Quark and Lepton Compositeness, Searches for

SEARCHES FOR QUARK AND LEPTON COMPOSITENESS

Revised 2001 by K. Hagiwara (KEK), and K. Hikasa and M. Tanabashi (Tohoku University).

If quarks and leptons are made of constituents, then at the scale of constituent binding energies, there should appear new interactions among quarks and leptons. At energies much below the compositeness scale (Λ), these interactions are suppressed by inverse powers of Λ . The dominant effect should come from the lowest dimensional interactions with four fermions (contact terms), whose most general chirally invariant form reads [1]

$$L = \frac{g^2}{2\Lambda^2} \left[\eta_{LL} \,\overline{\psi}_L \,\gamma_\mu \,\psi_L \,\overline{\psi}_L \,\gamma^\mu \,\psi_L + \eta_{RR} \,\overline{\psi}_R \,\gamma_\mu \,\psi_R \,\overline{\psi}_R \,\gamma^\mu \,\psi_R \right] + 2\eta_{LR} \,\overline{\psi}_L \,\gamma_\mu \,\psi_L \,\overline{\psi}_R \,\gamma^\mu \,\psi_R \right] \,. \tag{1}$$

Chiral invariance provides a natural explanation why quark and lepton masses are much smaller than their inverse size Λ . We may determine the scale Λ unambiguously by using the above form of the effective interactions; the conventional method [1] is to fix its scale by setting $g^2/4\pi = g^2(\Lambda)/4\pi = 1$ for the new strong interaction coupling and by setting the largest magnitude of the coefficients $\eta_{\alpha\beta}$ to be unity. In the following, we denote

$$\begin{split} \Lambda &= \Lambda_{LL}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (\pm 1, \ 0, \ 0) \ , \\ \Lambda &= \Lambda_{RR}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (0, \ \pm 1, \ 0) \ , \\ \Lambda &= \Lambda_{VV}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (\pm 1, \ \pm 1, \ \pm 1) \ , \\ \Lambda &= \Lambda_{AA}^{\pm} \ \ \text{for} \ \ (\eta_{LL}, \ \eta_{RR}, \ \eta_{LR}) = (\pm 1, \ \pm 1, \ \pm 1) \ , \end{split} \tag{2}$$

as typical examples. Such interactions can arise by constituent interchange (when the fermions have common constituents, *e.g.*, for $ee \rightarrow ee$) and/or by exchange of the binding quanta (whenever binding quanta couple to constituents of both particles).

Another typical consequence of compositeness is the appearance of excited leptons and quarks (ℓ^* and q^*). Phenomenologically, an excited lepton is defined to be a heavy lepton which shares leptonic quantum number with one of the existing leptons (an excited quark is defined similarly). For example, an excited electron e^* is characterized by a nonzero transitionmagnetic coupling with electrons. Smallness of the lepton mass and the success of QED prediction for g-2 suggest chirality conservation, *i.e.*, an excited lepton should not couple to both left- and right-handed components of the corresponding lepton.

Excited leptons may be classified by $SU(2) \times U(1)$ quantum numbers. Typical examples are:

1. Sequential type

$$egin{pmatrix}
u^* \\
\ell^* \end{pmatrix}_L, \qquad [
u^*_R], \qquad \ell^*_R \ .$$

 ν_R^* is necessary unless ν^* has a Majorana mass.

2. Mirror type

$$[
u_L^*], \qquad \ell_L^*, \qquad \left(egin{smallmatrix}
u^* \\
\ell^* \end{pmatrix}_R.$$

3. Homodoublet type

$$\begin{pmatrix} \nu^* \\ \ell^* \end{pmatrix}_L , \qquad \begin{pmatrix} \nu^* \\ \ell^* \end{pmatrix}_R$$

Similar classification can be made for excited quarks.

Excited fermions can be pair produced via their gauge couplings. The couplings of excited leptons with Z are listed

HTTP://PDG.LBL.GOV

Page 2

Created: 6/17/2002 10:30

	Sequential type	Mirror type	Homodoublet type
$V^{\ell^*} A^{\ell^*} A^{\ell^*} V^{ u^*_D} A^{ u^*_D} V^{ u^*_M}$	$ \begin{array}{r} -\frac{1}{2} + 2\sin^2\theta_W \\ -\frac{1}{2} \\ +\frac{1}{2} \\ +\frac{1}{2} \\ 0 \end{array} $	$-\frac{1}{2} + 2\sin^2\theta_W + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = 0$	$-1+2\sin^2\theta_W$ 0 $+1$ 0 $$
$A^{\nu_M^*}$	+1	-1	

in the following table (for notation see Eq. (1) in "Standard Model of Electroweak Interactions"):

Here ν_D^* (ν_M^*) stands for Dirac (Majorana) excited neutrino. The corresponding couplings of excited quarks can be easily obtained. Although form factor effects can be present for the gauge couplings at $q^2 \neq 0$, they are usually neglected.

In addition, transition magnetic type couplings with a gauge boson are expected. These couplings can be generally parameterized as follows:

$$\mathcal{L} = \frac{\lambda_{\gamma}^{(f^{*})} e}{2m_{f^{*}}} \overline{f}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) f F_{\mu\nu} + \frac{\lambda_{Z}^{(f^{*})} e}{2m_{f^{*}}} \overline{f}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) f Z_{\mu\nu} + \frac{\lambda_{W}^{(\ell^{*})} g}{2m_{\ell^{*}}} \overline{\ell}^{*} \sigma^{\mu\nu} \frac{1-\gamma_{5}}{2} \nu W_{\mu\nu} + \frac{\lambda_{W}^{(\nu^{*})} g}{2m_{\nu^{*}}} \overline{\nu}^{*} \sigma^{\mu\nu} (\eta_{L} \frac{1-\gamma_{5}}{2} + \eta_{R} \frac{1+\gamma_{5}}{2}) \ell W_{\mu\nu}^{\dagger} + \text{h.c.}, \qquad (3)$$

HTTP://PDG.LBL.GOV

Created: 6/17/2002 10:30

where $g = e/\sin\theta_W$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the photon field strength, $Z_{\mu\nu} = \partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}$, etc. The normalization of the coupling is chosen such that

$$\max(|\eta_L|, |\eta_R|) = 1.$$

Chirality conservation requires

$$\eta_L \eta_R = 0 . (4)$$

Some experimental analyses assume the relation $\eta_L = \eta_R = 1$, which violates chiral symmetry. We encode the results of such analyses if the crucial part of the cross section is proportional to the factor $\eta_L^2 + \eta_R^2$ and the limits can be reinterpreted as those for chirality conserving cases $(\eta_L, \eta_R) = (1, 0)$ or (0, 1)after rescaling λ .

These couplings in Eq. (3) can arise from $SU(2) \times U(1)$ invariant higher-dimensional interactions. A well-studied model is the interaction of homodoublet type ℓ^* with the Lagrangian [2,3]

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{L}^* \sigma^{\mu\nu} (g f \frac{\tau^a}{2} W^a_{\mu\nu} + g' f' Y B_{\mu\nu}) \frac{1 - \gamma_5}{2} L + \text{h.c.}, \quad (5)$$

where L denotes the lepton doublet (ν, ℓ) , Λ is the compositeness scale, g, g' are SU(2) and U(1)_Y gauge couplings, and $W^a_{\mu\nu}$ and $B_{\mu\nu}$ are the field strengths for SU(2) and U(1)_Y gauge fields. The same interaction occurs for mirror-type excited leptons. For sequential-type excited leptons, the ℓ^* and ν^* couplings become unrelated, and the couplings receive the extra suppression of (250 GeV)/ Λ or m_{L^*}/Λ . In any case, these couplings satisfy the relation

$$\lambda_W = -\sqrt{2}\sin^2\theta_W (\lambda_Z \cot\theta_W + \lambda_\gamma) . \tag{6}$$

HTTP://PDG.LBL.GOV Page 4 Created: 6/17/2002 10:30

Additional coupling with gluons is possible for excited quarks:

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{Q}^* \sigma^{\mu\nu} \left(g_s f_s \frac{\lambda^a}{2} G^a_{\mu\nu} + g f \frac{\tau^a}{2} W^a_{\mu\nu} + g' f' Y B_{\mu\nu} \right)$$
$$\times \frac{1 - \gamma_5}{2} Q + \text{h.c.} , \qquad (7)$$

where Q denotes a quark doublet, g_s is the QCD gauge coupling, and $G^a_{\mu\nu}$ the gluon field strength.

It should be noted that the electromagnetic radiative decay of $\ell^*(\nu^*)$ is forbidden if f = -f' (f = f'). These two possibilities (f = f' and f = -f') are investigated in many analyses of the LEP experiments above the Z pole.

Several different conventions are used by LEP experiments on Z pole to express the transition magnetic couplings. To facilitate comparison, we re-express these in terms of λ_Z and λ_{γ} using the following relations and taking $\sin^2\theta_W = 0.23$. We assume chiral couplings, *i.e.*, |c| = |d| in the notation of Ref. 2.

1. ALEPH (charged lepton and neutrino)

$$\lambda_Z^{\text{ALEPH}} = \frac{1}{2} \lambda_Z \quad (1990 \text{ papers}) \tag{8a}$$

$$\frac{2c}{\Lambda} = \frac{\lambda_Z}{m_{\ell^*} [\text{or } m_{\nu^*}]} \quad (\text{for } |c| = |d|)$$
(8b)

2. ALEPH (quark)

$$\lambda_u^{\text{ALEPH}} = \frac{\sin \theta_W \cos \theta_W}{\sqrt{\frac{1}{4} - \frac{2}{3} \sin^2 \theta_W + \frac{8}{9} \sin^4 \theta_W}} \lambda_Z = 1.11 \lambda_Z \quad (9)$$

3. L3 and DELPHI (charged lepton)

$$\lambda^{\text{L3}} = \lambda_Z^{\text{DELPHI}} = -\frac{\sqrt{2}}{\cot \theta_W - \tan \theta_W} \ \lambda_Z = -1.10\lambda_Z \ (10)$$

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

4. L3 (neutrino)

$$f_Z^{\rm L3} = \sqrt{2\lambda_Z} \tag{11}$$

5. OPAL (charged lepton)

$$\frac{f^{\text{OPAL}}}{\Lambda} = -\frac{2}{\cot\theta_W - \tan\theta_W} \frac{\lambda_Z}{m_{\ell^*}} = -1.56 \frac{\lambda_Z}{m_{\ell^*}} \qquad (12)$$

6. OPAL (quark)

$$\frac{f^{\text{OPAL}}c}{\Lambda} = \frac{\lambda_Z}{2m_{q^*}} \quad (\text{for } |c| = |d|) \tag{13}$$

7. DELPHI (charged lepton)

$$\lambda_{\gamma}^{\text{DELPHI}} = -\frac{1}{\sqrt{2}} \lambda_{\gamma} \tag{14}$$

If leptons are made of color triplet and antitriplet constituents, we may expect their color-octet partners. Transitions between the octet leptons (ℓ_8) and the ordinary lepton (ℓ) may take place via the dimension-five interactions

$$\mathcal{L} = \frac{1}{2\Lambda} \sum_{\ell} \left\{ \overline{\ell}_8^{\alpha} g_S F^{\alpha}_{\mu\nu} \sigma^{\mu\nu} \left(\eta_L \ell_L + \eta_R \ell_R \right) + h.c. \right\}$$
(15)

where the summation is over charged leptons and neutrinos. The leptonic chiral invariance implies η_L $\eta_R = 0$ as before.

References

- E.J. Eichten, K.D. Lane, and M.E. Peskin, Phys. Rev. Lett. 50, 811 (1983).
- K. Hagiwara, S. Komamiya, and D. Zeppenfeld, Z. Phys. C29, 115 (1985).
- N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett. 139B, 459 (1984).

SCALE LIMITS for Contact Interactions: $\Lambda(eee)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%		DOCUMENT ID		TECN	COMMENT
>8.3	>10.3	95	1	BOURILKOV	01	RVUE	E _{cm} = 192–208 GeV
• • • We	do not use	the follo	wir	ng data for avera	ages,	fits, lim	iits, etc. ● ● ●
>3.8	>5.6	95		ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 {\rm GeV}$
>4.4	>5.4	95		ABREU	00S	DLPH	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>4.3	>4.9	95		ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
>3.5	>3.2	95		BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 {\rm GeV}$
>6.0	>7.7	95	2	BOURILKOV	00	RVUE	$E_{\rm cm}^{\rm cm} = 183 - 189 \; {\rm GeV}$
>3.1	>3.8	95		ABBIENDI	99	OPAL	$E_{\rm cm} = 130 - 136, 161 - 172,$
>2.2	>2.8	95		ABREU	99a	DLPH	$E_{cm} = 130 - 172 \text{ GeV}$
>2.7	>2.4	95		ACCIARRI	98J	L3	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>3.0	>2.5	95		ACKERSTAFF	98v	OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.4	>2.2	95		ACKERSTAFF	97 C	OPAL	$E_{\rm cm} = 130 - 136$, 161 GeV
>1.7	>2.3	95	_	ARIMA	97	VNS	$E_{\rm cm} = 57.77 {\rm GeV}$
>1.6	>2.0	95	3	BUSKULIC	93Q	ALEP	<i>E</i> _{cm} =88.25–94.25 GeV
>1.6		95 ³	3,4	BUSKULIC	93Q	RVUE	G
	>2.2	95	_	BUSKULIC	93Q	RVUE	
	>3.6	95	5	KROHA	92	RVUE	
>1.3		95	5	KROHA	92	RVUE	
>0.7	>2.8	95		BEHREND	91 C	CELL	E _{cm} =35 GeV
>1.3	>1.3	95	~	KIM	89	AMY	E _{cm} =50-57 GeV
>1.4	>3.3	95	6	BRAUNSCH	88	TASS	E _{cm} =12-46.8 GeV
>1.0	>0.7	95	(FERNANDEZ	87 B	MAC	E _{cm} =29 GeV
>1.1	>1.4	95	8	BARTEL	86C	JADE	E _{cm} =12-46.8 GeV
>1.17	>0.87	95	9	DERRICK	86	HRS	E _{cm} =29 GeV
>1.1	>0.76	95	10	BERGER	85 B	PLUT	$E_{\rm cm}$ =34.7 GeV
1 A corr	bined anal	vsis of the	e d	ata from ALEP!	H. D'	ELPHI.	L3. and OPAL.

 2 A combined analysis of the data from ALEPH, L3, and OPAL.

 3 BUSKULIC 93Q uses the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

⁴ This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

⁵ KROHA 92 limit is from fit to BERGER 85B, BARTEL 86C, DERRICK 86B, FERNAN-DEZ 87B, BRAUNSCHWEIG 88, BEHREND 91B, and BEHREND 91C. The fit gives $\eta/\Lambda_{LL}^2 = +0.230 \pm 0.206 \text{ TeV}^{-2}$.

⁶ BRAUNSCHWEIG 88 assumed $m_Z = 92$ GeV and $\sin^2 \theta_W = 0.23$.

⁷ FERNANDEZ 87B assumed $\sin^2 \theta_W = 0.22$.

 $^8\,{\rm BARTEL}$ 86C assumed $m_Z=93~{\rm GeV}$ and ${\sin}^2\theta_W=0.217.$

⁹ DERRICK 86 assumed $m_Z = 93$ GeV and $g_V^2 = (-1/2+2\sin^2\theta_W)^2 = 0.004$. ¹⁰ BERGER 85B assumed $m_Z = 93$ GeV and $\sin^2\theta_W = 0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ_{LL}^{\pm} o	only. For other	cases, see each	reference.
---------------------------------------	-----------------	-----------------	------------

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	> 6.3	95	ABREU	00s	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
> 8.5	>3.8	95	ACCIARRI	00 P	L3	$E_{\rm cm}^{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	do not use	the follow	ving data for aver	ages,	fits, lim	its, etc. ● ● ●
>7.3	>4.6	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 { m GeV}$
>4.0	>4.7	95	BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 {\rm GeV}$
>4.5	>4.3	95	ABBIENDI	99	OPAL	$E_{\rm cm} = 130 - 136, 161 - 172,$ 183 GeV
>3.4	>2.7	95	ABREU	99A	DLPH	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>3.6	>2.4	95	ACCIARRI	9 8J	L3	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.9	>3.4	95	ACKERSTAFF	98V	OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>3.1	>2.0	95	MIURA	98	VNS	$E_{\rm cm} = 57.77 {\rm GeV}$
>2.4	>2.9	95	ACKERSTAFF	9 7C	OPAL	$E_{\rm cm} = 130 - 136, 161 {\rm GeV}$
>1.7	>2.2	95 1	¹ VELISSARIS	94	AMY	$E_{\rm cm}$ =57.8 GeV
>1.3	>1.5	95 1	¹ BUSKULIC	93Q	ALEP	$E_{\rm cm} = 88.25 - 94.25 {\rm GeV}$
>2.6	>1.9	95 11,1	² BUSKULIC	93 Q	RVUE	em
>2.3	>2.0	95	HOWELL	92	TOPZ	E _{cm} =52–61.4 GeV
	>1.7	95 1	³ KROHA	92	RVUE	
>2.5	>1.5	95	BEHREND	91 C	CELL	E _{cm} =35–43 GeV
>1.6	>2.0	95 1	⁴ ABE	901	VNS	E _{cm} =50-60.8 GeV
>1.9	>1.0	95	KIM	89	AMY	E _{cm} =50-57 GeV
>2.3	>1.3	95	BRAUNSCH	88 D	TASS	$E_{\rm cm} = 30 - 46.8 {\rm GeV}$
>4.4	>2.1	95 1	⁵ BARTEL	86C	JADE	E _{cm} =12-46.8 GeV
>2.9	>0.86	95 1	⁶ BERGER	85	PLUT	E _{cm} =34.7 GeV

 11 BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

 $^{12}\,{\rm This}$ BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

¹³ KROHA 92 limit is from fit to BARTEL 86C, BEHREND 87C, BRAUNSCHWEIG 88D, BRAUNSCHWEIG 89C, ABE 90I, and BEHREND 91C. The fit gives $\eta/\Lambda_{II}^2 = -0.155 \pm$ 0.095 TeV⁻². ¹⁴ ABE 901 assumed m_Z =91.163 GeV and $\sin^2\theta_W$ = 0.231. ¹⁵ BARTEL 86C assumed m_Z = 93 GeV and $\sin^2\theta_W$ = 0.217.

¹⁶ BERGER 85 assumed $m_7 = 93$ GeV and $\sin^2 \theta_W = 0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.9	> 6.5	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 {\rm GeV}$
> 5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

>5.2	>5.4	95	ABREU	00s	DLPH	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>3.9	>3.7	95	BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 {\rm GeV}$
>3.8	>4.0	95	ABBIENDI	99	OPAL	$E_{\rm cm} = 130-136, 161-172, 183 {\rm GeV}$
>2.8	>2.6	95	ABREU	99 A	DLPH	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.4	>2.8	95	ACCIARRI	9 8J	L3	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.3	>3.7	95	ACKERSTAFF	98v	OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>1.9	>3.0	95	ACKERSTAFF	97 C	OPAL	$E_{\rm cm} = 130 - 136, 161 {\rm GeV}$
>1.4	>2.0	95	¹⁷ VELISSARIS	94	AMY	<i>E</i> _{cm} =57.8 GeV
>1.0	>1.5	95	¹⁷ BUSKULIC	93Q	ALEP	E _{cm} =88.25–94.25 GeV
>1.8	>2.3	95	^{17,18} BUSKULIC	93Q	RVUE	
>1.9	>1.7	95	HOWELL	92	TOPZ	E _{cm} =52-61.4 GeV
>1.9	>2.9	95	¹⁹ KROHA	92	RVUE	
>1.6	>2.3	95	BEHREND	91 C	CELL	E _{cm} =35–43 GeV
>1.8	>1.3	95	²⁰ ABE	901	VNS	E _{cm} =50-60.8 GeV
>2.2	>3.2	95	²¹ BARTEL	86	JADE	$E_{\rm cm} = 12 - 46.8 {\rm GeV}$

¹⁷ BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

 18 This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

¹⁹ KROHA 92 limit is from fit to BARTEL 86C BEHREND 89B, BRAUNSCHWEIG 89C, ABE 90I, and BEHREND 91C. The fit gives $\eta/\Lambda_{LL}^2 = +0.095 \pm 0.120 \text{ TeV}^{-2}$. ²⁰ ABE 90I assumed $m_Z = 91.163 \text{ GeV}$ and $\sin^2\theta_W = 0.231$.

²¹ BARTEL 86 assumed $m_7 = 93$ GeV and $\sin^2 \theta_W = 0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>7.3	> 7.8	95	ABREU	00s	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
> 9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	do not use	the following	ng data for avera	ages,	fits, lim	its, etc. ● ● ●
>6.4	>7.2	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 {\rm GeV}$
>5.3	>5.5	95	BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 {\rm GeV}$
>5.2	>5.3	95	ABBIENDI	99	OPAL	$E_{\rm cm} = 130-136, 161-172, 183 {\rm GeV}$
>4.4	>4.2	95	ABREU	99A	DLPH	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>4.0	>3.1	95 22	ACCIARRI	9 8J	L3	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>3.4	>4.4	95	ACKERSTAFF	98v	OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.7	>3.8	95	ACKERSTAFF	97 C	OPAL	$E_{\rm cm} = 130 - 136$, 161 GeV
>3.0	>2.3	95 22,23	BUSKULIC	93Q	ALEP	<i>E</i> _{cm} =88.25–94.25 GeV
>3.5	>2.8	95 23,24	BUSKULIC	93Q	RVUE	
>2.5	>2.2	95 25	HOWELL	92	TOPZ	E _{cm} =52–61.4 GeV
>3.4	>2.7	95 26	KROHA	92	RVUE	

²² From $e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$, and $\tau^+\tau^-$.

- $^{23}\,{\rm BUSKULIC}\,93{\rm Q}$ uses the following prescription to obtain the limit: when the naive $95\%{\rm CL}$ limit is better than the statistically expected sensitivity for the limit, the latter is adopted
- for the limit. ²⁴ This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-analyzed by KROHA 92.

²⁵ HOWELL 92 limit is from $e^+e^- \rightarrow \mu^+\mu^-$ and $\tau^+\tau^-$.

²⁶ KROHA 92 limit is from fit to most PEP/PETRA/TRISTAN data. The fit gives η/Λ_{LL}^2 $= -0.0200 \pm 0.0666 \text{ TeV}^{-2}.$

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%		DOCUMENT ID		TECN	COMMENT
>23.3	>12.5	95	27	CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	27	CHEUNG	01 B	RVUE	(eedd)
> 5.6	>4.9	95	28	BARATE	001	ALEP	(eebb)
> 1.0	>2.1	95	29	ABREU	99A	DLPH	(eecc)
• • • We	do not use	the follo	owin	ng data for avera	ages,	fits, lim	its, etc. • • •
> 5.5	>3.1	95	30	ABBIENDI	00 R	OPAL	(eeqq)
> 4.9	>6.1	95	30	ABBIENDI	00 R	OPAL	(eeuu)
> 5.7	>4.5	95	30	ABBIENDI	00 R	OPAL	(eedd)
> 4.2	>2.8	95	31	ACCIARRI	00 P	L3	(eeqq)
> 2.4	>1.3	95	32	ADLOFF	00	H1	(eeqq)
> 5.4	>6.2	95	33	BARATE	001	ALEP	(eeqq)
			34	BREITWEG	00 B	ZEUS	
> 4.4	>2.8	95	35	ABBIENDI	99	OPAL	(eeqq)
> 4.0	>4.8	95	36	ABBIENDI	99	OPAL	(eebb)
> 3.3	>4.2	95	37	ABBOTT	99 D	D0	(eeqq)
> 2.4	>2.8	95	29	ABREU	99A	DLPH	(eeqq) (d or s quark)
> 4.4	>3.9	95	29	ABREU	99A	DLPH	(eebb)
> 1.0	>2.4	95	29	ABREU	99A	DLPH	(eeuu)
> 4.0	>3.4	95	38	ZARNECKI	99	RVUE	(eedd)
> 4.3	>5.6	95	38	ZARNECKI	99	RVUE	(eeuu)
> 3.0	>2.1	95	39	ACCIARRI	9 8J	L3	(eeqq)
> 3.4	>2.2	95	40	ACKERSTAFF	98v	OPAL	(eeqq)
> 4.0	>2.8	95	41	ACKERSTAFF	98v	OPAL	(eebb)
> 9.3	>12.0	95	42	BARGER	98E	RVUE	(eeuu)
> 8.8	>11.9	95	42	BARGER	98E	RVUE	(eedd)
> 2.5	>3.7	95	43	ABE	97 T	CDF	(eeqq) (isosinglet)
> 2.5	>2.1	95	44	ACKERSTAFF	97 C	OPAL	(eeqq)
> 3.1	>2.9	95	45	ACKERSTAFF	97 C	OPAL	(eebb)
> 7.4	>11.7	95	46	DEANDREA	97	RVUE	<i>eeuu</i> , atomic parity viola-
> 2.3	>1.0	95	47	AID	95	H1	(eeqq) (u, d quarks)
1.7	>2.2	95	48	ABE	91 D	CDF	(eeqq) $(u, d quarks)$
> 1.2		95	49	ADACHI	91	TOPZ	(eeqq)
			40				(flavor-universal)
	>1.6	95	49	ADACHI	91	TOPZ	(eeqq) (flavor-universal)

> 0.6	>1.7	95	⁵⁰ BEHREND	91C CELL	(eecc)
> 1.1	>1.0	95	⁵⁰ BEHREND	91C CELL	(eebb)
> 0.9		95	⁵¹ ABE	89l VNS	(eeqq)
					(flavor-universal)
	> 1.7	95	⁵¹ ABE	89l VNS	(eeqq)
			50		(flavor-universal)
> 1.05	>1.61	95	⁵² HAGIWARA	89 RVUE	(eecc)
> 1.21	>0.53	95	⁵³ HAGIWARA	89 RVUE	(eebb)

²⁷ CHEUNG 01B is an update of BARGER 98E.

 28 BARATE 001 limits are from R_b and jet-charge asymmetry at 130–183 GeV.

²⁹ABREU 99A limits are from flavor-tagged $e^+e^- \rightarrow q \overline{q}$ cross section at 130–172 GeV.

³⁰ABBIENDI 00R limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at \sqrt{s} = 130–189 GeV.

³¹ACCIARRI 00P limit is from $e^+e^- \rightarrow qq$ cross section at $\sqrt{s}=130-189$ GeV.

 32 ADLOFF 00 limits are from the Q^2 spectrum measurement of $e^+ p \rightarrow e^+ X$.

³³BARATE 001 limits are from $e^+e^- \rightarrow q\bar{q}$ cross section and jet-charge asymmetry at 130-183 GeV.

³⁴ BREITWEG 00B limits are from Q^2 spectrum measurement of $e^+ p$ collisions. See their Table 3 for the limits of various models. ³⁵ ABBIENDI 99 limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at 130–136, 161–172, 183

GeV.

³⁶ ABBIENDI 99 limits are from R_b at 130–136, 161–172, 183 GeV.

³⁷ABBOTT 99D limits are from e^+e^- mass distribution in $p\overline{p} \rightarrow e^+e^-X$ at $E_{cm}=$ 1.8 TeV. ³⁸ ZARNECKI 99 use data from HERA, LEP, Tevatron, and various low-energy experiments.

³⁹ACCIARRI 98J limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at $E_{\rm cm} = 130$ –172 GeV.

⁴⁰ ACKERSTAFF 98V limits are from $e^+e^- \rightarrow q\overline{q}$ at $E_{\rm cm} = 130$ –172 GeV.

 $^{41}\,\mathrm{ACKERSTAFF}$ 98V limits are from R_b measurements at $E_{\mathrm{cm}} =$ 130–172 GeV.

⁴² BARGER 98E use data from HERA, LEP, Tevatron, and various low-energy experiments.

- ⁴³ABE 97T limits are from e^+e^- mass distribution in $\overline{p}p \rightarrow e^+e^-X$ at E_{cm} =1.8 TeV.
- ⁴⁴ACKERSTAFF 97C limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at $E_{cm} = 130-136$ GeV and 161 GeV.

 45 ACKERSTAFF 97C limits are R_b measurements at $E_{\rm cm} = 133$ GeV and 161 GeV.

 46 DEANDREA 97 limit is from atomic parity violation of cesium. The limit is eluded if the contact interactions are parity conserving.

⁴⁷ AID 95 limits are from the Q^2 spectrum measurement of $ep \rightarrow eX$.

⁴⁸ABE 91D limits are from e^+e^- mass distribution in $p\overline{p} \rightarrow e^+e^-X$ at $E_{cm} = 1.8$ TeV.

⁴⁹ ADACHI 91 limits are from differential jet cross section. Universality of $\Lambda(eeqq)$ for five flavors is assumed.

 50 BEHREND 91C is from data at $E_{\rm cm} = 35-43$ GeV.

⁵¹ABE 89L limits are from jet charge asymmetry. Universality of $\Lambda(eeqq)$ for five flavors is assumed. ⁵² The HAGIWARA 89 limit is derived from forward-backward asymmetry measurements of

 D/D^* mesons by ALTHOFF 83C, BARTEL 84E, and BARINGER 88.

 53 The HAGIWARA 89 limit is derived from forward-backward asymmetry measurement of b hadrons by BARTEL 84D.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu \mu q q)$

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 2.9	> 4.2	95 54	ABE	97T	CDF	$(\mu \mu q q)$ (isosinglet)
• • • We	do not use	the following	ng data for aver	ages,	fits, lin	nits, etc. • • •
>1.4	>1.6	95	ABE	92 B	CDF	$(\mu \mu q q)$ (isosinglet)
HTTP:/	/PDG.LB	L.GOV	Page 1	1	(Created: 6/17/2002 10:30

⁵⁴ ABE 97T limits are from $\mu^+\mu^-$ mass distribution in $\overline{p}p \rightarrow \mu^+\mu^-$ X at E_{cm} =1.8 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$

		•		,	
VALUE (TeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>3.10	90	⁵⁵ JODIDIO	86	SPEC	$\Lambda^{\pm}_{LR}(u_{\mu} u_{e}\mu e)$
\bullet \bullet \bullet We do not use the	followin	g data for averages	s, fits	, limits,	etc. • • •
>3.8		⁵⁶ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ au e u_e)$
>8.1		⁵⁶ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau \nu_{\tau} e \nu_{e})$
>4.1		⁵⁷ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{+}(\tau\nu_{\tau}\mu\nu_{\mu})$
>6.5		⁵⁷ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau\nu_{\tau}\mu\nu_{\mu})$

⁵⁵ JODIDIO 86 limit is from $\mu^+ \rightarrow \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$

 $\begin{bmatrix} \eta_{LL} \ (\overline{\nu}_{\mu L} \gamma^{\alpha} \mu_L) \ (\overline{e}_L \gamma_{\alpha} \nu_{eL}) + \eta_{LR} \ (\overline{\nu}_{\mu L} \gamma^{\alpha} \nu_{eL} \ (\overline{e}_R \gamma_{\alpha} \mu_R)] \ \text{with} \ g^2/4\pi = 1 \text{ and} \\ (\eta_{LL}, \eta_{LR}) = (0, \pm 1) \text{ are taken. No limits are given for } \Lambda^{\pm}_{LL} \text{ with } (\eta_{LL}, \eta_{LR}) = (\pm 1, 0). \\ \text{For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.}$

⁵⁶ DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow e\nu\nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau\nu_{\tau}e\nu_{e}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$.

⁵⁷ DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow \mu\nu\nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau\nu_{\tau}\mu\nu_{\mu}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu qq)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN
>2.81	95	⁵⁸ AFFOLDER	01	CDF
⁵⁸ AFFOLDER 001 bour	id is for a	a scalar interaction	$\overline{q}_R q$	IL [₽] eL.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Limits are for Λ_{LL}^{\pm} with color-singlet isoscalar exchanges among u_L 's and d_L 's only, unless otherwise noted. See EICHTEN 84 for details.

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>2.7	95	⁵⁹ АВВОТТ	99 C	D0	$p \overline{p} ightarrow$ dijet mass. Λ_{LL}^+
$\bullet \bullet \bullet$ We do not use the	following	g data for averages	, fits,	limits,	etc. ● ● ●
>2.0	95	⁶⁰ ABBOTT	00e	D0	$H_{\mathcal{T}}$ distribution; Λ^+_{LL}
>2.1	95	⁶¹ ABBOTT	98 G	D0	$p \overline{p} ightarrow dijet angl. \Lambda^+_{LL}$
		⁶² BERTRAM ⁶³ ABE	98 96	RVUE CDF	$p \overline{p} \rightarrow dijet mass$ $p \overline{p} \rightarrow jets inclusive$
>1.6	95	⁶⁴ ABE	96 S	CDF	$p \overline{p} \rightarrow dijet angl.; \Lambda_{II}^+$
>1.3	95	⁶⁵ ABE	93 G	CDF	$p\overline{p} \rightarrow dijet mass$
>1.4	95	⁶⁶ ABE	92 D	CDF	$p \overline{p} \rightarrow \text{jets}$ inclusive
>1.0	99	⁶⁷ ABE	92M	CDF	$p \overline{p} \rightarrow \text{dijet angl.}$

>0.825	95	⁶⁸ ALITTI	91b UA2	$p \overline{p} \rightarrow \text{jets}$ inclusive
>0.700	95	⁶⁶ ABE	89 CDF	$p \overline{p} \rightarrow \text{jets}$ inclusive
>0.330	95	⁶⁹ ABE	89н CDF	$p \overline{p} \rightarrow dijet angl.$
>0.400	95	⁷⁰ ARNISON	86C UA1	$p \overline{p} \rightarrow \text{jets}$ inclusive
>0.415	95	⁷¹ ARNISON	86D UA1	$p \overline{p} \rightarrow dijet angl.$
>0.370	95	⁷² APPEL	85 UA2	$p \overline{p} \rightarrow \text{jets}$ inclusive
>0.275	95	⁷³ BAGNAIA	84C UA2	Repl. by APPEL 85

⁵⁹ The quoted limit is from inclusive dijet mass spectrum in $p\overline{p}$ collisions at E_{cm} =1.8 TeV. ABBOTT 99C also obtain $\Lambda_{II}^- > 2.4$ TeV. All quarks are assumed composite.

- ⁶⁰ The quoted limit for ABBOTT 00E is from H_T distribution in $p\overline{p}$ collisions at $E_{cm}=1.8$ TeV. CTEQ4M PDF and $\mu = E_T^{max}$ are assumed. For limits with different assumptions, see their Tables 2 and 3. All quarks are assumed composite.
- ⁶¹ABBOTT 98G limit is from dijet angular distribution in $p\overline{p}$ collisions at $E_{cm} = 1.8$ TeV. All quarks are assumed composite.
- 62 BERTRAM 98 obtain limit on the scale of color-octet axial-vector flavor-universal contact interactions: $\Lambda_{A8} > 2.1$ TeV. They also obtain a limit $\Lambda_{V8} > 2.4$ TeV on a color-octet flavor-universal vectorial contact interaction.
- ⁶³ ABE 96 finds that the inclusive jet cross section for $E_T > 200$ GeV is significantly higher than the $\mathcal{O}(\alpha_s^3)$ perturbative QCD prediction. This could be interpreted as the effect of a contact interaction with $\Lambda_{LL} \sim 1.6$ TeV. However, ABE 96 state that uncertainty in the parton distribution functions, higher-order QCD corrections, and the detector calibration may possibly account for the effect.
- ⁶⁴ ABE 96S limit is from dijet angular distribution in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The limit for Λ_{LL}^- is > 1.4 TeV. ABE 96S also obtain limits for flavor symmetric contact interactions among all quark flavors: $\Lambda_{LL}^+ > 1.8$ TeV and $\Lambda_{LL}^- > 1.6$ TeV.
- ⁶⁵ABE 93G limit is from dijet mass distribution in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The limit is the weakest from several choices of structure functions and renormalization scale.
- ⁶⁶Limit is from inclusive jet cross-section data in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.
- ⁶⁷ÅBE 92M limit is from dijet angular distribution for $m_{\text{dijet}} > 550$ GeV in $p\overline{p}$ collisions at $E_{\text{cm}} = 1.8$ TeV.
- ⁶⁸ ALITTI 91B limit is from inclusive jet cross section in $p\overline{p}$ collisions at $E_{\rm cm} = 630$ GeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.
- ⁶⁹ ABE 89H limit is from dijet angular distribution for $m_{\text{dijet}} > 200$ GeV at the Fermilab Tevatron Collider with $E_{\text{cm}} = 1.8$ TeV. The QCD prediction is quite insensitive to choice of structure functions and choice of process scale.
- ⁷⁰ ARNISON 86C limit is from the study of inclusive high- p_T jet distributions at the CERN $\overline{p}p$ collider ($E_{cm} = 546$ and 630 GeV). The QCD prediction renormalized to the low- p_T region gives a good fit to the data.
- ⁷¹ ARNISON 86D limit is from the study of dijet angular distribution in the range 240 < m(dijet) < 300 GeV at the CERN $\overline{p}p$ collider ($E_{cm} = 630$ GeV). QCD prediction using EHLQ structure function (EICHTEN 84) with $\Lambda_{QCD} = 0.2$ GeV for the choice of $Q^2 =$

 p_T^2 gives the best fit to the data.

- ⁷² APPEL 85 limit is from the study of inclusive high- p_T jet distributions at the CERN $\overline{p}p$ collider ($E_{cm} = 630$ GeV). The QCD prediction renormalized to the low- p_T region gives a good description of the data.
- ⁷³ BAGNAIA 84C limit is from the study of jet p_T and dijet mass distributions at the CERN $\overline{p}p$ collider ($E_{cm} = 540$ GeV). The limit suffers from the uncertainties in comparing the data with the QCD prediction.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu \nu q q)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5.0	>5.4	95	⁷⁴ MCFARLAND 98	CCFR	νN scattering
74 MCE4		R assun	ned a flavor universal inter	action	Neutrinos were mostly of m

⁺⁺ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating ($\eta_L = \eta_R$). However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited $e(e^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>100.0	95	⁷⁵ ACCIARRI	01 D	L3	$e^+e^- ightarrow e^*e^*$ Homodoublet type
• • • We do	not u	se the following data f	or av	erages,	fits, limits, etc. • • •
> 91.3	95	⁷⁶ ABBIENDI	001	OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 94.2	95	⁷⁷ ACCIARRI	00e	L3	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
> 90.7	95	⁷⁸ ABREU	99 0	DLPH	Homodoublet type
> 85.0	95	⁷⁹ ACKERSTAFF	98C	OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
		⁸⁰ BARATE	98 U	ALEP	$Z \rightarrow e^* e^*$
> 79.6	95	^{81,82} ABREU	97 B	DLPH	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
> 77.9	95	^{81,83} ABREU	97 B	DLPH	$e^+e^- ightarrow e^*e^*$ Sequential type
> 79.7	95	⁸¹ ACCIARRI	97 G	L3	$e^+ e^- ightarrow ~e^* e^*$ Sequential type
> 79.9	95	^{81,84} ACKERSTAFF	97	OPAL	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
> 62.5	95	⁸⁵ ABREU	96ĸ	DLPH	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
> 64.7	95	⁸⁶ ACCIARRI	96 D	L3	$e^+e^- ightarrow ~e^*e^*$ Sequential type
> 66.5	95	⁸⁶ ALEXANDER	96Q	OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 65.2	95	⁸⁶ BUSKULIC	96W	ALEP	$e^+ e^- ightarrow ~e^* e^*$ Sequential type
> 45.6	95	ADRIANI	9 3M	L3	$Z \rightarrow e^* e^*$
> 45.6	95	ABREU	92C	DLPH	$Z \rightarrow e^* e^*$

HTTP://PDG.LBL.GOV

	00.0	05	87		~~		
>	29.8	95		BARDADIN	92	RVUE	I(Z)
>	26.1	95	88	DECAMP	92	ALEP	$Z \rightarrow e^* e^*; \Gamma(Z)$
>	46.1	95		DECAMP	92	ALEP	$Z \rightarrow e^* e^*$
>	33	95	88	ABREU	91F	DLPH	$Z \rightarrow e^* e^*; \Gamma(Z)$
>	45.0	95	89	ADEVA	90F	L3	$Z \rightarrow e^* e^*$
>	44.9	95		AKRAWY	901	OPAL	$Z \rightarrow e^* e^*$
>	44.6	95	90	DECAMP	90 G	ALEP	$e^+e^- \rightarrow e^*e^*$
>	30.2	95		ADACHI	89 B	TOPZ	$e^+e^- \rightarrow e^*e^*$
>	28.3	95		KIM	89	AMY	$e^+e^- \rightarrow e^*e^*$
>	27.9	95	91	ABE	88 B	VNS	$e^+e^- \rightarrow e^*e^*$

⁷⁵ From e^+e^- collisions at $\sqrt{s} = 192-202$ GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{a^*} > 93.4$ GeV.

- ⁷⁶ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' ($e^* \rightarrow \nu W$): $m_{e^*} > 86.0$ GeV.
- ⁷⁷ From e^+e^- collisions at $\sqrt{s}=189$ GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' ($e^* \rightarrow \nu W$): $m_{e^*} > 92.6$ GeV.
- ⁷⁸ From e^+e^- collisions at $\sqrt{s}=$ 183 GeV. f=f' is assumed. ABREU 990 also obtain limit for f=-f' ($e^* \rightarrow \nu W$): $m_{a^*} >$ 81.3 GeV.
- ⁷⁹ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $e^* \rightarrow \nu W$ decay mode: $m_{a^*} > 81.3$ GeV.
- ⁸⁰ BARATE 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ⁸¹ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 82 ABREU 97B also obtain limit from charged current decay mode $e^* \rightarrow ~\nu \, W,~m_{e^*} > 70.9$ $_{co}$ GeV.
- ⁸³ ABREU 97B also obtain limit from charged current decay mode $e^* \rightarrow \nu W$, $m_{e^*} > 44.6$. GeV.
- ⁸⁴ ACKERSTAFF 97 also obtain limit from charged current decay mode $e^* \rightarrow \nu W$, $m_{\nu_e^*} > 277.1$ GeV.
- ⁸⁵ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.

⁸⁶ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.

- 87 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.
- ⁸⁸ Limit is independent of e^* decay mode.
- ⁸⁹ ADEVA 90F is superseded by ADRIANI 93M.
- ⁹⁰ Superseded by DECAMP 92.
- ⁹¹ABE 88B limits assume $e^+e^- \rightarrow e^{*+}e^{*-}$ with one photon exchange only and $e^* \rightarrow e\gamma$ giving $ee\gamma\gamma$.

Limits for Excited $e(e^*)$ from Single Production

These limits are from $e^+e^- \rightarrow e^*e$, $W \rightarrow e^*\nu$, or $ep \rightarrow e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \rightarrow e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>223	95	92	ADLOFF	00E	H1	$e p \rightarrow e^* X$
\bullet \bullet \bullet We do	not use	the	following data f	or av	erages,	fits, limits, etc. • • •
>202		93	ACCIARRI	01 D	L3	$e^+e^- \rightarrow ee^*$
		94	ABBIENDI	001	OPAL	$e^+e^- \rightarrow ee^*$
		95	ACCIARRI	00E	L3	$e^+e^- \rightarrow ee^*$
		96	ABREU	99 0	DLPH	$e^+e^- ightarrow ee^*$
none 20-170	95	97	ACCIARRI	9 8⊤	L3	$e \gamma ightarrow e^{*} ightarrow e \gamma$
		98	ACKERSTAFF	98 C	OPAL	$e^+e^- \rightarrow ee^*$
		99	BARATE	98 U	ALEP	$e^+e^- \rightarrow ee^*$
	100	,101	ABREU	97 B	DLPH	$e^+e^- \rightarrow ee^*$
	100	,102	ACCIARRI	97 G	L3	$e^+e^- \rightarrow ee^*$
		103	ACKERSTAFF	97	OPAL	$e^+e^- \rightarrow ee^*$
		104	ADLOFF	97	H1	Lepton-flavor violation
none 30–200	95	105	BREITWEG	97 C	ZEUS	$e p \rightarrow e^* X$
		100	ABREU	96K	DLPH	$e^+e^- \rightarrow ee^*$
		107	ACCIARRI	96 D	L3	$e^+e^- \rightarrow ee^*$
		100	ALEXANDER	96Q	OPAL	$e^+e^- \rightarrow ee^*$
		110	BUSKULIC	96W	ALEP	$e^+e^- \rightarrow ee^*$
		111	DERRICK	95 B	ZEUS	$e p \rightarrow e^* X$
	<u>-</u>	111	ABT	93	H1	$e p \rightarrow e^* X$
> 86	95		ADRIANI	93M	L3	$\lambda_{\gamma} > 0.04$
> 89	95	110	ADRIANI	93M	L3	$Z ightarrow ~ee^*$, $\lambda_Z > 0.5$
		112	DERRICK	93 B	ZEUS	Superseded by DERRICK 95B
> 88	95		ABREU	92C	DLPH	$Z \rightarrow ee^*, \lambda_{Z} > 0.5$
> 86	95		ABREU	92C	DLPH	$e^+e^- ightarrow e e^*$, $\lambda_\gamma > 0.1$
> 91	95		DECAMP	92	ALEP	$Z ightarrow ~ee^*$, $\lambda_Z > 1$
> 88	95	113	ADEVA	90F	L3	$Z ightarrow ~ee^*$, $\lambda_Z ~> 0.5$
> 86	95	113	ADEVA	90F	L3	$Z ightarrow ~e e^*$, $\lambda_Z ~> 0.04$
> 87	95		AKRAWY	901	OPAL	$Z ightarrow ~ee^*$, $\lambda_Z ~> 0.5$
> 81	95	114	DECAMP	90 G	ALEP	$Z ightarrow ee^*$, $\lambda_Z > 1$
> 50	95		ADACHI	89 B	τορζ	$e^+e^- ightarrowee^*$, $\lambda_\gamma>$ 0.04
> 56	95		KIM	89	AMY	$e^+e^- ightarrow ~ee^*$, $\lambda_\gamma > 0.03$
none 23–54	95	115	ABE	88 B	VNS	$e^+e^- ightarrow e e^* \lambda_\gamma^{'} > 0.04$
> 75	95	116	ANSARI	87 D	UA2	$W \rightarrow e^* \nu; \lambda_W > 0.7$
> 63	95	116	ANSARI	87 D	UA2	$W \rightarrow e^* \nu; \lambda_W > 0.2$
> 40	95	116	ANSARI	87 D	UA2	$W \rightarrow e^* \nu; \lambda_W > 0.09$

HTTP://PDG.LBL.GOV

- ⁹² ADLOFF 00E search for single e^* production in e_p collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f=f'=\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.
- ⁹³ ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s} = 192-202$ GeV. $f=f'=\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ⁹⁴ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ⁹⁵ ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ⁹⁶ ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=$ 183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ⁹⁷ ACCIARRI 98T search for single e^* production in quasi-real Compton scattering. The limit is for $|\lambda| > 1.0 \times 10^{-1}$ and non-chiral coupling of e^* . See their Fig. 7 for the exclusion plot in the mass-coupling plane.
- ⁹⁸ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- ⁹⁹ BARATE 98U is from e^+e^- collision at $\sqrt{s}=M_Z$. See their Fig. 12 for limits in masscoupling plane
- ¹⁰⁰ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 101 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- $\frac{102}{102}$ See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- ¹⁰³ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹⁰⁴ ADLOFF 97 search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio into a specific decay channel.
- ¹⁰⁵ BREITWEG 97C search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f=f'=2\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.
- ¹⁰⁶ ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹⁰⁷ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹⁰⁸ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ¹⁰⁹ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹¹⁰ DERRICK 95B search for single e^* production via $e^* e \gamma$ coupling in e p collisions with the decays $e^* \rightarrow e \gamma$, eZ, νW . See their Fig. 13 for the exclusion plot in the $m_{e^*} \lambda \gamma$ plane.
- ¹¹¹ABT 93 search for single e^* production via $e^* e \gamma$ coupling in e p collisions with the decays $e^* \rightarrow e \gamma$, e Z, νW . See their Fig. 4 for exclusion plot in the $m_{\alpha^*} \lambda_{\gamma}$ plane.
- ¹¹² DERRICK 93B search for single e^* production via $e^* e \gamma$ coupling in e p collisions with the decays $e^* \rightarrow e \gamma$, eZ, νW . See their Fig. 3 for exclusion plot in the $m_{e^*}^{-\lambda_{\gamma}}$ plane.
- ¹¹³Superseded by ADRIANI 93M.
- ¹¹⁴ Superseded by DECAMP 92.
- ¹¹⁵ABE 88B limits use $e^+e^- \rightarrow ee^*$ where t-channel photon exchange dominates giving $e\gamma(e)$ (quasi-real compton scattering).
- ¹¹⁶ ANSARI 87D is at $E_{\rm cm} = 546-630$ GeV.

Limits for Excited $e(e^*)$ from $e^+e^- \rightarrow \gamma \gamma$

These limits are derived from indirect effects due to e^* exchange in the *t* channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_{\gamma} = 1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L = \eta_R$ = 1. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>310	95		ACHARD	0 2D	L3	\sqrt{s} = 192–209 GeV
>311	95		ABREU	00A	DLPH	\sqrt{s} = 189–202 GeV
$\bullet \bullet \bullet$ We do not use the	followi	ng d	ata for averages	, fits,	limits,	etc. • • •
>283	95	117	ACCIARRI	00 G	L3	\sqrt{s} = 183–189 GeV
>306	95		ABBIENDI	99 P	OPAL	\sqrt{s} = 189 GeV
>231	95		ABREU	9 8J	DLPH	\sqrt{s} = 130–183 GeV
>194	95		ACKERSTAFF	98	OPAL	\sqrt{s} = 130–172 GeV
>227	95		ACKER,K	98 B	OPAL	\sqrt{s} = 183 GeV
>250	95		BARATE	9 8J	ALEP	\sqrt{s} = 183 GeV
>160	95	118	BARATE	98 U	ALEP	
>210	95	119	ACCIARRI	97W	L3	$\sqrt{s}=$ 161, 172 GeV
>129	95		ACCIARRI	96L	L3	\sqrt{s} =133 GeV
>147	95		ALEXANDER	96K	OPAL	
>136	95		BUSKULIC	96Z	ALEP	$\sqrt{s}{=}130$, 136 GeV
>146	95		ACCIARRI	95 G	L3	
		120	BUSKULIC	93Q	ALEP	
>127	95	121	ADRIANI	9 2B	L3	
>114	95	122	BARDADIN	92	RVUE	
> 99	95		DECAMP	92	ALEP	
		123	SHIMOZAWA	92	TOPZ	
>100	95		ABREU	91E	DLPH	
>116	95		AKRAWY	91F	OPAL	
> 83	95		ADEVA	90K	L3	
> 82	95		AKRAWY	90F	OPAL	
> 68	95	124	ABE	89J	VNS	$\eta_L=1, \eta_R=0$
> 90.2	95		ADACHI	89 B	TOPZ	
> 65	95		KIM	89	AMY	

 $^{117}\,{\rm ACCIARRI}$ 00G also obtain a limit on e^* with chiral coupling, $m_{e^*}>$ 213 GeV.

¹¹⁸ BARATE 98U is from e^+e^- collision at $\sqrt{s}=M_7$. See their Fig. 5 for limits in masscoupling plane ¹¹⁹ ACCIARRI 97W also obtain a limit on e^* with chiral coupling, $m_{e^*} > 157$ GeV (95%CL).

 120 BUSKULIC 93Q obtain Λ^+ >121 GeV (95%CL) from ALEPH experiment and Λ^+ >135 GeV from combined TRISTAN and ALEPH data. These limits roughly correspond to limits on m_{e^*} .

¹²¹ ADRIANI 92B superseded by ACCIARRI 95G.

¹²²BARDADIN-OTWINOWSKA 92 limit from fit to the combined data of DECAMP 92, ABREU 91E, ADEVA 90K, AKRAWY 91F.

- ¹²³ SHIMOZAWA 92 fit the data to the limiting form of the cross section with $m_{e^*} \gg E_{\rm cm}$ and obtain $m_{_{
 m P}^*}$ >168 GeV at 95%CL. Use of the full form would reduce this limit by a few GeV. The statistically unexpected large value is due to fluctuation in the data.
- 124 The ABE 89J limit assumes chiral coupling. This corresponds to $\lambda_\gamma=$ 0.7 for nonchiral coupling.

Indirect Limits for Excited $e(e^*)$

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follo	wing data for average	es, fits	, limits,	etc. ● ● ●	
	¹²⁵ DORENBOS.	89	CHRM	$\overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e$ and $\nu_{\mu} e \rightarrow \nu_{\mu} e$	
	¹²⁶ GRIFOLS	86	THEO	$\nu_{\mu} e \rightarrow \nu_{\mu} e$	
	¹²⁷ RENARD	82	THEO	g-2 of electron	
125 DOPENBOSCH 80 obtain	the limit $\sqrt{2}\sqrt{2}$ /m	2 /	26 (05	% (L) where A	ic the

¹²⁵ DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{cut}^2 / m_{e^*}^2 < 2.6 (95\% \text{ CL})$, where Λ_{cut} is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{cut} = 1 \text{ TeV}$ and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620 \text{ GeV}$. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{cut}$ in composite models.

¹²⁶ GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

¹²⁷ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ^*)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \rightarrow \mu\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>100.2	95	¹²⁸ ACCIARRI	01d L3	$e^+e^- ightarrow\mu^*\mu^*$ Homodoublet type
\bullet \bullet \bullet We do	not use	the following data $% \left(f_{i}, f_{i$	for averages,	fits, limits, etc. • • •
> 91.3	95	¹²⁹ ABBIENDI	001 OPAL	$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
> 94.2	95	¹³⁰ ACCIARRI	00E L3	$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
> 90.7	95	¹³¹ ABREU	990 DLPH	Homodoublet type
> 85.3	95	¹³² ACKERSTAFF	98c OPAL	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
		¹³³ BARATE	980 ALEP	$Z ightarrow \ \mu^* \mu^*$
> 79.6	95 ¹³⁴	^{,135} ABREU	97b DLPH	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 78.4	95 ¹³⁴	^{,136} ABREU	97b DLPH	$e^+e^- ightarrow\mu^*\mu^*$ Sequential type
> 79.9	95	¹³⁴ ACCIARRI	97G L3	$e^+e^- ightarrow\mu^*\mu^*$ Sequential type
> 80.0	95 ¹³⁴	^{,137} ACKERSTAFF	97 OPAL	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 62.6	95	¹³⁸ ABREU	96k DLPH	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 64.9	95	¹³⁹ ACCIARRI	96d L3	$e^+e^- ightarrow\mu^*\mu^*$ Sequential type
> 66.8	95	¹³⁹ ALEXANDER	96Q OPAL	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 65.4	95	¹³⁹ BUSKULIC	96W ALEP	$e^+e^- ightarrow\mu^*\mu^*$ Sequential type
> 45.6	95	ADRIANI	93M L3	$Z \rightarrow \mu^* \mu^*$

>	45.6	95		ABREU	9 2C	DLPH	$Z \rightarrow$	$\mu^* \mu^*$
>	29.8	95	140	BARDADIN	92	RVUE	$\Gamma(Z)$	
>	26.1	95	141	DECAMP	92	ALEP	$Z \to$	$\mu^* \mu^*$; $\Gamma(Z)$
>	46.1	95		DECAMP	92	ALEP	$Z \to$	$\mu^*\mu^*$
>	33	95	141	ABREU	91F	DLPH	$Z \to$	$\mu^* \mu^*$; $\Gamma(Z)$
>	45.3	95	142	ADEVA	90F	L3	$Z \to$	$\mu^* \mu^*$
>	44.9	95		AKRAWY	901	OPAL	$Z \to$	$\mu^* \mu^*$
>	44.6	95	143	DECAMP	90 G	ALEP	e ⁺ e ⁻	$\rightarrow \mu^* \mu^*$
>	29.9	95		ADACHI	89 B	TOPZ	e ⁺ e ⁻	$\rightarrow \mu^* \mu^*$
>	28.3	95		KIM	89	AMY	e ⁺ e ⁻	$\rightarrow \mu^* \mu^*$

- ¹²⁸ From e^+e^- collisions at $\sqrt{s} = 192-202$ GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{\mu^*} > 93.4$ GeV.
- ¹²⁹ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' ($\mu^* \rightarrow \nu W$): $m_{\mu^*} > 86.0$ GeV.
- ¹³⁰ From e^+e^- collisions at $\sqrt{s}=189$ GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' ($\mu^* \rightarrow \nu W$): $m_{\mu^*} > 92.6$ GeV.
- ¹³¹ From e^+e^- collisions at $\sqrt{s}=183$ GeV. f=f' is assumed. ABREU 990 also obtain limit for f=-f' ($\mu^* \rightarrow \nu W$): $m_{\mu^*} > 81.3$ GeV.
- ¹³² From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $\mu^* \rightarrow \nu W$ decay mode: $m_{\mu^*} > 81.3$ GeV.
- ¹³³BARATE 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ¹³⁴ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 135 ABREU 97B also obtain limit from charged current decay mode $\mu^* \to ~\nu$ W, $m_{\mu^*} >$ 70.9 GeV.
- ¹³⁶ ABREU 97B also obtain limit from charged current decay mode $\mu^* \rightarrow \nu W$, $m_{\mu^*} > 44.6$ GeV.
- 137 ACKERSTAFF 97 also obtain limit from charged current decay mode $\mu^* \to ~\nu W, ~m_{\nu^*} > 77.1$ GeV.
- ¹³⁸ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ¹³⁹ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.
- $^{140}\,{\rm BARDADIN-OTWINOWSKA}$ 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.
- ¹⁴¹Limit is independent of μ^* decay mode.
- ¹⁴² Superseded by ADRIANI 93M.
- ¹⁴³Superseded by DECAMP 92.

Limits for Excited μ (μ^*) from Single Production

These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review **D45**, 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID	TECN	COMMENT
>178	95	144	ACCIARRI	01D L3	$e^+e^- ightarrow \ \mu\mu^*$
• • • We do	not use	e the	following data f	or averages,	, fits, limits, etc. ● ● ●
		145	ABBIENDI	001 OPAL	$e^+e^- ightarrow \ \mu\mu^*$
		146	ACCIARRI	00E L3	$e^+ e^- ightarrow \ \mu \mu^*$
		147	ABREU	990 DLPH	$e^+ e^- ightarrow \ \mu \mu^*$
		148	ACKERSTAFF	98C OPAL	$e^+ e^- ightarrow \ \mu \mu^*$
	1 - 0	149	BARATE	980 ALEP	$Z \rightarrow \mu \mu^*$
	150),151	ABREU	97b DLPH	$e^+e^- ightarrow \mu\mu^*$
	150),152	ACCIARRI	97G L3	$e^+e^- \rightarrow \mu\mu^*$
		153	ACKERSTAFF	97 OPAL	$e^+e^- \rightarrow \mu\mu^*$
		154	ABREU	96k DLPH	$e^+e^- \rightarrow \mu\mu^*$
		155	ACCIARRI	96d L3	$e^+e^- \rightarrow \mu\mu^*$
		150	ALEXANDER	96Q OPAL	$e^+e^- \rightarrow \mu\mu^*$
		157	BUSKULIC	96W ALEP	$e^+e^- ightarrow \mu\mu^*$
> 89	95		ADRIANI	93M L3	$Z ightarrow ~\mu \mu^{st}$, $\lambda_{Z} ~>$ 0.5
> 88	95		ABREU	92C DLPH	$Z ightarrow ~\mu \mu^{st}$, $\lambda_{Z} ~>$ 0.5
> 91	95	150	DECAMP	92 ALEP	$Z ightarrow ~\mu \mu^{st}$, $\lambda_{ar{Z}} > 1$
> 85	95	158	ADEVA	90F L3	$Z ightarrow ~\mu \mu^*$, $\lambda_Z ~> 1$
> 75	95	158	ADEVA	90F L3	$Z ightarrow ~\mu \mu^{st}$, $\lambda_{ar{Z}} > 0.1$
> 87	95		AKRAWY	901 OPAL	$Z ightarrow ~\mu \mu^*$, λ_Z >1
> 80	95	159	DECAMP	90g ALEP	$e^+e^- ightarrow ~\mu \mu^*$, $\lambda_Z{=}1$
> 50	95		ADACHI	89b TOPZ	$e^+e^- ightarrow ~\mu\mu^*$, $\lambda_\gamma{=}$ 0.7
> 46	95		KIM	89 AMY	$e^+e^- ightarrow ~\mu \mu^*$, $\lambda_\gamma^{}=$ 0.2

¹⁴⁴ ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s} =$ 192–202 GeV. $f=f'=\Lambda/m_{\mu^*}$ is

assumed for the μ^* coupling. See their Fig. 4 for limits in the mass-coupling plane.

- ¹⁴⁵ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ¹⁴⁶ ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ¹⁴⁷ ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=$ 183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ¹⁴⁸ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- ¹⁴⁹ BARATE 980 obtain limits on the $Z \mu \mu^*$ coupling. See their Fig. 12 for limits in masscoupling plane
- ¹⁵⁰ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 151 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.

 152 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.

¹⁵³ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.

HTTP://PDG.LBL.GOV

- ¹⁵⁴ABREU 96K result is from e^+e^- collisions at $\sqrt{s}=$ 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹⁵⁵ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹⁵⁶ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ¹⁵⁷ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.

¹⁵⁸ Superseded by ADRIANI 93M.

¹⁵⁹ Superseded by DECAMP 92.

Indirect Limits for Excited μ (μ^*)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	ving data for average	es, fits	, limits,	etc. • • •	
	¹⁶⁰ RENARD	82	THEO	g-2 of mu	oı

¹⁶⁰ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \rightarrow \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>99.8	95	¹⁶¹ ACCIARRI	01D L3	$e^+e^- ightarrow ~ au^* au^*$ Homodoublet type
• • • We do	not use	the following data fo	or averages, t	fits, limits, etc. • • •
>91.2	95	¹⁶² ABBIENDI	001 OPAL	$e^+e^- ightarrow au^* au^*$ Homodoublet type
>94.2	95	¹⁶³ ACCIARRI	00E L3	$e^+e^- ightarrow au^* au^*$ Homodoublet type
>89.7	95	¹⁶⁴ ABREU	990 DLPH	Homodoublet type
>84.6	95	¹⁶⁵ ACKERSTAFF	98c OPAL	$e^+e^- ightarrow au^* au^*$ Homodoublet type
		166 BARATE	980 ALEP	$Z \rightarrow \tau^* \tau^*$
>79.4	95 167	^{,168} ABREU	97b DLPH	$e^+e^- ightarrow au^* au^*$ Homodoublet type
>77.4	95 167	^{,169} ABREU	97в DLPH	$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>79.3	95	¹⁶⁷ ACCIARRI	97G L3	$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>79.1	95 167	^{,170} ACKERSTAFF	97 OPAL	$e^+e^- \rightarrow \tau^* \tau^*$ Homodoublet type
>62.2	95	¹⁷¹ ABREU	96k DLPH	$e^+e^- ightarrow au^* au^*$ Homodoublet type
>64.2	95	¹⁷² ACCIARRI	96d L3	$e^+e^- ightarrow ~ au^* au^*$ Sequential type
>65.3	95	¹⁷² ALEXANDER	96q OPAL	$e^+e^- ightarrow au^* au^*$ Homodoublet type
>64.8	95	¹⁷² BUSKULIC	96w ALEP	$e^+e^- ightarrow ~ au^* au^*$ Sequential type

HTTP://PDG.LBL.GOV Page 22

>45.6	95		ADRIANI	9 3M	L3	$Z \to$	$\tau^* \tau^*$
>45.3	95		ABREU	9 2C	DLPH	$Z \rightarrow$	$\tau^* \tau^*$
>29.8	95	173	BARDADIN	92	RVUE	$\Gamma(Z)$	
>26.1	95	174	DECAMP	92	ALEP	$Z \to$	$\tau^* \tau^*$; $\Gamma(Z)$
>46.0	95		DECAMP	92	ALEP	$Z \rightarrow$	$\tau^* \tau^*$
>33	95	174	ABREU	91F	DLPH	$Z \to$	$\tau^* \tau^*$; $\Gamma(Z)$
>45.5	95	175	ADEVA	90L	L3	$Z \to$	$\tau^* \tau^*$
>44.9	95		AKRAWY	901	OPAL	$Z \to$	$\tau^* \tau^*$
>41.2	95	176	DECAMP	90 G	ALEP	e ⁺ e ⁻	$\rightarrow \tau^* \tau^*$
>29.0	95		ADACHI	89 B	TOPZ	e^+e^-	$\rightarrow \tau^* \tau^*$

- ¹⁶¹ From e^+e^- collisions at $\sqrt{s} = 192-202$ GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{\tau^*} > 93.4$ GeV.
- ¹⁶² From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' ($\tau^* \rightarrow \nu W$): $m_{\tau^*} > 86.0$ GeV.
- ¹⁶³ From e^+e^- collisions at $\sqrt{s}=189$ GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' ($\tau^* \rightarrow \nu W$): $m_{\tau^*} > 92.6$ GeV.
- ¹⁶⁴ From e^+e^- collisions at $\sqrt{s}=$ 183 GeV. f=f' is assumed. ABREU 990 also obtain limit for f=-f' ($\tau^* \rightarrow \nu W$): $m_{\tau^*} > 81.3$ GeV.
- ¹⁶⁵ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $\tau^* \rightarrow \nu W$ decay mode: $m_{\tau^*} > 81.3$ GeV.
- ¹⁶⁶ BARATE 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ¹⁶⁷ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 168 ABREU 97B also obtain limit from charged current decay mode $\tau^* \to ~\nu$ W, $m_{\tau^*} >$ 70.9 GeV.
- ¹⁶⁹ ABREU 97B also obtain limit from charged current decay mode $\tau^* \rightarrow \nu W$, $m_{\tau^*} > 44.6$ GeV.
- 170 ACKERSTAFF 97 also obtain limit from charged current decay mode $\tau^* \to \nu W$, $m_{\nu^*} > 77.1~{\rm GeV}.$
- ¹⁷¹ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ¹⁷² From e^+e^- collisions at $\sqrt{s}=$ 130–140 GeV.
- $^{173}\,{\rm BARDADIN-OTWINOWSKA}$ 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.
- $^{174}\,{\rm Limit}$ is independent of τ^* decay mode.
- ¹⁷⁵ Superseded by ADRIANI 93M.
- ¹⁷⁶ Superseded by DECAMP 92.

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \rightarrow \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VAL	UE (GeV)	CL%		DOCUMENT ID	7	FECN	COMMENT
>:	173	95	177	ACCIARRI	01d L	.3	$e^+e^- \rightarrow \tau \tau^*$
• •	• We do	not us	se the	following data f	or ave	rages,	fits, limits, etc. • • •
			178	ABBIENDI	00I C	DPAL	$e^+e^- \rightarrow \tau \tau^*$
			179	ACCIARRI	00e L	.3	$e^+e^- \rightarrow \tau \tau^*$
			180	ABREU	990 E	DLPH	$e^+e^- \rightarrow \tau \tau^*$
			181	ACKERSTAFF	98C C	OPAL	$e^+e^- \rightarrow \tau \tau^*$
			182	BARATE	98U A	ALEP	$Z \rightarrow \tau \tau^*$
		18	33,184	ABREU	97b C	DLPH	$e^+e^- ightarrow au au^*$
		18	33,185	ACCIARRI	97G L	.3	$e^+e^- ightarrow au au^*$
			186	ACKERSTAFF	97 C	OPAL	$e^+e^- ightarrow au au^*$
			187	ABREU	96k E	DLPH	$e^+e^- ightarrow au au^*$
			188	ACCIARRI	96d L	.3	$e^+e^- ightarrow au au^*$
			189	ALEXANDER	96Q C	OPAL	$e^+e^- ightarrow au au^*$
			190	BUSKULIC	96W A	LEP	$e^+e^- \rightarrow \tau \tau^*$
>	88	95		ADRIANI	93м L	.3	$Z ightarrow ~ au au^*$, $\lambda_Z ~>$ 0.5
>	87	95		ABREU	92C E	DLPH	$Z ightarrow ~ au au^*$, $\lambda_Z ~> 0.5$
>	90	95		DECAMP	92 A	ALEP	$Z ightarrow au au^*$, $\lambda_Z > 0.18$
>	88	95	191	ADEVA	90L L	.3	$Z ightarrow ~ au au^*$, $\lambda_Z > 1$
>	86.5	95		AKRAWY	90I C	OPAL	$Z ightarrow ~ au au^*$, $\lambda_Z > 1$
>	59	95	192	DECAMP	90g A	LEP	$Z ightarrow au au^*$, $\lambda_Z \!=\! 1$
>	40	95	193	BARTEL	86 J	ADE	$e^+e^- ightarrow ~ au au^*$, $\lambda_\gamma{=}1$
>	41.4	95	194	BEHREND	86 C	ELL	$e^+e^- ightarrow au au^*$, $\lambda_{\gamma}^{'} \!=\! 1$
>	40.8	95	194	BEHREND	86 C	ELL	$e^+e^- ightarrow au au^*$, $\lambda_{\gamma}^{'}{=}$ 0.7
	_						

¹⁷⁷ ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s} =$ 192–202 GeV. $f=f'=\Lambda/m_{\tau^*}$ is

assumed for the au^* coupling. See their Fig. 4 for limits in the mass-coupling plane.

¹⁷⁸ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.

- ¹⁷⁹ ACCIARRI 00E result is from e^+e^- collisions at $\sqrt{s}=189$ GeV. See their Fig. 3 for limits in mass-coupling plane.
- ¹⁸⁰ABREU 990 result is from e^+e^- collisions at \sqrt{s} = 183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ¹⁸¹ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- ¹⁸² BARATE 98U obtain limits on the $Z\tau\tau^*$ coupling. See their Fig. 12 for limits in masscoupling plane
- ¹⁸³ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 184 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- 185 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- ¹⁸⁶ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹⁸⁷ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.

- ¹⁸⁸ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹⁸⁹ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.

¹⁹⁰ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.

 $^{191}\,\rm{Superseded}$ by ADRIANI 93M.

¹⁹²Superseded by DECAMP 92.

¹⁹³ BARTEL 86 is at $E_{\rm cm} = 30-46.78$ GeV.

¹⁹⁴ BEHREND 86 limit is at $E_{\rm cm} = 33-46.8$ GeV.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \rightarrow \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>99.4	95	195	ACCIARRI	01 D	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
\bullet \bullet \bullet We do	not use	the	following data f	or a	/erages,	fits, limits, etc. • • •
>91.2	95	196	ABBIENDI	001	OPAL	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
		197	ABBIENDI,G	00 D	OPAL	
>94.1	95	198	ACCIARRI	00e	L3	$e^+e^- ightarrow u^* u^*$ Homodoublet type
		199	ABBIENDI	99F	OPAL	
>90.0	95	200	ABREU	99 0	DLPH	Homodoublet type
>84.9	95	201	ACKERSTAFF	98 C	OPAL	$e^+e^- \rightarrow \nu^* \nu^*$ Homodoublet type
		202	BARATE	98 U	ALEP	$Z \rightarrow \nu^* \nu^*$
>77.6	95 203	,204	ABREU	97 B	DLPH	$e^+e^- ightarrow u^* u^*$ Homodoublet type
>64.4	95 203	,205	ABREU	97 B	DLPH	$e^+e^- ightarrow \ u^* u^*$ Sequential type
>71.2	95 203	,206	ACCIARRI	97 G	L3	$e^+e^- ightarrow \ u^* u^*$ Sequential type
>77.8	95 203	,207	ACKERSTAFF	97	OPAL	$e^+e^- \rightarrow \nu^* \nu^*$ Homodoublet type
>61.4	95 208	,209	ACCIARRI	96 D	L3	$e^+e^- ightarrow \ u^* u^*$ Sequential type
>65.0	95 210	,211	ALEXANDER	96Q	OPAL	$e^+e^- \rightarrow \nu^* \nu^*$ Homodoublet type
>63.6	95	208	BUSKULIC	96W	ALEP	$e^+ e^- ightarrow \ u^* u^*$ Sequential type
>43.7	95	212	BARDADIN	92	RVUE	$\Gamma(Z)$
>47	95	213	DECAMP	92	ALEP	
>42.6	95	214	DECAMP	92	ALEP	$\Gamma(Z)$
>35.4	95 215	,216	DECAMP	90 0	ALEP	$\Gamma(Z)$
>46	95 216	,217	DECAMP	90 0	ALEP	
195 From e^+	e^- coll	ision	s at $\sqrt{s}=192$ -	-202	GeV. <i>f</i> =	= f' is assumed. ACCIARRI 01D also
obtain lim	it for <i>f</i> =	=-f	$': m_{,,*} > 99.1$ (GeV,	<i>m</i> _* >	99.3 GeV, $m_{j,*} > 90.5$ GeV.
			ν _e		ν_{μ}	$\nu_{ au}$

^{ν_e^+} ν_μ^+ ν_τ^+ ¹⁹⁶ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=-f' (photonic decay) is assumed. AB-BIENDI 00I also obtain limit for f=f' ($\nu^* \rightarrow \ell W$): $m_{\nu_e^*} > 91.1$ GeV, $m_{\nu_\mu^*} > 91.1$

GeV, $m_{\nu_{-}^{*}}^{*} > 83.1$ GeV.

- ¹⁹⁷ From e^+e^- collisions at $\sqrt{s}=$ 189 GeV. ABBIENDI,G 00D obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*)B(\nu^* \rightarrow \nu\gamma)^2$. See their Fig. 14. The limit ranges from 50 to 80 fb for $\sqrt{s}/2=$ 95 GeV> $m_{\nu^*}>$ 45 GeV.
- ¹⁹⁸ From e^+e^- collisions at $\sqrt{s}=189$ GeV. f=-f' (photonic decay) is assumed. ACCIA-RRI 00E also obtain limit for f=f' ($\nu^* \rightarrow \ell W$): $m_{\nu_e^*} > 93.9$ GeV, $m_{\nu_\mu^*} > 94.0$ GeV,

 $m_{\nu_{\tau}^*}^{} > 91.5$ GeV.

- ¹⁹⁹ From e^+e^- collisions at \sqrt{s} = 130–183 GeV, ABBIENDI 99F obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*) \ B(\nu^* \rightarrow \nu\gamma)^2$. See their Fig. 13. The limit ranges from 0.094 to 0.14 pb for $\sqrt{s}/2 > m_{\nu^*} > 45$ GeV.
- ²⁰⁰ From e^+e^- collisions at $\sqrt{s}=$ 183 GeV. f=-f' is assumed. ABREU 990 also obtain limit for f=f': $m_{\nu_{a^*}} >$ 87.3 GeV, $m_{\nu_{\mu^*}} >$ 88.0 GeV, $m_{\nu_{a^*}} >$ 81.0 GeV.
- ²⁰¹ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from charged decay modes: $m_{\nu_e^*} > 84.1$ GeV, $m_{\nu_\mu^*} > 83.9$ GeV, and $m_{\nu_\tau^*} > 79.4$ GeV.
- ²⁰² BARATE 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ²⁰³ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 204 ABREU 97B also obtain limits from charged current decay modes, $m_{\nu^*} > 56.4$ GeV.
- 205 ABREU 97B also obtain limits from charged current decay modes, $m_{\nu^*} > 44.9$ GeV.
- ²⁰⁶ ACCIARRI 97G also obtain limits from charged current decay mode $\nu_e^* \rightarrow eW$, $m_{\nu^*} > 64.5$ GeV.

64.5 GeV. 207 ACKERSTAFF 97 also obtain limits from charged current decay modes $m_{\nu_e^*} >$ 78.3

GeV, $m_{\nu^*}^{} > 78.9$ GeV, $m_{\nu^*}^{} > 76.2$ GeV.

²⁰⁸ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.

²⁰⁹ ACCIARRI 96D also obtain limit from $\nu^* \rightarrow eW$ decay mode: $m_{\mu^*} > 57.3$ GeV.

- ²¹⁰ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ²¹¹ ALEXANDER 96Q also obtain limits from charged current decay modes: $m_{\nu_e^*} > 66.2$

GeV, $m_{\nu_{\mu}^{*}}^{}$ > 66.5 GeV, $m_{\nu_{\tau}^{*}}^{}$ > 64.7 GeV.

- ²¹² BARDADIN-OTWINOWSKA 92 limit is for Dirac ν^* . Based on $\Delta\Gamma(Z)$ <36 MeV. The limit is 36.4 GeV for Majorana ν^* , 45.4 GeV for homodoublet ν^* .
- ²¹³Limit is based on B($Z \rightarrow \nu^* \overline{\nu}^*$)×B($\nu^* \rightarrow \nu \gamma$)² < 5 × 10⁻⁵ (95%CL) assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.
- ²¹⁴ Limit is for Dirac ν^* . The limit is 34.6 GeV for Majorana ν^* , 45.4 GeV for homodoublet ν^* .
- ²¹⁵ DECAMP 900 limit is from excess $\Delta\Gamma(Z) < 89$ MeV. The above value is for Dirac ν^* ; 26.6 GeV for Majorana ν^* ; 44.8 GeV for homodoublet ν^* .
- ²¹⁶ Superseded by DECAMP 92.
- ²¹⁷ DECAMP 900 limit based on B($Z \rightarrow \nu^* \nu^*$)·B($\nu^* \rightarrow \nu \gamma$)² < 7 × 10⁻⁵ (95%CL), assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \rightarrow \nu\nu^*$, $Z \rightarrow \nu\nu^*$, or $ep \rightarrow \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
>171	95	218	ACCIARRI	01 D	L3	$e^+e^- \rightarrow \nu \nu^*$
$\bullet~\bullet~\bullet$ We do not use the	followi	ng da	ata for averages	, fits,	, limits,	etc. • • •
none 50–150	95	219	ADLOFF	02	H1	$e p \rightarrow \nu^* X$
		220	ABBIENDI	001	OPAL	$e^+e^- \rightarrow \nu \nu^*$
		221	ABBIENDI,G	00 D	OPAL	
		222	ACCIARRI	00E	L3	$e^+e^- \rightarrow \nu \nu^*$
>114	95	223	ADLOFF	00e	H1	$ep \rightarrow \nu^* X$
		224	ABBIENDI	99F	OPAL	
		225	ABREU	99 0	DLPH	$e^+e^- \rightarrow \nu \nu^*$
		226	ACKERSTAFF	98 C	OPAL	$e^+e^- ightarrow u^* u^*$ Ho-
		227				modoublet type
	228	221	BARAIE	980	ALEP	$Z \rightarrow \nu \nu^*$
	220	230	ABREU	97B	DLPH	$e^+e^- \rightarrow \nu \nu^*$
		231	ABREU	971		$\nu^{\cdot} \rightarrow \ell VV, \nu Z$
	228	.232	ABREU	97J		$\nu^{+} \rightarrow \nu \gamma$
		233		97G		$e^+e^- \rightarrow \nu\nu^+$
		234		97 07		$e \cdot e \rightarrow \nu \nu$
nono 10-06	05	235	BREITWEC	97 07C		$2 p \rightarrow u^* Y$
	55	236	ACCIARRI	96D	13	$e^+e^- \rightarrow \nu \nu^*$
		237	ALEXANDER	960	OPAL	$e^+e^- \rightarrow \nu \nu^*$
		238	BUSKULIC	96W		$e^+e^- \rightarrow \nu \nu^*$
		239	DERRICK	95B	ZEUS	$e p \rightarrow \nu^* X$
		240	ABT	93	H1	$e p \rightarrow \nu^* X$
> 91	95		ADRIANI	9 3M	L3	$\lambda_{7} > 1, \nu^{*} \rightarrow \nu \gamma$
> 89	95		ADRIANI	9 3M	L3	$\lambda_{Z} > 1, \nu_{Z}^{*} \rightarrow eW$
> 87	95		ADRIANI	9 3M	L3	$\lambda_{Z} > 0.1, \nu^* \rightarrow \nu \gamma$
> 74	95		ADRIANI	9 3M	L3	$\lambda_{Z} > 0.1, \nu^{*} \rightarrow eW$
		241	BARDADIN	92	RVUE	z e
> 91	95	242	DECAMP	92	ALEP	λ_{7} >1
> 74	95	242	DECAMP	92	ALEP	$\lambda_{Z} > 0.034$
> 91	95 ²⁴³	,244	ADEVA	90 0	L3	$\lambda_Z > 1$
> 83	95	244	ADEVA	90 0	L3	λ_Z > 0.1, $ u^* ightarrow u \gamma$
> 74	95	244	ADEVA	900	L3	$\lambda_Z > 0.1, \nu_e^* \rightarrow eW$
> 90	95 ²⁴⁵	,246	DECAMP	90 0	ALEP	$\lambda_Z > 1$
> 74.7	95 245	,246	DECAMP	90 0	ALEP	$\lambda_Z^- > 0.06$

²¹⁸ ACCIARRI 01D search for $\nu\nu^*$ production in e^+e^- collisions at $\sqrt{s} = 192-202$ GeV with decays $\nu^* \rightarrow \nu\gamma$, $\nu^* \rightarrow eW$. $f=-f'=\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 4 for limits in the mass-coupling plane.

²¹⁹ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.

²²⁰ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.

- ²²¹ From e^+e^- collisions at $\sqrt{s}=$ 189 GeV. ABBIENDI,G 00D obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*)B(\nu^* \rightarrow \nu\gamma)^2$. See their Fig. 11.
- ²²² ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ²²³ ADLOFF 00E search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. The quoted limit assumes $f=-f'=\Lambda/m_{\nu^*}$. See their Fig. 10 for the exclusion plot in the mass-coupling plane.
- ²²⁴ From e^+e^- collisions at $\sqrt{s}=$ 130–183 GeV, ABBIENDI 99F obtain limit on $\sigma(e^+e^- \rightarrow \nu\nu^*)$ B($\nu^* \rightarrow \nu\gamma$). See their Fig. 8.
- ²²⁵ ABREU 990 result is from e^+e^- collisions at \sqrt{s} = 183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ²²⁶ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- ²²⁷ BARATE 980 obtain limits on the $Z\nu\nu^*$ coupling. See their Fig. 13 for limits in masscoupling plane
- ²²⁸ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 229 See Fig. 4b and Fig. 5b of ABREU 97B for the exclusion limit in the mass-coupling plane.
- ²³⁰ABREU 971 limit is from $Z \rightarrow \nu \nu^*$. See their Fig. 12 for the exclusion limit in the mass-coupling plane.
- ²³¹ABREU 97J limit is from $Z \rightarrow \nu \nu^*$. See their Fig. 5 for the exclusion limit in the mass-coupling plane.
- ²³² See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- ²³³ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV, for homodoublet ν^* . See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ²³⁴ ADLOFF 97 search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio.
- ²³⁵ BREITWEG 97C search for single ν^* production in ep collisions with the decay $\nu^* \rightarrow \nu \gamma$. $f=-f'=2\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 10 for the exclusion plot in the mass-coupling plane.
- ²³⁶ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ²³⁷ ALEXANDER 96Q result is from e^+e^- collisions at $\sqrt{s}=$ 130–140 GeV for homedoublet ν^* . See their Fig. 3b and Fig. 3c for the exclusion limit in the mass-coupling plane.
- ²³⁸ BUSKULIC 96W result is from e^+e^- collisions at $\sqrt{s}=$ 130–140 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ²³⁹ DERRICK 95B search for single ν^* production via $\nu^* eW$ coupling in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. See their Fig. 14 for the exclusion plot in the $m_{\nu^*}^{} \lambda\gamma$ plane.
- ²⁴⁰ABT 93 search for single ν^* production via $\nu^* eW$ coupling in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. See their Fig. 4 for exclusion plot in the $m_{\mu^*} \lambda_W$ plane.
- ²⁴¹ See Fig. 5 of BARDADIN-OTWINOWSKA 92 for combined limit of ADEVA 900, DE-CAMP 900, and DECAMP 92.
- ²⁴² DECAMP 92 limit is based on B($Z \rightarrow \nu^* \overline{\nu}$)×B($\nu^* \rightarrow \nu \gamma$) < 2.7 × 10⁻⁵ (95%CL) assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.
- ²⁴³Limit is either for $\nu^* \rightarrow \nu \gamma$ or $\nu^* \rightarrow eW$.
- ²⁴⁴ Superseded by ADRIANI 93M.
- ²⁴⁵ DECAMP 900 limit based on B($Z \rightarrow \nu \nu^*$)·B($\nu^* \rightarrow \nu \gamma$) < 6 × 10⁻⁵ (95%CL),
- assuming $B(\nu^* \rightarrow \nu \gamma) = 1$.
- ²⁴⁶ Superseded by DECAMP 92.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow q^* \overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>45.6	95	²⁴⁷ ADRIANI	9 3M	L3	$u \text{ or } d \text{ type, } Z ightarrow q^* q^*$
\bullet \bullet \bullet We do not use th	e followi	ing data for averages	, fits	, limits,	etc. • • •
		²⁴⁸ BARATE	98 U	ALEP	$Z \rightarrow q^* q^*$
		²⁴⁹ ADRIANI	92F	L3	$Z \rightarrow q^* q^*$
>41.7	95	²⁵⁰ BARDADIN	92	RVUE	u -type, $\Gamma(Z)$
>44.7	95	²⁵⁰ BARDADIN	92	RVUE	d-type, $\Gamma(Z)$
>40.6	95	²⁵¹ DECAMP	92	ALEP	u-type, $\Gamma(Z)$
>44.2	95	²⁵¹ DECAMP	92	ALEP	d-type, $\Gamma(Z)$
>45	95	²⁵² DECAMP	92	ALEP	u or d type,
		051			$Z ightarrow q^* q^*$
>45	95	²⁵¹ ABREU	91F	DLPH	<i>u</i> -type, $\Gamma(Z)$
>45	95	²⁵¹ ABREU	91F	DLPH	d-type, $\Gamma(Z)$
>21.1	95	²⁵³ BEHREND	86C	CELL	$e(q^*)=-1/3$, $q^* ightarrow$
> 00 0	05		060	CELL	qg
>22.3	95	253 DEHREND	80C	CELL	$e(q^*) = 2/3, q^* \rightarrow qg$
>22.5	95	²³³ BEHREND	86C	CELL	$e(q^*) = -1/3, q^* \rightarrow$
>23.2	95	²⁵³ BEHREND	86C	CELL	$e(q^*) = 2/3, q^* \rightarrow q\gamma$
047					

²⁴⁷ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

²⁴⁸ BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

²⁴⁹ ADRIANI 92F search for $Z \to q^* \overline{q}^*$ followed with $q^* \to q\gamma$ decays and give the limit $\sigma_{Z} + B(Z \rightarrow q^{*}\overline{q}^{*}) + B^{2}(q^{*} \rightarrow q\gamma) < 2 \text{ pb at } 95\%$ CL. Assuming five flavors of degenerate q^* of homodoublet type, B($q^* \rightarrow q\gamma$) <4% is obtained for m_{q^*} <45 GeV.

 250 BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

²⁵¹ These limits are independent of decay modes.

²⁵²Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

²⁵³ BEHREND 86C search for $e^+e^- \rightarrow q^* \overline{q}^*$ for $m_{q^*} > 5$ GeV. But m < 5 GeV excluded by total hadronic cross section. The limits are for point-like photon couplings of excited quarks.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \rightarrow q^*\overline{q}$ or $p\overline{p} \rightarrow q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments. TECNI CONMANNENIT

<u>CL%</u>	DOCUMENTID		TECN	COMMENT
:L = 95	%) OUR EVALUAT	TION		
95	²⁵⁴ ABE	97 G	CDF	$p\overline{p} \rightarrow q^* X, q^* \rightarrow 2$
95	²⁵⁵ ABE	95N	CDF	$p\overline{p} \rightarrow q^*X, q^* \rightarrow qg$
90	²⁵⁶ ALITTI	93	UA2	$p\overline{p} \rightarrow q^* X, q^* \rightarrow qg$
	21% 95 95 90	$\frac{21\%}{95} = 95\%) OUR EVALUAT95 = 254 ABE95 = 255 ABE90 = 256 ALITTI$	CL = 95%) OUR EVALUATION 95 254 ABE 97G 95 255 ABE 95N 90 256 ALITTI 93	CL $DOCOMENTID TECN 95 254 ABE 976 CDF 95 255 ABE 95N CDF 90 256 ALITTI 93 UA2 $

HTTP://PDG.LBL.GOV Page 29

• • We do not use the following data for averages, fits, limits, etc. • • •

>188	95	²⁵⁷ ADLOFF ²⁵⁸ ABREU ²⁵⁹ BARATE	00E H1 990 DLPH 9811 ALEP	$ep ightarrow q^* X$ $e^+e^- ightarrow qq^*$ $Z ightarrow qq^*$
		²⁶⁰ ADLOFF	97 H1	Lepton-flavor violation
none 40–169	95	²⁶¹ BREITWEG	97C ZEUS	$e p \rightarrow q^* X$
		²⁶² DERRICK	95b ZEUS	$e p \rightarrow q^* X$
none 80–540	95	²⁶³ ABE	94 CDF	$p\overline{p} \rightarrow q^* X, q^* \rightarrow q\gamma,$
> 79	95	264 ADRIANI 265 ABREU 266 ADDIANI	93м L3 92D DLPH	q W $\lambda_Z(L3) > 0.06$ $Z \rightarrow q q^*$
	05		92F L3	$Z \rightarrow q q^*$
> 75	95	204 DECAMP	92 ALEP	$Z \rightarrow q q^*, \lambda_Z > 1$
> 88	95	²⁰⁷ DECAMP	92 ALEP	$Z \rightarrow q q^*, \lambda_Z > 1$
> 86	95	²⁶⁷ AKRAWY	90J OPAL	$Z ightarrow q q^*$, $\lambda_Z > 1.2$
		²⁶⁸ ALBAJAR	89 UA1	$p \overline{p} \rightarrow q^* X$,
> 39	95	²⁶⁹ BEHREND	86C CELL	$egin{aligned} q^{*} & ightarrow q W \ e^{+} e^{-} & ightarrow q^{*} \overline{q} \ (q^{*} ightarrow q g, q \gamma), \ \lambda_{\gamma} = 1 \end{aligned}$

²⁵⁴ ABE 97G search for new particle decaying to dijets.

²⁵⁵ ABE 95N assume a degenerate u^* and d^* with $f_s = f = f' = \Lambda/m_{q^*}$. See their Fig. 4 for the excluded region in $m_{q^*} - f$ plane.

²⁵⁶ ALITTI 93 search for resonances in the two-jet invariant mass. The limit is for $f_s = f$ = $f' = \Lambda/m_{q^*}$. u^* and d^* are assumed to be degenerate. If not, the limit for u^* (d^*) is 277 (247) GeV if $m_{d^*} \gg m_{u^*}$ ($m_{u^*} \gg m_{d^*}$).

²⁵⁷ ADLOFF 00E search for single q^* production in ep collisions with the decays $q^* \rightarrow q\gamma$, qZ, qW. $f_s=0$ and $f=f'=\Lambda/m_{q^*}$ is assumed for the q^* coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.

²⁵⁸ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=$ 183 GeV. See their Fig. 6 for the exclusion limit in the mass-coupling plane.

 259 BARATE 98U obtain limits on the Zqq^* coupling. See their Fig. 16 for limits in masscoupling plane

²⁶⁰ ADLOFF 97 search for single q^* production in ep collisions with the decay $q^* \rightarrow q\gamma$. See their Fig. 6 for the rejection limits on the product of the production cross section and the branching ratio.

- ²⁶¹ BREITWEG 97C search for single q^* production in ep collisions with the decays $q^* \rightarrow q\gamma$, qW. $f_s=0$, and $f=-f'=2\Lambda/m_{q^*}$ is assumed for the q^* coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.
- ²⁶²DERRICK 95B search for single q^* production via $q^* q \gamma$ coupling in ep collisions with the decays $q^* \rightarrow qW$, qZ, qg, $q\gamma$. See their Fig. 15 for the exclusion plot in the $m_{q^*} \lambda \gamma$ plane.
- ²⁶³ ABE 94 search for resonances in jet- γ and jet-W invariant mass in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.8 TeV. The limit is for $f_s = f = f' = \Lambda/m_{q^*}$ and u^* and d^* are assumed to be degenerate. See their Fig. 4 for the excluded region in m_{q^*} -f plane.

²⁶⁴ Assumes $B(q^* \rightarrow qg) = 1$.

²⁶⁵ ABREU 92D give $\sigma(e^+e^- \rightarrow Z \rightarrow q^* \overline{q} \text{ or } q \overline{q}^*) \times B(q^* \rightarrow q \gamma) < 15 \text{ pb (95% CL)}$ for $m_{q^*} < 80 \text{ GeV}$.

²⁶⁶ ADRIANI 92F search for $Z \rightarrow q q^*$ with $q^* \rightarrow q \gamma$ and give the limit $\sigma_Z \cdot B(Z \rightarrow q q^*) \cdot B(q^* \rightarrow q \gamma) < (2-10)$ pb (95%CL) for $m_{q^*} = (46-82)$ GeV.

²⁶⁷ Assumes B($q^* \rightarrow q\gamma$) = 0.1. ²⁶⁸ ALBAJAR 89 give $\sigma(q^* \rightarrow W + \text{jet})/\sigma(W) < 0.019$ (90% CL) for $m_{q^*} > 220$ GeV. ²⁶⁹ BEHREND 86C has $E_{\text{cm}} = 42.5$ -46.8 GeV. See their Fig. 3 for excluded region in the $m_{q^*} - (\lambda_{\gamma}/m_{q^*})^2$ plane. The limit is for $\lambda_{\gamma} = 1$ with $\eta_L = \eta_R = 1$.

MASS LIMITS for Color Sextet Quarks (q_6)

		(
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>84	95	270 ABE	89D CDF	$p\overline{p} \rightarrow q_6 \overline{q}_6$
270				

²⁷⁰ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8) $\lambda = m_e / \Lambda$

$\chi = m_{\ell_8}/\chi$					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>86	95	²⁷¹ ABE	89D	CDF	Stable $\ell_8: p\overline{p} \rightarrow \ell_8 \overline{\ell}_8$
$\bullet \bullet \bullet$ We do not use the	ne follow	ing data for averages	s, fits	, limits,	etc. • • •
		²⁷² АВТ	93	H1	$e_{R}: e_{P} \rightarrow e_{R}X$
none 3.0–30.3	95	²⁷³ KIM	90	AMY	$e_8: e^+e^- \rightarrow ee +$
none 3.5–30.3	95	²⁷³ KIM	90	AMY	jets $\mu_8: e^+e^- \rightarrow \mu\mu +$
		²⁷⁴ KIM	90	AMY	$e_{\rm R}: e^+e^- \rightarrow gg; R$
>19.8	95	²⁷⁵ BARTEL	87 B	JADE	$e_8, \mu_8, \tau_8: e^+e^-; R$
none 5–23.2	95	²⁷⁵ BARTEL	87 B	JADE	$\mu_8: e^+e^- \rightarrow \mu\mu +$
		²⁷⁶ BARTEL	85K	JADE	jets $e_8: e^+e^- ightarrow gg; R$

- ²⁷¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.
- ²⁷² ABT 93 search for e_8 production via *e*-gluon fusion in *e p* collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} - Λ plane for m_{e_8} = 35-220 GeV.
- 273 KIM 90 is at $E_{\rm Cm}=$ 50–60.8 GeV. The same assumptions as in BARTEL 87B are used. 274 KIM 90 result $(m_{\rm e_R}\Lambda_M)^{1/2}>~178.4$ GeV (95%CL, $\alpha_s=$ 0.16 used) is subject to the
- same restriction as for BARTEL 85K.
- ²⁷⁵ BARTEL 87B is at $E_{\rm cm} = 46.3-46.78$ GeV. The limits assume ℓ_8 pair production cross sections to be eight times larger than those of the corresponding heavy lepton pair production.
- ²⁷⁶ In BARTEL 85K, *R* can be affected by $e^+e^- \rightarrow gg$ via e_q exchange. Their limit $m_{e_8} > 173$ GeV (CL=95%) at $\lambda = m_{e_8}/\Lambda_M = 1$ ($\eta_L = \eta_R = 1$) is not listed above because the cross section is sensitive to the product $\eta_L \eta_R$, which should be absent in ordinary theory with electronic chiral invariance.

```
HTTP://PDG.LBL.GOV
```

MASS LIMITS for Color Octet Neutrinos (ν_8)

$\lambda = m_{\ell_8}/\Lambda$					
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>110	90	²⁷⁷ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8\overline{\nu}_8$
\bullet \bullet \bullet We do not use the	followi	ng data for averages	, fits	, limits,	etc. • • •
none 3.8-29.8	95	²⁷⁸ KIM	90	AMY	$\nu_8: e^+e^- \rightarrow \text{acoplanar}$
none 9–21.9	95	²⁷⁹ BARTEL	87 B	JADE	Jets $ \nu_8: e^+e^- \rightarrow \text{acoplanar}$
					Jers

²⁷⁷ BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \rightarrow \nu_g$ is assumed.

²⁷⁸ KIM 90 is at $E_{\rm cm} = 50-60.8$ GeV. The same assumptions as in BARTEL 87B are used. ²⁷⁹ BARTEL 87B is at $E_{\rm cm} = 46.3-46.78$ GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)_L×U(1)_Y quantum numbers.

MASS LIMITS for W_8 (Color Octet W Boson)

VALUE (GeV)	DOCUMENT ID	TEC	<u>CN</u> <u>CO</u>	MMENT
• • • We do not use the following	data for averages,	fits, lim	nits, etc.	
28	³⁰ ALBAJAR	89 UA	1 p p	$ \stackrel{\rightarrow}{W_8} \stackrel{W_8}{\to} \stackrel{X,}{W_g} $
²⁸⁰ ALBAJAR 89 give $\sigma(W_8 \rightarrow W_8)$	$W + { m jet})/\sigma(W) < 0$.019 (9	0% CL)	for m_{W_8} > 220 GeV.

REFERENCES FOR Searches for Quark and Lepton Compositeness

ACHARD ADLOFF ACCIARRI AFFOLDER BOURILKOV CHEUNG	02D 02 01D 01I 01 01B	PL B531 28 PL B525 9 PL B502 37 PRL 87 231803 PR D64 071701 PL B517 167	P. Achard <i>et al.</i> C. Adloff <i>et al.</i> M. Acciarri <i>et al.</i> T. Affolder <i>et al.</i> D. Bourilkov K. Cheung	(L3 Collab.) (H1 Collab.) (L3 Collab.) (CDF Collab.)
ABBIENDI	001	EPJ C14 73	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	00R	EPJ C13 553	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
		EPJ C18 253	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
		PI R401 67	P Abreu et al	(DELPHL Collab.)
ABREU	005	PL B485 45	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	00E	PL B473 177	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	00G	PL B475 198	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00P	PL B489 81	M. Acciarri et al.	(L3 Collab.)
ADLOFF	00	PL B479 358	C. Adloff <i>et al.</i>	(H1 Collab.)
ADLOFF	00E	EPJ C17 567	C. Adloff <i>et al.</i>	(H1 Collab.)
AFFOLDER	001	PR D62 012004	T. Affolder <i>et al.</i>	(CDF Collab.)
BARATE	001	EPJ C12 183	R. Barate <i>et al.</i>	(ALEPH Collab.)
BOURILKOV	00	PR D62 076005	D. Bourilkov	
BREITWEG	00B	EPJ C14 239	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
ABBIENDI	99	EPJ C6 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	99F	EPJ C8 23	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	99P	PL B465 303	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	99C	PRL 82 2457	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	99D	PRL 82 4769	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	99A	EPJ C11 383	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	99O	EPJ C8 41	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ZARNECKI ABBOTT	99 98G	EPJ C11 539 PRL 80 666	A.F. Zarnecki B. Abbott <i>et al.</i>	(D0 Collab.)
				```'

HTTP://PDG.LBL.GOV

Page 32

Created: 6/17/2002 10:30

	001	DI D 400 400			
ABREU	98J	PL B433 429		P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	98J	PL B433 163		M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	98T	PL B439 183		M. Acciarri <i>et al.</i>	(L3 Collab.)
ACKERSTAFF	98	EPJ C1 21		K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	98C	EPJ C1 45		K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	98V	EP.J C2 441		K. Ackerstaff <i>et al.</i>	(OPAL_Collab.)
ACKER K	98R	PI R438 370		K Ackerstaff et al	(OPAL Collab.)
RARATE	081	DI B420 201		R Barato et al	(ALEPH Collab.)
	001	EDI CA E71		D. Darate et al.	
	900	EFJ C4 3/1		R. Darale et al.	(ALEPH Collab.)
BARGER	98E	PR D57 391		V. Barger <i>et al.</i>	
BERIKAM	98	PL B443 347		I. Bertram, E.H. Simmons	· · · · · · · · · · · · · · · · ·
MCFARLAND	98	EPJ C1 509		K.S. McFarland <i>et al.</i>	(CCFR/NuTeV_Collab.)
MIURA	98	PR D57 5345		M. Miura <i>et al.</i>	(VENUS Collab.)
ABE	97G	PR D55 R5263		F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97T	PRL 79 2198		F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	97B	PL B393 245		P. Abreu <i>et al.</i>	(DELPHI_Collab.)
ABREU	971	7PHY C74 57		P Abreu <i>et al</i>	(DELPHL Collab )
Also	971	7PHY (75 580 e	rratum	P Abreu et al	(DELPHI Collab.)
ABRELL	071	7PHV (74 577	nacam	P Abreu et al	(DELPHI Collab.)
	076	PI R/01 130		M Accipri et al	(L3 Collab.)
	07\\/	DI D401 159		M Acciarri et al	(L3 Collab.)
	07	DL D413 107		K Askersteff at al	(DDAL Callab.)
ACKERSTAFF	91	PL D391 197			(OPAL COND.)
ACKERSTAFF	97C	PL B391 221		K. Ackerstaff <i>et al.</i>	(UPAL Collab.)
ADLOFF	97	NP B483 44		C. Adloff et al.	(HI Collab.)
ARIMA	97	PR D55 19		I. Arima <i>et al.</i>	(VENUS Collab.)
BREITWEG	97C	ZPHY C76 631		J. Breitweg <i>et al.</i>	(ZEUS Collab.)
DEANDREA	97	PL B409 277		A. Deandrea	(MARS)
ABE	96	PRL 77 438		F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96S	PRL 77 5336		F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	96K	PL B380 480		P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	96D	PL B370 211		M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	96L	PL B384 323		M. Acciarri <i>et al.</i>	(L3 Collab.)
ALEXANDER	96K	PL B377 222		G. Alexander <i>et al.</i>	(OPAL Collab.)
ALEXANDER	96Q	PL B386 463		G. Alexander <i>et al.</i>	(OPAL Collab.)
BUSKULIC	96W	PL B385 445		D Buskulic et al	(ALEPH Collab.)
BUSKULIC	967	PL B384 333		D Buskulic et al	(ALEPH Collab.)
ARE	05N	PRI 7/ 3538		F Abo et al.	(CDE Collab.)
	950	DI B353 136		M Accierri et al	(L3  collab.)
	950	DI D252 570		S Aid at al	(L3 Collab.)
	95 0ED			J. Alu et al.	(TELIS Callab.)
DERRICK	95B	ZPHY C05 027		M. Derrick et al.	(ZEUS Collab.)
ABE	94	PRL 72 3004		F. Abe et al.	(CDF Collab.)
DIAZCRUZ	94	PR D49 R2149		J.L. Diaz Cruz, O.A. Sampayo	(CINV)
VELISSARIS	94	PL B331 227		C. Velissaris <i>et al.</i>	(AMY Collab.)
ABE	93G	PRL 71 2542		F. Abe <i>et al.</i>	(CDF Collab.)
ABT	93	NP B396 3		I. Abt <i>et al.</i>	(H1 Collab.)
ADRIANI	93M	PRPL 236 1		O. Adriani <i>et al.</i>	(L3 Collab.)
ALITTI	93	NP B400 3		J. Alitti <i>et al.</i>	(UA2 Collab.)
BUSKULIC	93Q	ZPHY C59 215		D. Buskulic et al.	(ALEPH Collab.)
DERRICK	93B	PL B316 207		M. Derrick et al.	(ZEUS Collab.)
ABE	92B	PRL 68 1463		F. Abe <i>et al.</i>	(CDF Collab.)
ABE	92D	PRL 68 1104		F. Abe <i>et al.</i>	(CDF Collab.)
ABE	92M	PRL 69 2896		F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	92C	ZPHY C53 41		P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	92D	7PHY C53 555		P Abreu et al	(DELPHI Collab.)
ADRIANI	92B	PI B288 404		O Adriani $et al$	(13  Collab)
	02E	PL B202 472		O Adriani et al	(L3 Collab.)
BARDADIN-	921	7PHY (55 163		M Bardadin-Otwinowska	(CLER)
	02	DDDI 216 253		D Docomp at of	(ALEPH Collab.)
	02	DI B201 206		B Howell et al.	(TOPA7 Collab.)
	92	DD D46 59		U Kroba	
	92	PR D40 00	Dawt II	I. Krona K. Hikaga at al	
	92	PR D45, 1 June,	Part II	K. HIKASA et al.	(RER, LDL, DUST)
	92 01 D	FL D204 144		r. Jiimozawa et al.	(IDFAZ COIIAD.)
ADDELL	91D	PKL 0/ 2418		F. ADE et al.	(CDF Collab.)
ARKEU	91E	PL B208 296		P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	91F	NP B367 511		P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADACHI	91	PL B255 613		I. Adachi <i>et al.</i>	(IOPAZ Collab.)
AKRAWY	91F	PL B257 531		M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
ALIII	91B	PL B257 232		J. Alitti <i>et al.</i>	(UA2 Collab.)
REHKEND	91B	ZPHY C51 143		H.J. Behrend <i>et al.</i>	(CELLO Collab.)
BEHREND	91C	ZPHY C51 149		H.J. Behrend <i>et al.</i>	(CELLO Collab.)
Also	91B	ZPHY C51 143		H.J. Behrend <i>et al.</i>	(CELLO Collab.)

HTTP://PDG.LBL.GOV Page 33 Created: 6/17/2002 10:30

ABE ADEVA ADEVA ADEVA ADEVA ADEVA ACRAWY AKRAWY AKRAWY DECAMP DECAMP DECAMP DECAMP KIM ABE ABE ABE ABE ABE ABE ABE ABE ABE ABE	90I 90F 90K 90C 90F 90J 90G 900 90 89 89B 89B 89B 89B 89B 89B 89B 89B 89B	ZPHY C48 13 PL B247 177 PL B250 199 PL B250 205 PL B252 525 PL B241 133 PL B246 285 PL B246 285 PL B236 501 PL B250 172 PL B240 243 PRL 62 613 PRL 62 613 PRL 62 1825 PRL 63 1447 PRL 62 3020 ZPHY C45 175 PL B222 425 PL B228 553 ZPHY C44 15 PL B220 464 PL B222 163 ZPHY C43 549 ZPHY C43 549 ZPHY C41 567 PL B213 400 PL B223 476 PL B213 400 PL B223 476 PL B213 400 PL B206 551 ZPHY C37 171 ZPHY C40 163 PL B195 613 ZPHY C31 359 ZPHY C31 359 ZPHY C30 371 PL 68B 420 PL B181 178 PL 166B 463 PR D34 3286 PR D34 3286	<ul> <li>K. Abe et al.</li> <li>B. Adeva et al.</li> <li>M.Z. Akrawy et al.</li> <li>M.Z. Akrawy et al.</li> <li>M.Z. Akrawy et al.</li> <li>M.Z. Akrawy et al.</li> <li>D. Decamp et al.</li> <li>D. Decamp et al.</li> <li>G.N. Kim et al.</li> <li>F. Abe et al.</li> <li>F. Abe et al.</li> <li>F. Abe et al.</li> <li>K. Abe et al.</li> <li>K. Abe et al.</li> <li>I. Adachi et al.</li> <li>V. Barger et al.</li> <li>J. Dorenbosch et al.</li> <li>J. Dorenbosch et al.</li> <li>K. Abe et al.</li> <li>K. Abe et al.</li> <li>H.J. Behrend et al.</li> <li>W. Braunschweig et al.</li> <li>J. Dorenbosch et al.</li> <li>K. Abe et al.</li> <li>R. Abe et al.</li> <li>R. Abe et al.</li> <li>Baringer et al.</li> <li>W. Braunschweig et al.</li> <li>W. Braunschweig et al.</li> <li>W. Braunschweig et al.</li> <li>M. Bartel et al.</li> <li>H.J. Behrend et al.</li> <li>E. Fernandez et al.</li> <li>G.T.J. Arnison et al.</li> <li>G.T.J. Arnison et al.</li> <li>M. Bartel et al.</li> <li>H.J. Behrend et al.</li> <li>H.J. Behrend et al.</li> <li>M. Bartel et al.</li> <li>H.J. Behrend et al.</li> <li>M. Bartel et al.</li> <li>M. Berrick et al.</li> <li>M. Derrick et al.</li> <li>M. Derrick et al.</li> </ul>	<ul> <li>(VENUS Collab.)</li> <li>(L3 Collab.)</li> <li>(L3 Collab.)</li> <li>(L3 Collab.)</li> <li>(L3 Collab.)</li> <li>(L3 Collab.)</li> <li>(OPAL Collab.)</li> <li>(OPAL Collab.)</li> <li>(OPAL Collab.)</li> <li>(ALEPH Collab.)</li> <li>(ALEPH Collab.)</li> <li>(ALEPH Collab.)</li> <li>(CDF Collab.)</li> <li>(VENUS Collab.)</li> <li>(UA1 Collab.)</li> <li>(CHARM Collab.)</li> <li>(CHARM Collab.)</li> <li>(VENUS Collab.)</li> <li>(TASSO Collab.)</li> <li>(TASSO Collab.)</li> <li>(TASSO Collab.)</li> <li>(TASSO Collab.)</li> <li>(TASSO Collab.)</li> <li>(UA2 Collab.)</li> <li>(UA2 Collab.)</li> <li>(UA1 Collab.)</li> <li>(UA1 Collab.)</li> <li>(UA1 Collab.)</li> <li>(UA1 Collab.)</li> <li>(UA1 Collab.)</li> <li>(UA1 Collab.)</li> <li>(CELLO Collab.)<!--</th--></li></ul>
BARTEL BEHREND BEHREND DERRICK Also DERRICK GRIFOLS JODIDIO	86C 86 86C 86B 86B 86B 86 86	ZPHY C30 371 PL 168B 420 PL B181 178 PL 166B 463 PR D34 3286 PL 168B 264 PR D34 1967	<ul> <li>W. Bartel <i>et al.</i></li> <li>H.J. Behrend <i>et al.</i></li> <li>H.J. Behrend <i>et al.</i></li> <li>M. Derrick <i>et al.</i></li> <li>M. Derrick <i>et al.</i></li> <li>J.A. Grifols, S. Peris</li> <li>A. Jodidio <i>et al.</i></li> </ul>	(JADE Collab.) (CELLO Collab.) (CELLO Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (BARC) (LBL, NWES, TRIU)
Also APPEL BARTEL BERGER BERGER BAGNAIA BARTEL BARTEL EICHTEN ALTHOFF RENARD	88 85 85K 85 84C 84D 84E 84 84 83C 82	PR D37 237 erratum PL 160B 349 PL 160B 337 ZPHY C28 1 ZPHY C27 341 PL 138B 430 PL 146B 437 PL 146B 121 RMP 56 579 PL 126B 493 PL 116B 264	<ul> <li>A. Jodidio et al.</li> <li>J.A. Appel et al.</li> <li>W. Bartel et al.</li> <li>C. Berger et al.</li> <li>C. Berger et al.</li> <li>P. Bagnaia et al.</li> <li>W. Bartel et al.</li> <li>W. Bartel et al.</li> <li>E. Eichten et al.</li> <li>M. Althoff et al.</li> <li>F.M. Renard</li> </ul>	(LBL, NWES, TRIU) (UA2 Collab.) (JADE Collab.) (PLUTO Collab.) (PLUTO Collab.) (UA2 Collab.) (JADE Collab.) (JADE Collab.) (FNAL, LBL, OSU) (TASSO Collab.) (CERN)