{cm}^{ee} = 172 + 183 + 189 \text{ GeV}$
$2.266 \!\pm\! 0.176 \!\pm\! 0.076$	3005	²⁹ ABREU	01K DLPH	$E_{\rm cm}^{ee} = 183 + 189$
2.152 ± 0.066	79176	³⁰ АВВОТТ	00B D0	Extracted value
$2.05\ \pm 0.10\ \pm 0.08$	662	³¹ AFFOLDER	00м CDF	Direct meas.
$2.24\ \pm 0.20\ \pm 0.13$	1711	³² BARATE	00T ALEP	$E_{cm}^{ee} = 189 \text{ GeV}$
$1.97\ \pm 0.34\ \pm 0.17$	687	³³ ACCIARRI	99 L3	$E_{\rm cm}^{ee} = 172 + 183$
$2.064\!\pm\!0.060\!\pm\!0.059$		³⁴ ABE	95w CDF	Extracted value
$2.10 \begin{array}{c} +0.14 \\ -0.13 \end{array} \pm 0.09$	3559	³⁵ ALITTI	92 UA2	Extracted value
$2.18 \begin{array}{c} +0.26 \\ -0.24 \end{array} \pm 0.04$		³⁶ ALBAJAR	91 UA1	Extracted value
\bullet \bullet \bullet We do not use the fo	ollowing o	lata for averages, fit	s, limits, etc	. • • •
$1.84\ \pm 0.32\ \pm 0.20$	674	³⁷ ABBIENDI	99c OPAL	Repl. by ABBI- FNDL 01F
2.044 ± 0.097	11858	³⁸ АВВОТТ	99H D0	Repl. by AB- BOTT 00B
$2.48\ \pm 0.40\ \pm 0.10$	737	³⁹ ABREU	99⊤ DLPH	Repl. by ABREU 01K
$2.126^{+0.052}_{-0.048} \pm 0.035$		⁴⁰ BARATE	991 ALEP	E ^{ee} _{cm} = 161+172+183 GeV
$1.74 {+0.88 \atop -0.78} \pm 0.25$	101	⁴¹ ACCIARRI	97s L3	Repl. by ACCIA- RRI 99
$2.11 \ \pm 0.28 \ \pm 0.16$	58	⁴² ABE	95C CDF	Repl. by AF-
$2.30\ \pm 0.19\ \pm 0.06$		⁴³ ALITTI	90C UA2	Extracted value
$2.8 \begin{array}{c} +1.4 \\ -1.5 \end{array} \pm 1.3$	149	⁴⁴ ALBAJAR	89 UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
<7 90	119	APPEL	86 UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
<6.5 90	86	⁴⁵ ARNISON	86 UA1	E ^{pp} _{cm} = 546,630 GeV

HTTP://PDG.LBL.GOV

- 28 ABBIENDI 01F obtain this value from a fit to the reconstructed W mass distribution using data at 172, 183, and 189 GeV. The systematic error includes ± 0.010 GeV due to LEP energy uncertainty and ± 0.078 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- ²⁹ ABREU 01K obtain this value properly combining results obtained at 183 and 189 GeV using $WW \rightarrow \ell \overline{\nu}_{\ell} q \overline{q}$ and $WW \rightarrow q \overline{q} q \overline{q}$ decays. The systematic error includes an uncertainty of ± 0.052 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- ³⁰ ABBOTT 00B measure $R = 10.43 \pm 0.27$ for the $W \rightarrow e\nu_e$ decay channel. They use the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $\Gamma(W \rightarrow e\nu_e)$ and the world average for B($Z \rightarrow ee$). The value quoted here is obtained combining this result (2.169 ± 0.070 GeV) with that of ABBOTT 99H.
- ³¹AFFOLDER 00M fit the high transverse mass (100–200 GeV) $W \rightarrow e\nu_e$ and $W \rightarrow \mu\nu_\mu$ events to obtain $\Gamma(W) = 2.04 \pm 0.11(\text{stat}) \pm 0.09(\text{syst})$ GeV. This is combined with the earlier CDF measurement (ABE 95C) to obtain the quoted result.
- 32 BARATE 00T obtain this value using $WW \rightarrow q \overline{q} q \overline{q}$, $WW \rightarrow e \nu_e q \overline{q}$, and $WW \rightarrow \mu \nu_\mu q \overline{q}$ decays. The systematic error includes ± 0.015 GeV due to LEP energy uncertainty and ± 0.080 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- 33 ACCIARRI 99 obtain this value from a fit to the reconstructed W mass distribution using data at 172 and 183 GeV.
- ³⁴ ABE 95W measured $R = 10.90 \pm 0.32 \pm 0.29$. They use $m_W = 80.23 \pm 0.18$ GeV, $\sigma(W)/\sigma(Z) = 3.35 \pm 0.03$, $\Gamma(W \rightarrow e\nu) = 225.9 \pm 0.9$ MeV, $\Gamma(Z \rightarrow e^+e^-) = 83.98 \pm 0.18$ MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$ GeV.
- ³⁵ ALITTI 92 measured $R = 10.4^{+0.7}_{-0.6} \pm 0.3$. The values of $\sigma(Z)$ and $\sigma(W)$ come from $O(\alpha_s^2)$ calculations using $m_W = 80.14 \pm 0.27$ GeV, and $m_Z = 91.175 \pm 0.021$ GeV along with the corresponding value of $\sin^2\theta_W = 0.2274$. They use $\sigma(W)/\sigma(Z) = 3.26 \pm 0.07 \pm 0.05$ and $\Gamma(Z) = 2.487 \pm 0.010$ GeV.
- ³⁶ ALBAJAR 91 measured $R = 9.5^{+1.1}_{-1.0}$ (stat. + syst.). $\sigma(W)/\sigma(Z)$ is calculated in QCD at the parton level using $m_W = 80.18 \pm 0.28$ GeV and $m_Z = 91.172 \pm 0.031$ GeV along with $\sin^2\theta_W = 0.2322 \pm 0.0014$. They use $\sigma(W)/\sigma(Z) = 3.23 \pm 0.05$ and $\Gamma(Z) = 2.498 \pm 0.020$ GeV. This measurement is obtained combining both the electron and muon channels.
- ³⁷ ABBIENDI 99C obtain this value from a fit to the reconstructed *W* mass distribution using data at 172 and 183 GeV. The systematic error includes an uncertainty of ± 0.12 GeV due to the possible color-reconnection and Bose-Einstein effects in the purely hadronic final states and an uncertainty of ± 0.01 GeV due to the beam energy.
- ³⁸ ABBOTT 99H measure $R=10.90 \pm 0.52$ combining electron and muon channels. They use $M_W = 80.39 \pm 0.06$ GeV and the SM theoretical predictions for $\sigma(W)/\sigma(Z)$, B($Z \rightarrow \ell \ell$), and $\Gamma(W \rightarrow \ell \nu_{\ell})$.
- ³⁹ABREU 99T obtain this value using $WW \rightarrow \ell \overline{\nu}_{\ell} q \overline{q}$ and $WW \rightarrow q \overline{q} q \overline{q}$ events. The systematic error includes an uncertainty of ± 0.080 GeV due to possible color reconnection and Bose-Einstein effects in the purely hadronic final state.
- ⁴⁰ BARATE 99I obtain this result with a fit to the WW measured cross sections at 161, 172, and 183 GeV. The theoretical prediction takes into account the sensitivity to the W total width.
- ⁴¹ ACCIARRI 97S obtain this value from a fit to the reconstructed W mass distribution.
- 42 ABE 95C use the tail of the transverse mass distribution of $W
 ightarrow e
 u_e$ decays.

⁴³ ALITTI 90C used the same technique as described for ABE 90. They measured $R = 9.38^{+0.82}_{-0.72} \pm 0.25$, obtained $\Gamma(W)/\Gamma(Z) = 0.902 \pm 0.074 \pm 0.024$. Using $\Gamma(Z) = 2.546 \pm 0.032$ GeV, they obtained the $\Gamma(W)$ value quoted above and the limits $\Gamma(W) < 2.56$ (2.64) GeV at the 90% (95%) CL. $E_{\rm cm}^{p\overline{p}} = 546,630$ GeV.

⁴⁴ ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e\nu$ events.

 45 If systematic error is neglected, result is $2.7^{+1.4}_{-1.5}$ GeV. This is enhanced subsample of 172 total events.

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

_	Mode	Frac	tion (Γ _i /Γ)	Confidence	level
Γ_1	$\ell^+ \nu$	[<i>a</i>] (1	.0.68± 0.12)	%	
Г2	$e^+ \nu$	(1	0.72± 0.16)	%	
Γ ₃	$\mu^+ \nu$	(1	0.57± 0.22)	%	
Г ₄	$\tau^+ \nu$	(1	0.74± 0.27)	%	
Γ ₅	hadrons	(6	7.96± 0.35)	%	
Г ₆	$\pi^+\gamma$	<	8	imes 10 ⁻⁵	95%
Γ ₇	$D_s^+\gamma$	<	1.3	imes 10 ⁻³	95%
Г ₈	сХ	(3	$3.6~\pm~2.7$)	%	
Г ₉	c <u>s</u>	(3	$(1 {+13 \atop -11})$	%	
Γ ₁₀	invisible	[b] ($1.4~\pm~2.8$)	%	

[a] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

[b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p < 200 MeV.

W PARTIAL WIDTHS

Γ(invisible)

This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.

VALUE (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT	
$30^{+52}_{-48} \pm 33$	⁴⁶ BARATE	991	ALEP	$E_{\rm cm}^{ee} = 161 + 172 + 183$	
• • • We do not use the	following data for average	es, fits	, limits,	etc. • • •	
	⁴⁷ BARATE	99L	ALEP	$E_{cm}^{ee} = 161 + 172 + 183$	

 46 BARATE 991 measure this quantity using the dependence of the total cross section $\sigma_{W\,W}$ upon a change in the total width. The fit is performed to the $W\,W$ measured cross sections at 161, 172, and 183 GeV. This partial width is < 139 MeV at 95%CL.

⁴⁷ BARATE 99L use *W*-pair production to search for effectively invisible *W* decays, tagging with the decay of the other *W* boson to Standard Model particles. The partial width for effectively invisible decay is < 27 MeV at 95%CL.

HTTP://PDG.LBL.GOV

Γ₁₀

W BRANCHING RATIOS

Overall fits are performed to determine the branching ratios of the W. For each LEP experiment the correlation matrix of the leptonic branching ratios is used and the common systematic errors among LEP experiments are properly taken into account (see LEP Electroweak Working Group note LEPEWWG/XSEC/2001-02, 30 March 2001, accessible at http://lepewwg.web.cern.ch/LEPEWWG/lepww/4f/PDG01). A first fit determines three individual leptonic branching ratios, $B(W \rightarrow e\nu_e)$, $B(W \rightarrow \mu\nu_{\mu})$, and $B(W \rightarrow \tau\nu_{\tau})$. This fit has a $\chi^2 = 11.0$ for 22 degrees of freedom. A second fit assumes lepton universality and determines the leptonic branching ratio $B(W \rightarrow \ell\nu_{\ell})$ and the hadronic branching ratio is derived as $B(W \rightarrow hadrons) = 1-3 B(W \rightarrow \ell\nu)$. This fit has a $\chi^2 = 11.4$ for 24 degrees of freedom.

The LEP $W \rightarrow \ell \nu$ data are obtained by the Collaborations using individual leptonic channels and are, therefore, not included in the overall fits to avoid double counting.

$\Gamma(\ell^+\nu)/\Gamma_{\rm total}$

 ℓ indicates average over e, μ , and au modes, not sum over modes.

VALUE DOCUMENT ID TECN EVTS COMMENT 0.1068±0.0012 OUR FIT $0.1056 \pm 0.0020 \pm 0.0009$ OPAL $E_{cm}^{ee} = 161 + 172 + 183$ 5778 ABBIENDI,G +189 GeV00к DLPH E^{ee}_{cm} = 161+172+183 ABREU $0.1071 \pm 0.0024 \pm 0.0014$ 4843 +189 GeV $E_{cm}^{ee} = 161 + 172 + 183$ $0.1060 \pm 0.0023 \pm 0.0011$ 5328 ACCIARRI 00V L3 +189 GeV $E_{\rm cm}^{ee} = 161 + 172 + 183$ $0.1101 \pm 0.0022 \pm 0.0011$ BARATE 00J ALEP 5258 +189 GeV ⁴⁸ АВВОТТ $m^{\prime
ho}_{
m m} = 1.8$ TeV 0.1102 ± 0.0052 11858 99H D0 ⁴⁹ ABE *Е^{рр}*= 1.8 ТеV 3642 921 CDF 0.104 ± 0.008 • • • We do not use the following data for averages, fits, limits, etc. • $0.107 \pm 0.004 \pm 0.002$ 1440 ABBIENDI 99D OPAL Repl. by ABBI-ENDI,G 00 99k DLPH $0.1085 \pm 0.0048 \pm 0.0017$ 1336 ABREU Repl. by ABREU 00K $0.1036 \pm 0.0040 \pm 0.0017$ 1322 BARATE 991 ALEP Repl. by BARATE 00J $0.100 \ \pm 0.004 \ \pm 0.001$ 1434 ACCIARRI 98P L3 Repl. by ACCIA-**RRI 00**V

⁴⁸ABBOTT 99H measure $R \equiv [\sigma_W B(W \rightarrow \ell \nu_\ell)]/[\sigma_Z B(Z \rightarrow \ell \ell)] = 10.90 \pm 0.52$ combining electron and muon channels. They use $M_W = 80.39 \pm 0.06$ GeV and the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $B(Z \rightarrow \ell \ell)$.

HTTP://PDG.LBL.GOV

 Γ_1/Γ

$\Gamma(e^+ u)/\Gamma_{ m total}$				Γ_2/Γ
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.1072±0.0016 OUR FIT				
$0.1046 \pm 0.0042 \pm 0.0014$	801	ABBIENDI,G	00 OPAL	E ^{ee} _{cm} = 161+172+183 +189 GeV
$0.1044 \pm 0.0015 \pm 0.0028$	67318	⁵⁰ ABBOTT	00b D0	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
$0.1018 \!\pm\! 0.0054 \!\pm\! 0.0026$	527	ABREU	00K DLPH	$E_{\rm cm}^{ee} = 161 + 172 + 183$
$0.1077 \!\pm\! 0.0045 \!\pm\! 0.0016$	715	ACCIARRI	00V L3	$E_{cm}^{ee} = 161 + 172 + 183$ +189 GeV
$0.1135 \pm 0.0046 \pm 0.0017$	720	BARATE	00J ALEP	$E_{cm}^{ee} = 161 + 172 + 183$ +189 GeV
$0.1094 \!\pm\! 0.0033 \!\pm\! 0.0031$		⁵¹ ABE	95W CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
$\begin{array}{rrr} 0.10 & \pm 0.014 & +0.02 \\ & -0.03 \end{array}$	248	⁵² ANSARI	87C UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
$\bullet~\bullet~\bullet$ We do not use the	following	data for averages, f	fits, limits, et	
$0.117 \ \pm 0.009 \ \pm 0.002$	224	ABBIENDI	99D OPAL	Repl. by ABBI- ENDI.G 00
$0.1012 \pm 0.0107 \pm 0.0028$	150	ABREU	99k DLPH	Repl. by ABREU 00K
$0.1115 \!\pm\! 0.0085 \!\pm\! 0.0024$	192	BARATE	991 ALEP	Repl. by BARATE 00J
$0.105 \ \pm 0.009 \ \pm 0.002$	173	ACCIARRI	98p L3	Repl. by ACCIA- RRI 00∨
seen	119	APPEL	86 UA2	E ^{pp} _{cm} = 546,630 GeV
seen	172	ARNISON	86 UA1	E ^{pp} _{cm} = 546,630 GeV

⁵⁰ ABBOTT 00B measure $R \equiv [\sigma_W B(W \to e\nu_e)]/[\sigma_Z B(Z \to ee)] = 10.43 \pm 0.27$ for the $W \to e\nu_e$ decay channel. They use the SM theoretical prediction for $\sigma(W)/\sigma(Z)$ and the world average for $B(Z \to ee)$.

⁵¹ABE 95W result is from a measurement of $\sigma B(W \rightarrow e\nu)/\sigma B(Z \rightarrow e^+e^-) = 10.90 \pm 0.32 \pm 0.29$, the theoretical prediction for the cross section ratio, the experimental knowledge of $\Gamma(Z \rightarrow e^+e^-) = 83.98 \pm 0.18$ MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$ respectively.

⁵² The first error was obtained by adding the statistical and systematic experimental uncertainties in quadrature. The second error reflects the dependence on theoretical prediction of total W cross section: $\sigma(546 \text{ GeV}) = 4.7^{+1.4}_{-0.7} \text{ nb}$ and $\sigma(630 \text{ GeV}) = 5.8^{+1.8}_{-1.0} \text{ nb}$. See ALTARELLI 85B.

$\Gamma(\mu^+\nu)/\Gamma_{total}$				Г3/Г	•
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	_
$0.1057 \pm 0.0022 \text{ OUR FIT}$					
$0.1050\!\pm\!0.0041\!\pm\!0.0012$	803	ABBIENDI,G	00 OPAL	$E_{\rm cm}^{ee} = 161 + 172 + 183$	
$0.1092\!\pm\!0.0048\!\pm\!0.0012$	649	ABREU	00K DLPH	+189 GeV $E_{cm}^{ee} = 161 + 172 + 183$	
$0.0990 \!\pm\! 0.0046 \!\pm\! 0.0015$	617	ACCIARRI	00v L3	+189 GeV $E_{cm}^{ee} = 161 + 172 + 183$	
$0.1110 \!\pm\! 0.0044 \!\pm\! 0.0016$	710	BARATE	00J ALEP	+189 GeV $E_{cm}^{ee} = 161 + 172 + 183$	
0.10 ±0.01	1216	⁵³ ABE	921 CDF	\pm 189 GeV E_{cm}^{pp} = 1.8 TeV	

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$0.102 \ \pm 0.008 \ \pm 0.002$	193	ABBIENDI	99d OPAL	Repl. by ABBI-
				ENDI,G 00
$0.1139 \pm 0.0096 \pm 0.0023$	186	ABREU	99k DLPH	Repl. by ABREU 00K
$0.1006 \pm 0.0078 \pm 0.0021$	179	BARATE	991 ALEP	Repl. by BARATE 00J
$0.102 \pm 0.009 \pm 0.002$	160	ACCIARRI	98P L3	Repl. by ACCIA-
				RRI 00V

 53 ABE 92I quote the inverse quantity as 9.9 \pm 1.2 which we have inverted.

$\Gamma(au^+ u)/\Gamma_{ ext{total}}$					Γ ₄ /Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.1074 ± 0.0027 OUR FIT					
$0.1075 \!\pm\! 0.0052 \!\pm\! 0.0021$	794	ABBIENDI,G	00	OPAL	$E_{cm}^{ee} = 161 + 172 + 183 + 189 \text{ GeV}$
$0.1105 \!\pm\! 0.0075 \!\pm\! 0.0032$	579	ABREU	00K	DLPH	$E_{cm}^{ee} = 161 + 172 + 183 + 189 \text{ GeV}$
$0.1124 \pm 0.0062 \pm 0.0022$	536	ACCIARRI	00V	L3	$E_{cm}^{ee} = 161 + 172 + 183 + 189 \text{ GeV}$
$0.1051 \!\pm\! 0.0055 \!\pm\! 0.0022$	607	BARATE	00J	ALEP	$E_{cm}^{ee} = 161 + 172 + 183 + 189 \text{ GeV}$
\bullet \bullet \bullet We do not use the f	ollowing dat	a for averages, f	fits, li	mits, et	c. ● ● ●
$0.101 \ \pm 0.010 \ \pm 0.003$	183	ABBIENDI	99 D	OPAL	Repl. by ABBI- ENDI,G 00
$0.1095 \pm 0.0149 \pm 0.0041$	142	ABREU	99 K	DLPH	Repl. by ABREU 00K
$0.0976 \pm 0.0101 \pm 0.0033$	160	BARATE	991	ALEP	Repl. by BARATE 00J
$0.090 \ \pm 0.012 \ \pm 0.003$	123	ACCIARRI	98P	L3	Repl. by ACCIA- RRI 00∨

$\Gamma(hadrons)/\Gamma_{total}$

 Γ_5/Γ

OUR FIT value is obtained by a fit to the lepton branching ratio data assuming lepton universality.

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
$0.6796 \pm 0.0035 \text{ OUR FIT}$				
0.679 ± 0.004 OUR AVE	RAGE			
$0.6832 \pm 0.0061 \pm 0.0028$	5778	ABBIENDI,G	00 OPAL	$E_{cm}^{ee} = 161 + 172 + 183$ +189 GeV
$0.6789 \!\pm\! 0.0073 \!\pm\! 0.0043$	4843	ABREU	00к DLPH	$E_{cm}^{ee} = 161 + 172 + 183$ +189 GeV
$0.6820 \pm 0.0068 \pm 0.0033$	5328	ACCIARRI	00V L3	$E_{cm}^{ee} = 161 + 172 + 183 + 189 \text{ GeV}$
$0.6697 \pm 0.0065 \pm 0.0032$	5258	BARATE	00J ALEP	$E_{cm}^{ee} = 161 + 172 + 183$ +189 GeV
$\bullet \bullet \bullet$ We do not use the	following dat	ta for averages, f	fits, limits, et	
$0.679\ \pm 0.012\ \pm 0.005$	1440	ABBIENDI	99D OPAL	Repl. by ABBI- ENDI,G 00
$0.6746 \pm 0.0143 \pm 0.0052$	1336	ABREU	99k DLPH	Repl. by ABREU 00K
$0.6893 \pm 0.0121 \pm 0.0051$	1322	BARATE	991 ALEP	Repl. by BARATE 00J
$0.701 \ \pm 0.013 \ \pm 0.004$	1434	ACCIARRI	98p L3	Repl. by ACCIA- RRI 00V

$\Gamma(\mu^+ u)/\Gamma(e^+ u)$				Γ_3/Γ_2
VALUE	EVTS	DOCUMENT ID	D <u>TECN</u>	COMMENT
0.986 ± 0.024 OUR FIT				
0.89 ± 0.10	13k	⁵⁴ ABACHI	95d D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
1.02 ± 0.08	1216	⁵⁵ ABE	921 CDF	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$1.00 \ \pm 0.14 \ \pm 0.08$	67	ALBAJAR	89 UA1	E ^{pp} _{cm} = 546,630 GeV
\bullet \bullet \bullet We do not use the	ne following	data for averages	s, fits, limits, e	tc. • • •
$1.24 \begin{array}{c} +0.6 \\ -0.4 \end{array}$	14	ARNISON	84d UA1	Repl. by ALBAJAR 89

⁵⁴ ABACHI 95D obtain this result from the measured $\sigma_W B(W \rightarrow \mu\nu) = 2.09 \pm 0.23 \pm 0.11$ nb and $\sigma_W B(W \rightarrow e\nu) = 2.36 \pm 0.07 \pm 0.13$ nb in which the first error is the combined statistical and systematic uncertainty, the second reflects the uncertainty in the luminosity.

⁵⁵ ABE 921 obtain $\sigma_W B(W \rightarrow \mu \nu) = 2.21 \pm 0.07 \pm 0.21$ and combine with ABE 91C $\sigma_W B((W \rightarrow e\nu))$ to give a ratio of the couplings from which we derive this measurement.

			Γ ₄ /Γ ₂
<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
980	⁵⁶ ABBOTT	00D D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
179	⁵⁷ ABE	92e CDF	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
754	⁵⁸ ALITTI	92F UA2	Е ^{рр} = 630 GeV
32	ALBAJAR	89 UA1	E ^{pp} _{cm} = 546,630 GeV
following	g data for averages,	fits, limits, et	tc. ● ● ●
198	ALITTI	91C UA2	Repl. by ALITTI 92F
32	ALBAJAR	87 UA1	Repl. by ALBAJAR 89
	<u>EVTS</u> 980 179 754 32 following 198 32	EVTSDOCUMENT ID98056 ABBOTT17957 ABE75458 ALITTI32ALBAJARfollowing data for averages,198ALITTI32ALBAJAR	EVTSDOCUMENT IDTECN98056ABBOTT00DD017957ABE92ECDF75458ALITTI92FUA232ALBAJAR89UA1following data for averages, fits, limits, et198ALITTI91C198ALITTI91CUA232ALBAJAR87UA1

⁵⁶ ABBOTT 00D measure $\sigma_W \times B(W \rightarrow \tau \nu_{\tau}) = 2.22 \pm 0.09 \pm 0.10 \pm 0.10$ nb. Using the ABBOTT 00B result $\sigma_W \times B(W \rightarrow e\nu_e) = 2.31 \pm 0.01 \pm 0.05 \pm 0.10$ nb, they quote the ratio of the couplings from which we derive this measurement.

⁵⁷ ABE 92E use two procedures for selecting $W \rightarrow \tau \nu_{\tau}$ events. The missing E_T trigger leads to $132 \pm 14 \pm 8$ events and the τ trigger to $47 \pm 9 \pm 4$ events. Proper statistical and systematic correlations are taken into account to arrive at $\sigma B(W \rightarrow \tau \nu) = 2.05 \pm 0.27$ nb. Combined with ABE 91C result on $\sigma B(W \rightarrow e\nu)$, ABE 92E quote a ratio of the couplings from which we derive this measurement.

 58 This measurement is derived by us from the ratio of the couplings of ALITTI 92F.

$\Gamma(\pi^+\gamma)/\Gamma(e^+ u)$				Г ₆ /Г
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
< 7 × 10 ⁻⁴	95	ABE	98н CDF	$E_{ m cm}^{p\overline{p}}=1.8~{ m TeV}$
$<$ 4.9 \times 10 $^{-3}$	95	⁵⁹ ALITTI	92D UA2	$E_{cm}^{p\overline{p}}$ = 630 GeV
$< 58 \times 10^{-3}$	95	⁶⁰ ALBAJAR	90 UA1	Е ^{рр} = 546, 630 GeV

 59 ALITTI 92D limit is 3.8×10^{-3} at 90%CL. 60 Al BA JAB 90 obtain < 0.048 at 90%CL.

- ALDAJAK	90	obtain	<	0.040	at	90%CL.

$\Gamma(D^+_s\gamma)/\Gamma(e^+ u)$					Γ_7/Γ_2
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<1.2 × 10 ⁻²	95	ABE	98P CDF	$\overline{E_{cm}^{p\overline{p}}}$ = 1.8 TeV	

HTTP://PDG.LBL.GOV

2

$\Gamma(cX)/\Gamma(hadrons)$				Г ₈ /	′Γ ₅
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.49 ±0.04 OUR AV	ERAGE				
$0.481\!\pm\!0.042\!\pm\!0.032$	3005	⁶¹ ABBIENDI	00V OPAL	$E_{\rm cm}^{ee} = 183 + 189 {\rm GeV}$	/
$0.51\ \pm 0.05\ \pm 0.03$	746	⁶² BARATE	99м ALEP	$E_{\rm cm}^{ee} = 172 + 183 {\rm GeV}$	/
61					_

⁶¹ ABBIENDI 00V tag $W \rightarrow cX$ decays using measured jet properties, lifetime information, and leptons produced in charm decays. From this result, and using the additional measurements of $\Gamma(W)$ and $B(W \rightarrow hadrons)$, $|V_{cs}|$ is determined to be 0.969 \pm 0.045 \pm 0.036.

 62 BARATE 99M tag c jets using a neural network algorithm. From this measurement $|V_{cs}|$ is determined to be $1.00 \pm 0.11 \pm 0.07$.

$R_{cs} = \Gamma(c\overline{s})/\Gamma(hadrons)$			Г9/Г <u>5</u>
VALUE	DOCUMENT ID	TECN	COMMENT
$0.46^{+0.18}_{-0.14}\pm 0.07$	⁶³ ABREU	98N DLPH	$E_{ m cm}^{ee}=$ 161+172 GeV

⁶³ ABREU 98N tag c and s jets by identifying a charged kaon as the highest momentum particle in a hadronic jet. They also use a lifetime tag to independently identify a c jet, based on the impact parameter distribution of charged particles in a jet. From this measurement $|V_{cs}|$ is determined to be $0.94^{+0.32}_{-0.26} \pm 0.13$.

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAY

Summed over particle and antiparticle, when appropriate.

$$\langle N_{\pi^{\pm}} \rangle$$

VALUE	DOCUMENT ID	TECN	COMMENT	
15.70±0.35	64 ABREU,P	00F DLPH	$E_{\rm cm}^{ee}$ = 189 GeV	
C 4				

⁶⁴ ABREU,P 00F measure $\langle N_{\pi^{\pm}} \rangle = 31.65 \pm 0.48 \pm 0.76$ and $15.51 \pm 0.38 \pm 0.40$ in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.

$$\langle N_{K^{\pm}} \rangle$$

VALUE	DOCUMENT ID	TECN	COMMENT	
2.20±0.19	65 ABREU,P	00F DLPH	$E_{\rm Cm}^{ee}$ = 189 GeV	

⁶⁵ABREU,P 00F measure $\langle N_{K^{\pm}} \rangle = 4.38 \pm 0.42 \pm 0.12$ and $2.23 \pm 0.32 \pm 0.17$ in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.

$\langle N_p \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT	
0.92±0.14	66 ABREU,P	00F DLPH	$E_{\rm cm}^{ee}$ = 189 GeV	

 $^{66}\,{\rm ABREU,P}$ 00F measure $\langle N_p\rangle=1.82\pm0.29\pm0.16$ and 0.94 \pm 0.23 \pm 0.06 in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.

$\langle N_{\rm charged} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
19.41 \pm 0.15 OUR AVERAGE				
19.44 ± 0.17	⁶⁷ ABREU,P	00F	DLPH	$E_{\rm cm}^{ee}$ = 183+189 GeV
$19.3\ \pm 0.3\ \pm 0.3$	⁶⁸ ABBIENDI	99N	OPAL	$E_{\rm Cm}^{ee} = 183 { m ~GeV}$
19.23±0.74	⁶⁹ ABREU	98 C	DLPH	$E_{\rm Cm}^{ee}$ = 172 GeV
⁶⁷ ABREU,P 00F measure $\langle N_{c} \rangle$	$ harged angle =$ 39.12 \pm	0.33	\pm 0.36	and 38.11 \pm 0.57 \pm 0.44
in the fully hadronic final st	ates at 189 and 18	3 Ge\	√ respec	tively, and $\langle N_{\text{charged}} \rangle =$

 $19.49 \pm 0.31 \pm 0.27$ and $19.78 \pm 0.49 \pm 0.43$ in the semileptonic final states. The value quoted is a weighted average without assuming any correlations.

⁶⁸ ABBIENDI 99N use the final states $W^+W^- \rightarrow q \overline{q} \ell \overline{\nu}_{\ell}$ to derive this value.

 69 ABREU 98C combine results from both the fully hadronic as well semileptonic WW final states after demonstrating that the W decay charged multiplicity is independent of the topology within errors.

TRIPLE GAUGE COUPLINGS (TGC'S)

Revised February 2002 by C. Caso (University of Genova) and A. Gurtu (Tata Institute).

Fourteen independent couplings, 7 each for ZWW and γWW , completely describe the VWW vertices within the most general framework of the electroweak Standard Model (SM) consistent with Lorentz invariance and U(1) gauge invariance. Of each of the 7 TGC's, 3 conserve C and P individually, 3 violate CP, and one TGC violates C and P individually while conserving CP. Assumption of C and P conservation and electromagnetic gauge invariance reduces the independent VWW couplings to five: one common set [1,2] is $(\Delta \kappa_{\gamma}, \Delta \kappa_{Z}, \lambda_{\gamma}, \lambda_{Z}, \Delta g_{1}^{Z})$, where $\Delta \kappa_{\gamma} = \Delta \kappa_{Z} = \Delta g_{1}^{Z} = 0$ and $\lambda_{\gamma} = \lambda_{Z} = 0$ in the Standard Model at the tree level. The W magnetic dipole moment, μ_{W} , and the W electric quadrupole moment, q_{W} , are expressed as $\mu_{W} = e (1 + \kappa_{\gamma} + \lambda_{\gamma})/2M_{W}$ and $q_{W} = -e (\kappa_{\gamma} - \lambda_{\gamma})/M_{W}^{2}$.

Precision measurements of suitable observables at LEP1 has already led to an exploration of much of the TGC parameter space. For LEP2 data, the LEP Collaborations have agreed to express their results in terms of the parameters Δg_1^Z , $\Delta \kappa_{\gamma}$ and λ_{γ} (λ_Z and $\Delta \kappa_Z$ are related to these by gauge invariance).

HTTP://PDG.LBL.GOV

Page 16

At LEP2 the VWW coupling arises in W-pair production via *s*-channel exchange or in single W production via the radiation of a virtual photon off the incident e^+ or e^- . At the TEVATRON hard photon bremstrahlung off a produced W or Z signals the presence of a triple gauge vertex. In order to extract the value of one TGC the others are generally kept fixed to their SM values.

References

 Δe_1^Z

1. K. Hagiwara *et al.*, Nucl. Phys. **B282**, 253 (1987).

2. G. Gounaris et al., CERN 96-01 525.

9 <u>1</u>					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.004 ± 0.035 OUR A	/ERAGE				
$-0.009 \substack{+0.060 \\ -0.057}$	3455	⁷⁰ ABBIENDI	0 1M	OPAL	$E_{\rm cm}^{ee}$ = 161–189 GeV
$-0.02\ \pm 0.07\ \pm 0.01$	2114	⁷¹ ABREU	011	DLPH	$E_{\mathrm{Cm}}^{ee} = 183 {+} 189 \mathrm{GeV}$
$0.023 \substack{+ 0.059 \\ - 0.055}$	3586	⁷² HEISTER	01 C	ALEP	$E_{\rm cm}^{ee}$ = 161–189 GeV
$0.11 \begin{array}{c} +0.19 \\ -0.18 \end{array} \pm 0.10$	1154	⁷³ ACCIARRI	99Q	L3	$E_{\rm cm}^{ee} = 161 + 172 + 183$
• • • We do not use th	e followin	ng data for averages	s, fits	, limits,	etc. ● ● ●
-0.018 ± 0.026		⁷⁴ EBOLI	00	THEO	LEP1, SLC+ Tevatron
$0.01 \begin{array}{c} +0.13 \\ -0.12 \end{array}$	853	⁷⁵ ABBIENDI	99 D	OPAL	Repl. by ABBIENDI 01 \ensuremath{M}
	331	⁷⁶ ABBOTT	991	D0	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
$-0.04 \ \begin{array}{c} +0.14 \\ -0.12 \end{array}$	547	⁷⁷ ABREU	99L	DLPH	Repl. by ABREU 011
$-0.017 {\pm} 0.018 {+} 0.018 {-} 0.003$		⁷⁸ MOLNAR	99	THEO	LEP1, SLAC+Tevatron

- ⁷⁰ ABBIENDI 01M combine results from $W^+ W^-$ in all decay channels. The 95% confidence interval is $-0.12 < \Delta g_1^Z < 0.11$. When all three couplings Δg_1^Z , $\Delta \kappa_{\gamma}$, and λ_{γ} are floated freely in the fit, one obtains $\Delta g_1^Z = 0.120 \substack{+0.077 \\ -0.083}$.
- 71 ABREU 011 combine results from $e^+\,e^-$ interactions at 189 GeV leading to $W^+\,W^-$ and $W\,e\,\nu_e$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $-0.16 < \Delta g_1^Z < 0.13$.
- 72 HEISTER 01C study W-pair, single-W, and single photon events and combine with earlier results from BARATE,R 98, BARATE 98Y, and BARATE 99L to obtain the quoted value, fixing $\Delta\kappa_{\gamma}$ and λ_{γ} to their Standard Model values. The 95% confidence interval is $-0.087 < \Delta g_1^Z < 0.141$. When all three couplings Δg_1^Z , $\Delta\kappa_{\gamma}$, and λ_{γ} are floated freely in the fit, one obtains $\Delta g_1^Z = 0.013 \substack{+0.066 \\ -0.068}$.

⁷³ACCIARRI 99Q study W-pair, single-W, and single photon events.

- ⁷⁴ EBOLI 00 extract this indirect value of the coupling studying the non-universal one-loop contributions to the experimental value of the $Z \rightarrow b\overline{b}$ width (Λ =1 TeV is assumed).
- ⁷⁵ABBIENDI 99D combine results from W^+W^- production at different energies. The 95% confidence interval is $-0.23 < \Delta g_1^Z < 0.26$.
- ⁷⁶ ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow \text{trilepton}$ data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are $-0.37 < \Delta g_1^Z < 0.57$, fixing $\lambda_Z = \Delta \kappa_Z = 0$ and assuming Standard Model values for the $WW\gamma$ couplings.
- ⁷⁷ABREU 99L use W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states. The 95% confidence interval is $-0.28 < \Delta g_1^Z < 0.24$.

⁷⁸ MOLNAR 99 extract this value indirectly by fitting high energy electroweak data within the framework of the Standard Model. The central value of the Higgs mass used is 300 GeV and the quoted systematic error is due to its variation between 90 to 1000 GeV.

<u>EVTS</u>	DOCUMENT ID	TE	CN <u>COMM</u>	ENT
ERAGE				
3455	⁷⁹ ABBIENDI	01M O	PAL E ^{ee} =	= 161–189 GeV
2298	⁸⁰ ABREU	011 DI	LPH E ^{ee}	= 183+189 GeV
3586	⁸¹ HEISTER	01C AL	_EP <i>E</i> ee_=	- 161–189 GeV
137	⁸² ACCIARRI	00N L3	E ^{ee} cm=	- 130–189 GeV
331	⁸³ АВВОТТ	991 D0	$E_{\rm cm}^{p} =$	= 1.8 TeV
1154	⁸⁴ ACCIARRI	99Q L3	s E ^{ee} cm=	= 161+172+ 183 V
e followin	g data for averages	, fits, lir	mits, etc. •	• •
	⁸⁵ BREITWEG	00 ZE	EUS $e^+p = \sqrt{s}$	$ ightarrow e^+ W^{\pm} X$, ightarrow 300 GeV
853	⁸⁶ ABBIENDI	99D OF	PAL Repl.	by ABBIENDI 01M
586	⁸⁷ ABREU	99l DI	LPH Repl.	by ABREU 01I
15	⁸⁸ BARATE	99L AL	_EP Repl.	by HEISTER 01C
	⁸⁹ MOLNAR	99 TH	HEO LEP1,	SLAC+Tevatron
86	⁹⁰ ACCIARRI	98n L3	B Repl.	by ACCIARRI 00N
207	⁹¹ BARATE,R	98 AL	_EP Repl.	by HEISTER 01C
	EVTS FERAGE 3455 2298 3586 137 331 1154 e followin 853 586 15 86 207	EVTSDOCUMENT ID345579ABBIENDI345579ABBIENDI229880ABREU358681HEISTER13782ACCIARRI33183ABBOTT31184ACCIARRI115484ACCIARRI85386ABBIENDI58687ABREU1588BARATE8690ACCIARRI20791BARATE, R	EVTS DOCUMENT ID TE 3455 7^9 ABBIENDI $01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\$	EVTS TERAGEDOCUMENT IDTECNCOMM 3455 79 ABBIENDI $01 \\ M$ $OPAL$ $E_{Cm}^{ee} = 1$ 2298 80 ABREU 011 $DLPH$ $E_{Cm}^{ee} = 1$ 3586 81 HEISTER $01c$ $ALEP$ $E_{Cm}^{ee} = 1$ 3586 81 HEISTER $00N$ $L3$ $E_{Cm}^{ee} = 1$ 137 82 ACCIARRI $00N$ $L3$ $E_{Cm}^{ee} = 1$ 331 83 ABBOTT $99I$ $D0$ $E_{Cm}^{ee} = 1$ 311 84 ACCIARRI $99U$ $L3$ $E_{Cm}^{ee} = 1$ 1154 84 ACCIARRI $99U$ $L3$ $E_{Cm}^{ee} = 1$ 85 BREITWEG 00 $ZEUS$ $e^+ p - 1$ 586 87 ABREU $99L$ $DLPH$ Repl. 15 86 BARATE $99L$ $ALEP$ Repl. 86 90 ACCIARRI $98N$ $L3$ Repl. 86 90 ACCIARRI $98N$ $L3$ Repl. 207 91 BARATE, 88 $ALEP$ Repl.

⁷⁹ABBIENDI 01M combine results from W^+W^- in all decay channels. The 95% confidence interval is $-0.32 < \Delta \kappa_{\gamma} < 0.45$. When all three couplings Δg_1^Z , $\Delta \kappa_{\gamma}$, and λ_{γ} are floated freely in the fit, one obtains $\Delta \kappa_{\gamma} = 0.02 \substack{+0.20 \\ -0.15}$.

 80 ABREU 011 combine results from $e^+\,e^-$ interactions at 189 GeV leading to $W^+\,W^-$, $W\,e\,\nu_e$, and $\nu\,\overline{\nu}\,\gamma$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $-0.13 < \Delta\kappa_\gamma < 0.68$.

⁸¹ HEISTER 01C study *W*-pair, single-*W*, and single photon events and combine with earlier results from BARATE,R 98, BARATE 98Y, and BARATE 99L to obtain the quoted value, fixing Δg_1^Z and λ_γ to their Standard Model values. The 95% confidence interval

is $-0.200 < \Delta \kappa_{\gamma} < 0.258$. When all three couplings Δg_1^Z , $\Delta \kappa_{\gamma}$, and λ_{γ} are floated freely in the fit, one obtains $\Delta \kappa_{\gamma} = 0.043 \pm 0.110$.

- ⁸² ACCIARRI 00N study single W production in e^+e^- interactions from 130 to 189 GeV. This study is largely complementary to ACCIARRI 99Q. The 95% CL limits are $-0.44 < \Delta \kappa_{\gamma} < 0.29$ (for $\lambda_{\gamma}=0$). When both couplings λ_{γ} and κ_{γ} are floated freely in the fit, one obtains $\Delta \kappa_{\gamma} = -0.07 \pm 0.16 \pm 0.09$.
- ⁸³ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow \text{trilepton}$ data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are $-0.25 < \Delta \kappa_{\gamma} < 0.39$.
- ⁸⁴ ACCIARRI 99Q study W-pair, single-W, and single photon events.
- ⁸⁵ BREITWEG 00 search for W production in events with large hadronic p_T . For $p_T > 20$ GeV, the upper limit on the cross section gives the 95%CL limit $-4.7 < \Delta \kappa_{\gamma} < 1.5$ (for $\lambda_{\gamma} = 0$).
- ⁸⁶ ABBIENDI 99D combine results from W^+W^- production at different energies. The 95% confidence interval is $-0.55 < \Delta \kappa_{\gamma} < 1.28$.
- ⁸⁷ ABREU 99L use W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states. The 95% confidence interval is $-0.46 < \Delta\kappa_{\gamma} < 0.84$.
- ⁸⁸ BARATE 99L study single W production in e^+e^- interactions from 161 to 183 GeV. They obtain 95%CL limits of $-1.6 < \kappa_{\gamma} < 1.5$, which we convert to $-2.6 < \Delta \kappa_{\gamma} < 0.5$ for $\lambda_{\gamma} = 0$.
- ⁸⁹ MOLNAR 99 extract this value indirectly by fitting high energy electroweak data within the framework of the Standard Model. The central value of the Higgs mass used is 300 GeV and the quoted systematic error is due to its variation between 90 to 1000 GeV.
- 90 ACCIARRI 98N study single W production in $e^+\,e^-$ interactions from 130 to 183 GeV. The 95%CL limits are $-0.46 < \Delta\kappa_\gamma < 0.57$.
- ⁹¹BARATE,R 98 study single photon production in e^+e^- interactions from 161 to 183 GeV. A likelihood fit is performed to the cross section and to the photon energy and angular distributions, taking into account systematic uncertainties. The 95%CL limits are $-2.2 < \Delta \kappa_{\gamma} < 2.3$.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.012 ± 0.035 OUR AV	/ERAGE	Error includes sca	le factor of 1	.1.
$-0.110\substack{+0.058\\-0.055}$	3455	⁹² ABBIENDI	01M OPAL	$E_{\rm cm}^{ee}$ = 161–189 GeV
$0.05\ \pm 0.09\ \pm 0.01$	2298	⁹³ ABREU	011 DLPH	$E_{\mathrm{CM}}^{ee} = 183 {+} 189 \; \mathrm{GeV}$
$0.040 \substack{+ 0.054 \\ - 0.052}$	3586	⁹⁴ HEISTER	01C ALEP	$E_{\rm Cm}^{ee}$ = 161–189 GeV
$-0.26 \begin{array}{c} +0.53 \\ -0.19 \end{array} \pm 0.13$	137	⁹⁵ ACCIARRI	00N L3	$E_{\rm cm}^{ee}$ = 130–189 GeV
$\substack{0.00 \\ -0.09}^{+0.10}$	331	⁹⁶ ABBOTT	991 D0	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
$0.10 \begin{array}{c} +0.22 \\ -0.20 \end{array} \pm 0.10$	1154	⁹⁷ ACCIARRI	99Q L3	$E_{cm}^{ee} = 161 + 172 + 183$
$\bullet \bullet \bullet$ We do not use the	e followin	g data for averages	s, fits, limits,	etc. • • •
				+ $+$ $+$ $+$ $+$

98 BREITWEG

00 ZEUS $e^+ p \rightarrow e^+ W^{\pm} X$, $\sqrt{s} \approx 300 \text{ GeV}$

-0.50	±0.73		⁹⁹ EBOLI	00	THEO	LEP1, SLC+ Tevatron
-0.10	$+0.13 \\ -0.12$	853	¹⁰⁰ ABBIENDI	99 D	OPAL	Repl. by ABBIENDI 01M
-0.15	$^{+0.19}_{-0.15}$	586	¹⁰¹ ABREU	99L	DLPH	Repl. by ABREU 01
		15	¹⁰² BARATE	99L	ALEP	Repl. by HEISTER 01C
-0.48	$+0.44 \\ -0.21$	86	¹⁰³ ACCIARRI	98N	L3	Repl. by ACCIARRI 00N
-0.05	$^{+1.55}_{-1.45}\ \pm 0.30$	207	¹⁰⁴ BARATE,R	98	ALEP	Repl. by HEISTER 01C

 92 ABBIENDI 01M combine results from $W^+ \, W^-$ in all decay channels. The 95% confidence interval is $-0.22 < \lambda_\gamma < 0.01$. When all three couplings Δg_1^Z , $\Delta \kappa_\gamma$, and λ_γ are floated freely in the fit, one obtains $\lambda_\gamma = -0.190 \substack{+0.087 \\ -0.082}$.

- ⁹³ ABREU 011 combine results from e^+e^- interactions at 189 GeV leading to W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $-0.11 < \lambda_{\gamma} < 0.23$.
- ⁹⁴ HEISTER 01C study *W*-pair, single-*W*, and single photon events and combine with earlier results from BARATE, P8, BARATE 98Y, and BARATE 99L to obtain the quoted value, fixing Δg_1^Z and $\Delta \kappa_{\gamma}$ to their Standard Model values. The 95% confidence interval is $-0.062 < \lambda_{\gamma} < 0.147$. When all three couplings Δg_1^Z , $\Delta \kappa_{\gamma}$, and λ_{γ} are floated freely in the fit, one obtains $\lambda_{\gamma} = 0.023 \substack{+0.074 \\ -0.077}$.
- 95 ACCIARRI 00N study single W production in e^+e^- interactions from 130 to 189 GeV. This study is largely complementary to ACCIARRI 99Q. The 95% CL limits are $-0.67 < \lambda_{\gamma} < 0.59$ (for $\kappa_{\gamma}{=}1$). When both couplings λ_{γ} and κ_{γ} are floated freely in the fit, one obtains $\lambda_{\gamma} = -0.31 \substack{+0.68 \\ -0.19} \pm 0.13$.
- ⁹⁶ ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow \text{trilepton}$ data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are $-0.18 < \lambda_{\gamma} < 0.19$.
- ⁹⁷ ACCIARRI 99Q study W-pair, single-W, and single photon events.
- ⁹⁸ BREITWEG 00 search for W production in events with large hadronic p_T . For $p_T > 20$ GeV, the upper limit on the cross section gives the 95%CL limit $-3.2 < \lambda_{\gamma} < 3.2$ (for $\Delta \kappa_{\gamma} = 0$).
- ⁹⁹ EBOLI 00 extract this indirect value of the coupling studying the non-universal one-loop contributions to the experimental value of the $Z \rightarrow b\bar{b}$ width (Λ =1 TeV is assumed).
- ¹⁰⁰ ABBIENDI 99D combine results from W^+W^- production at different energies. The 95% confidence interval is $-0.33 < \lambda_{\gamma} < 0.16$.
- ¹⁰¹ABREU 99L use W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states. The 95% confidence interval is $-0.44 < \lambda_{\gamma} < 0.24$.
- ¹⁰² BARATE 99L study single W production in e^+e^- interactions from 161 to 183 GeV. The 95%CL limits are $-1.6 < \lambda_{\gamma} < 1.6$ for $\Delta \kappa_{\gamma} = 0$.
- ¹⁰³ ACCIARRI 98N study single W production in e^+e^- interactions from 130 to 183 GeV. The 95%CL limits are $-0.86 < \lambda_{\gamma} < 0.75$.
- ¹⁰⁴ BARATE,R 98 study single photon production in e^+e^- interactions from 161 to 183 GeV. A likelihood fit is performed to the cross section and to the photon energy and angular distributions, taking into account systematic uncertainties. The 95%CL limits are $-3.1 < \lambda_{\gamma} < 3.2$.

Δg_5^Z	CD as man			
VALUE	<u>EVTS</u>	DOCUMENT ID	-vloiating. <u>TE</u>	CN COMMENT
$-0.44^{+0.23}_{-0.22}{\pm}0.12$	1154	¹⁰⁵ ACCIARRI	99Q L3	$E_{cm}^{ee} = 161 + 172 + 183$ GeV
• • • We do not use t	he follow	ing data for average	es, fits, lin	nits, etc. • • •
-0.16 ± 0.23		¹⁰⁶ EBOLI	00 TH	EO LEP1, SLC+ Tevatron
¹⁰⁵ ACCIARRI 99Q stu 106 EBOLI 00 extract contributions to th	ıdy <i>W</i> -pa this indire e experin	ir, single-W, and si ct value of the coup nental value of the .	ngle photo pling study $Z \rightarrow b \overline{b}$	on events. ving the non-universal one-loop width ($\Lambda{=}1~{ m TeV}$ is assumed).
57 This coupling is VALUE	<i>CP</i> -violat <u>EVTS</u>	ing (<i>C</i> -violating an <u>DOCUMENT ID</u>	d <i>P</i> -conse	rving). <u>CN COMMENT</u>
$-0.02\substack{+0.32\\-0.33}$	1065	¹⁰⁷ ABBIENDI	01H OF	AL E ^{ee} _{cm} = 189 GeV
107 ABBIENDI 01Η stu W. The coupling with decay angles	ıdy <i>W</i> -pa is extracto from the	ir events, with one l ed using informatio leptonically decayin	eptonically n from the g <i>W</i> .	and one hadronically decaying W production angle together
κ̃z This coupling is	<i>CP</i> -violat	ing (<i>C</i> -conserving a	and <i>P</i> -viola	ating).
VALUE	EVTS	DOCUMENT ID	<u></u>	CN <u>COMMENT</u>
$-0.20 \substack{+0.10 \\ -0.07}$	1065	¹⁰⁸ ABBIENDI	01H OF	AL E_{cm}^{ee} = 189 GeV
¹⁰⁸ ABBIENDI 01н stı <i>W</i> . The coupling with decay angles	ıdy <i>W</i> -pa is extracto from the	ir events, with one l ed using informatio leptonically decayin	eptonically n from the g <i>W</i> .	and one hadronically decaying <i>W</i> production angle together
$\tilde{\lambda}_{Z}$				
This coupling is <i>VALUE</i>	<i>CP</i> -violat <u>EVTS</u>	ing (<i>C</i> -conserving a <u>DOCUMENT ID</u>	and <i>P</i> -viola	ating). <u>CN COMMENT</u>
$-0.18\substack{+0.24\\-0.16}$	1065	¹⁰⁹ ABBIENDI	01H OF	AL E ^{ee} _{cm} = 189 GeV
¹⁰⁹ ABBIENDI 01H stu <i>W</i> . The coupling	ıdy <i>W</i> -pa is extracto	ir events, with one l ed using informatio	eptonically n from the	v and one hadronically decaying W production angle together

with decay angles from the leptonically decaying W.

HTTP://PDG.LBL.GOV Page 21 Created: 6/17/2002 12:41

W ANOMALOUS MAGNETIC MOMENT

The full magnetic moment is given by $\mu_W = e(1+\kappa + \lambda)/2m_W$. In the Standard Model, at tree level, $\kappa = 1$ and $\lambda = 0$. Some papers have defined $\Delta \kappa = 1-\kappa$ and assume that $\lambda = 0$. Note that the electric quadrupole moment is given by $-e(\kappa - \lambda)/m_W^2$. A description of the parameterization of these moments and additional references can be found in HAGIWARA 87 and BAUR 88. The parameter Λ appearing in the theoretical limits below is a regularization cutoff which roughly corresponds to the energy scale where the structure of the W boson becomes manifest.

VALUE (e/2m _W)	EVTS	DOCUMENT ID		TECN	COMMENT
$2.22^{+0.20}_{-0.19}$	2298	¹¹⁰ ABREU	011	DLPH	$E_{ m cm}^{ee}$ = 183+189 GeV
• • • We do not use th	ne follow	ing data for averages	s, fits	, limits,	etc. • • •
		¹¹¹ ABE	95 G	CDF	
		¹¹² ALITTI	9 2C	UA2	
		¹¹³ SAMUEL	92	THEO	
		¹¹⁴ SAMUEL	91	THEO	
		¹¹⁵ GRIFOLS	88	THEO	
		¹¹⁶ GROTCH	87	THEO	
		¹¹⁷ VANDERBIJ	87	THEO	
		¹¹⁸ GRAU	85	THEO	
		¹¹⁹ SUZUKI	85	THEO	
		¹²⁰ HERZOG	84	THEO	
110 ABREU 011 combin	e results	from e^+e^- interac	tions	at 189	GeV leading to W^+W^-

- ¹¹⁰ ABREU 011 combine results from e^+e^- interactions at 189 GeV leading to W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states with results from ABREU 99L at 183 GeV to determine Δg_1^Z , $\Delta \kappa_{\gamma}$, and λ_{γ} . $\Delta \kappa_{\gamma}$ and λ_{γ} are simultaneously floated in the fit to determine μ_W .
- 111 ABE 95G report $-1.3 < \kappa < 3.2$ for $\lambda=0$ and $-0.7 < \lambda < 0.7$ for $\kappa=1$ in $p\overline{p} \rightarrow e\nu_e \gamma X$ and $\mu\nu_\mu\gamma X$ at $\sqrt{s} = 1.8$ TeV.
- ¹¹² ALITTI 92C measure $\kappa = 1^{+2.6}_{-2.2}$ and $\lambda = 0^{+1.7}_{-1.8}$ in $p\overline{p} \rightarrow e\nu\gamma + X$ at $\sqrt{s} = 630$ GeV. At 95%CL they report $-3.5 < \kappa < 5.9$ and $-3.6 < \lambda < 3.5$.
- $^{113}\,\text{SAMUEL}$ 92 use preliminary CDF and UA2 data and find $-2.4 < \kappa < 3.7$ at 96%CL and $-3.1 < \kappa < 4.2$ at 95%CL respectively. They use data for $W\,\gamma$ production and radiative W decay.
- ¹¹⁴SAMUEL 91 use preliminary CDF data for $p\overline{p} \rightarrow W\gamma X$ to obtain $-11.3 \leq \Delta \kappa \leq 10.9$. Note that their $\kappa = 1 \Delta \kappa$.
- ¹¹⁵ GRIFOLS 88 uses deviation from ρ parameter to set limit $\Delta \kappa \lesssim 65 \ (M_{W}^2/\Lambda^2)$.
- ¹¹⁶ GROTCH 87 finds the limit $-37 < \Delta \kappa < 73.5$ (90% CL) from the experimental limits on $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ assuming three neutrino generations and $-19.5 < \Delta \kappa < 56$ for four generations. Note their $\Delta \kappa$ has the opposite sign as our definition.
- ¹¹⁷ VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta \kappa| < 33$ (m_W/Λ) . In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta \kappa$.
- ¹¹⁸ GRAU 85 uses the muon anomaly to derive a coupled limit on the anomalous magnetic dipole and electric quadrupole (λ) moments 1.05 > $\Delta \kappa \ln(\Lambda/m_W) + \lambda/2 > -2.77$. In the Standard Model $\lambda = 0$.
- ¹¹⁹SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta \kappa| \lesssim$ 190 $(m_W/\Lambda)^2$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta \kappa| \lesssim 2.2/\ln(\Lambda/m_W)$. Finally SUZUKI 85 uses deviations from the ρ parameter and

obtains a very qualitative, order-of-magnitude limit $|\Delta \kappa| \lesssim 150 \ (m_W/\Lambda)^4$ if $|\Delta \kappa| \ll 1.$ 120 HERZOG 84 consider the contribution of W-boson to muon magnetic moment including anomalous coupling of $WW\gamma$. Obtain a limit $-1 < \Delta \kappa < 3$ for $\Lambda \gtrsim 1$ TeV.

ANOMALOUS W/Z QUARTIC COUPLINGS

Revised February 2002 by C. Caso (University of Genova) and A. Gurtu (Tata Institute).

The Standard Model predictions for WWWW, WWZZ, $WWZ\gamma$, $WW\gamma\gamma$, and $ZZ\gamma\gamma$ couplings are small at LEP, but expected to become important at a TeV Linear Collider. Outside the Standard Model framework such possible couplings, a_0, a_c, a_n , are expressed in terms of the following dimension-6 operators [1,2];

$$L_{6}^{0} = -\frac{e^{2}}{16\Lambda^{2}} a_{0} F^{\mu\nu} F_{\mu\nu} \vec{W^{\alpha}} \cdot \vec{W_{\alpha}}$$
$$L_{6}^{c} = -\frac{e^{2}}{16\Lambda^{2}} a_{c} F^{\mu\alpha} F_{\mu\beta} \vec{W^{\beta}} \cdot \vec{W_{\alpha}}$$
$$L_{6}^{n} = -i \frac{e^{2}}{16\Lambda^{2}} a_{n} \epsilon_{ijk} W_{\mu\alpha}^{(i)} W_{\nu}^{(j)} W^{(k)\alpha} F^{\mu\nu}$$

where F, W are photon and W fields, L_6^0 and L_6^c conserve C, Pseparately and generate anomalous $W^+W^-\gamma\gamma$ and $ZZ\gamma\gamma$ couplings, L_6^n violates CP and generates an anomalous $W^+W^-Z\gamma$ coupling, and Λ is a scale for new physics. For the $ZZ\gamma\gamma$ coupling the CP-violating term represented by L_6^n does not contribute. These couplings are assumed to be real and to vanish at tree level in the Standard Model.

Within the same framework as above, a more recent description of the quartic couplings [3] treats the anomalous parts of the $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings separately leading to two sets parameterized as a_0^V/Λ^2 and a_c^V/Λ^2 , where V = W or Z.

At LEP the processes studied in search of these quartic couplings are $e^+e^- \to WW\gamma$, $e^+e^- \to \gamma\gamma\nu\overline{\nu}$, and $e^+e^- \to Z\gamma\gamma$ and limits are set on the quantities a_0^W/Λ^2 , a_c^W/Λ^2 , a_n/Λ^2 . The characteristics of the first process depend on all the three couplings whereas those of the latter two depend only on the

HTTP://PDG.LBL.GOV Page 23 Created: 6/17/2002 12:41

two CP-conserving couplings. The sensitive measured variables are the cross sections for these processes as well as the energy and angular distributions of the photon and recoil mass to the photon pair.

Different Monte Carlo descriptions of these couplings, *e.g.*, Ref. 2 and Ref. 4, do not agree, in particular for the $Z\gamma\gamma$ final state. Therefore, for the purpose of combining LEP results, only the measurements on $WW\gamma$ and $\gamma\gamma\nu\overline{\nu}$ final states are used and the 95% CL limits [5] are:

$$\begin{split} -0.018 &< a_0^W/\Lambda^2 < 0.018, \\ -0.033 &< a_c^W/\Lambda^2 < 0.047, \\ -0.17 &< a_n/\Lambda^2 < 0.15. \end{split}$$

References

- G. Belanger and F. Boudjema, Nucl. Phys. **B288**, 201 (1992).
- J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103 (2000);
 J.W. Stirling and A. Werthenbach, Phys. Lett. B466, 369 (1999).
- 3. G. Belanger *et al.*, Eur. Phys. J. C13, 103 (2000).
- 4. G. Montagna *et al.*, Phys. Lett. **B515**, 197 (2001).
- 5. The LEP Collaborations: ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Heavy Flavour Group: CERN-EP/2001-098 (2001).

 a_0/Λ^2 , a_c/Λ^2 , a_n/Λ^2 VALUE

DOCUMENT ID TECN

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

¹²¹ ACCIARRI	00⊤ L3
¹²² ABBIENDI	99∪ OPAL

 121 ACCIARRI 00T select 42 $e^+\,e^- \rightarrow~W^+\,W^-\,\gamma$ events at 189 GeV, where ${\it E}_{\gamma}>$ 5 GeV

and the photon is well isolated. They also select 35 acoplanar $e^+ e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ events at 183 and 189 GeV, where the photon energies are > 5 and > 1 GeV and the photon polar angles are between 14° and 166°. Using the shape and normalization of the photon spectra in the $W^+ W^- \gamma$ events together with the cross section of the final state $\nu \overline{\nu} \gamma \gamma$, they obtain the following one-parameter 95% CL limits: $-0.043~{\rm GeV}^{-2} < a_0/\Lambda^2 <$

 $\begin{array}{c} 0.043 \ {\rm GeV}^{-2}, \ -0.08 \ {\rm GeV}^{-2} < a_c/\Lambda^2 < 0.13 \ {\rm GeV}^{-2}, \ -0.41 \ {\rm GeV}^{-2} < a_n/\Lambda^2 < 0.37 \\ {\rm GeV}^{-2}. \end{array}$ $\begin{array}{c} 122 \ {\rm ABBIENDI} \ 990 \ {\rm select} \ 17 \ e^+ \ e^- \rightarrow \ W^+ \ W^- \ \gamma \ {\rm events} \ {\rm at} \ 189 \ {\rm GeV}, \ {\rm where} \ E_\gamma > 10 \ {\rm GeV} \\ {\rm and} \ {\rm the} \ {\rm photon} \ {\rm is} \ {\rm well} \ {\rm isolated}. \ {\rm The} \ {\rm photon} \ {\rm energy} \ {\rm spectrum} \ {\rm is} \ {\rm used} \ {\rm to} \ {\rm set} \ {\rm th} \ 95\% \\ {\rm CL} \ {\rm limits} \ -0.070 \ {\rm GeV}^{-2} < a_0/\Lambda^2 < 0.070 \ {\rm GeV}^{-2}, \ -0.13 \ {\rm GeV}^{-2} < a_c/\Lambda^2 < 0.19 \\ {\rm GeV}^{-2}, \ -0.61 \ {\rm GeV}^{-2} < a_n/\Lambda^2 < 0.57 \ {\rm GeV}^{-2}. \end{array}$

W REFERENCES

ABBIENDI	01F	PL B507 29	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	01H	EPJ C19 229	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	01M	EPJ C19 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	011	PL B502 9	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	01K	PL B511 159	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADLOFF	01A	EPJ C19 269	C. Adloff <i>et al.</i>	(H1 Collab.)
AFFOLDER	01E	PR D64 052001	T. Affolder <i>et al.</i>	(CDF Collab.)
HEISTER	01C	EPJ C21 423	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	00V	PL B490 71	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI,G	00	PL B493 249	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOIL	00	PRL 84 222	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOIL	00B	PR D61 072001	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	00D	PRL 84 5710	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	00K	PL B479 89	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU,P	UUF	EPJ C18 203	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI		PL B487 229	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	001	PL B490 187	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	000	PL B496 19	M. Acciarri <i>et al.</i>	(L3 Collab.)
	008	EPJ CI3 609	C. Adloff <i>et al.</i>	(FI Collab.)
		PRL 85 3347	I. Affolder <i>et al.</i>	
DARATE	001	PL B484 205	R. Barate <i>et al.</i>	(ALEPH Collab.)
	001	EPJ CI7 241	R. Barate <i>et al.</i>	(ALEPH Collab.)
BREITWEG		PL 64/1 411	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
	000	EPJ CIZ 411 MDL A1E 1	J. Dreitweg <i>et al.</i>	(ZEUS COIIAD.)
	00	NIFL AID I	C. Abbiendi et el	5. Novaes
	99C	PL D433 130	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
	99D	EFJ Co 191 DI R/63 163	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
	0011	DI B471 203	G. Abbiendi et al.	(OPAL Collab.)
	990 00H	DP D60 052003	B Abbett at al	(D) Collab.)
ABBOTT	001	PR D60 052005	B. Abbott <i>et al.</i>	(D0 Collab.)
	00K	DI B/156 310	P Abrou at al	(DELPHI Collab.)
ABREII	991	PI R450 382	P Abreu et al	(DELPHI Collab.)
ABRELL	QQT	PL B462 410	P Abreu et al	(DELPHI Collab.)
ACCIARRI	99	PL B454 386	M Acciarri <i>et al</i>	(I 3 Collab.)
ACCIARRI	990	PL B467 171	M Acciarri <i>et al</i>	(L3 Collab.)
BARATE	99	PL B453 121	R Barate <i>et al</i>	(ALEPH Collab.)
BARATE	991	PL B453 107	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	99L	PL B462 389	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	99M	PL B465 349	R. Barate <i>et al.</i>	(ALEPH Collab.)
MOLNAR	99	PL B461 149	P. Molnar, M. Grunewald	· · · · · · · · · · · · · · · · · · ·
ABBOTT	98N	PR D58 092003	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	98O	PRL 80 3008	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	98P	PR D58 012002	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98H	PR D58 031101	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98P	PR D58 091101	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	98C	PL B416 233	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	98N	PL B439 209	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	98N	PL B436 417	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	98P	PL B436 437	M. Acciarri <i>et al.</i>	(L3 Collab.)
BARATE	98Y	PL B422 369	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE,R	98	PL B445 239	R. Barate <i>et al.</i>	(ALEPH Collab.)
ACCIARRI	97	PL B398 223	M. Acciarri <i>et al.</i>	(L3 Collab.)
	97 IVI	PL B407 419	IVI. Acciarri <i>et al.</i>	(L3 Collab.)
	915	PL 8413 1/0	IVI. Acciarri <i>et al.</i>	(L3 Collab.)
	90E	PKL // 3309	5. Abachi et al.	
	95D	FRL /3 1450	5. Adacni et al.	
ABE	95C	MRL /4 341	F. Abe et al.	(CDF Collab.)

HTTP://PDG.LBL.GOV

Created: 6/17/2002 12:41

ABE	95G	PRL 74 1936	F. Abe <i>et al.</i>	(CDF_Collab.)
ABE	95P	PRL 75 11	F. Abe <i>et al.</i>	(CDF Collab.)
Also	95Q	PR D52 4784	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	95Ŵ	PR D52 2624	F. Abe <i>et al.</i>	(CDF Collab.)
Also	94B	PRL 73 220	F. Abe <i>et al.</i>	(CDF Collab.)
ROSNER	94	PR D49 1363	J.L. Rosner, M.P. Worah, T. Takeuchi	(EFI, FNAL)
ABE	92E	PRL 68 3398	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	92I	PRL 69 28	F. Abe <i>et al.</i>	(CDF Collab.)
ALITTI	92	PL B276 365	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92B	PL B276 354	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92C	PL B277 194	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92D	PL B277 203	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92F	PL B280 137	J. Alitti <i>et al.</i>	(UA2 Collab.)
SAMUEL	92	PL B280 124	M.A. Samuel <i>et al.</i>	(ÒKSU, CARL)
ABE	91C	PR D44 29	F. Abe <i>et al.</i>	(CDF Collab.)
ALBAJAR	91	PL B253 503	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALITTI	91C	ZPHY C52 209	J. Alitti <i>et al.</i>	(UA2 Collab.)
SAMUEL	91	PRL 67 9	M.A. Samuel <i>et al.</i>	(OKSU, CARL)
Also	91C	PRL 67 2920 erratum	M.A. Samuel <i>et al.</i>	· · · · · ·
ABE	90	PRL 64 152	F. Abe <i>et al.</i>	(CDF Collab.)
Also	91C	PR D44 29	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	90G	PRL 65 2243	F. Abe <i>et al.</i>	(CDF Collab.)
Also	91B	PR D43 2070	F. Abe <i>et al.</i>	(CDF Collab.)
ALBAJAR	90	PL B241 283	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALITTI	90B	PL B241 150	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	90C	ZPHY C47 11	J. Alitti <i>et al.</i>	(UA2 Collab.)
ABE	89I	PRL 62 1005	F. Abe <i>et al.</i>	(CDF Collab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar <i>et al.</i>	(UA1 Collab.)
BAUR	88	NP B308 127	U. Baur, D. Zeppenfeld	(FSU, WISC)
GRIFOLS	88	IJMP A3 225	J.A. Grifols, S. Peris, J. Sola	(BARC, DESY)
Also	87	PL B197 437	J.A. Grifols, S. Peris, J. Sola	(BARC, DESY)
ALBAJAR	87	PL B185 233	C. Albajar <i>et al.</i>	(UA1 Collab.)
ANSARI	87	PL B186 440	R. Ansari <i>et al.</i>	(UA2 Collab.)
ANSARI	87C	PL B194 158	R. Ansari <i>et al.</i>	(UA2 Collab.)
GROTCH	87	PR D36 2153	H. Grotch, R.W. Robinett	(PSU)
HAGIWARA	87	NP B282 253	K. Hagiwara <i>et al.</i>	(KEK, UCLA, FSU)
VANDERBIJ	87	PR D35 1088	J.J. van der Bij	(FNAL)
APPEL	86	ZPHY C30 1	J.A. Appel <i>et al.</i>	(UA2 Collab.)
ARNISON	86	PL 166B 484	G.T.J. Arnison <i>et al.</i>	(UA1_Collab.) J
ALTARELLI	85B	ZPHY C27 617	G. Altarelli, R.K. Ellis, G. Martinelli	(CERN+)
GRAU	85	PL 154B 283	A. Grau, J.A. Grifols	(BARC)
SUZUKI	85	PL 153B 289	M. Suzuki	(LBL)
ARNISON	84D	PL 134B 469	G.I.J. Arnison <i>et al.</i>	(UA1 Collab.)
HERZOG	84	PL 148B 355	F. Herzog	(WISC)
Also	84B	PL 155B 468 erratum	F. Herzog	(WISC)
AKINISUN	83	PL 122B 103	G.I.J. Arnison <i>et al.</i>	(UAL Collab.)
BANNER	83R	PL 122B 470	IVI. Banner <i>et al.</i>	(UA2 Collab.)

HTTP://PDG.LBL.GOV Page 26