$I(J^P) = \frac{1}{2}(1^-)$

K*(892) MASS

CHA	CHARGED ONLY								
VALUE	(MeV)	EVTS		DOCUMENT ID		TECN	CHG	COMMENT	
891.66	5 ± 0.26 OUR	AVERAG	E						
892.6	± 0.5	5840		BAUBILLIER	84 B	HBC	_	$8.25 \ K^{-} p \rightarrow \\ \overline{K}^{0} \pi^{-} p$	
888	± 3			NAPIER	84	SPEC	+	$200 \ \pi^- p \rightarrow 2K_S^0 X$	
891	± 1			NAPIER	84	SPEC	_	$200 \pi^{-} p \rightarrow 2K_{S}^{0} X$	
891.7	± 2.1	3700		BARTH	83	HBC	+	70 $K^+ p \rightarrow K^0 \pi^+ X$	
891	± 1	4100		TOAFF	81	HBC	_	$6.5 \ K^- p \rightarrow \overline{K}^0 \pi^- p$	
892.8	± 1.6			AJINENKO	80	HBC	+	$32 \ \mathrm{K}^+ p \rightarrow \ \mathrm{K}^0 \pi^+ \mathrm{X}$	
890.7	± 0.9	1800		AGUILAR	78 B	HBC	±	$ \begin{array}{c} 0.76 \ \overline{\rho}p \rightarrow \\ \kappa^{\mp} \kappa_{S}^{0} \pi^{\pm} \end{array} $	
886.6	± 2.4	1225		BALAND	78	HBC	±	12 $\overline{p}p \rightarrow (K\pi)^{\pm} X$	
891.7	± 0.6	6706		COOPER	78	HBC	\pm	0.76 $\overline{p}p \rightarrow (K\pi)^{\pm} X$	
891.9	± 0.7	9000	2	PALER	75	HBC	_	$14.3 K^- p \rightarrow (K\pi)^-$	
892.2	± 1.5	4404		AGUILAR	71 B	HBC	—	$\begin{array}{c} & \\ 3.9, 4.6 \ K^{-} \ p \rightarrow \\ (K \pi)^{-} \ p \end{array}$	
891	± 2	1000		CRENNELL	69 D	DBC	_	$3.9 \frac{K^{-}N}{K^{0}\pi^{-}X}$	
890	±3.0	720		BARLOW	67	HBC	±	$1.2 \overline{p} p \rightarrow (K^0 \pi)^{\pm} K^{\mp}$	
889	± 3.0	600		BARLOW	67	HBC	±	$1.2 \overline{p} p \rightarrow (K^0 \pi)^{\pm} K \pi$	
891	± 2.3	620	3	DEBAERE	67 B	НВС	+	$3.5 \ K^+ p \rightarrow K^0 \pi^+ p$	
891.0	± 1.2	1700	4	WOJCICKI	64	HBC	_	1.7 $K^- p \rightarrow \overline{K}^0 \pi^- p$	
• • •	We do not us	se the fol	lowi	ng data for avei	rages	, fits, lin	nits, et		
893.5	± 1.1	27k	1	ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow \ K^+ K^- \pi^0$	
890.4	$\pm 0.2 \ \pm 0.5$	79709±	5	BIRD	89	LASS	_	$11 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$	
890.0	± 2.3	800	3,4	CLELAND	82	SPEC	+	$30 \ K^+ p \rightarrow \ K^0_{S} \pi^+ p$	
896.0	± 1.1	3200	3,4	CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K^{0}_{S} \pi^+ p$	
893	± 1	3600	3,4	CLELAND	82	SPEC	_	$50 K^+ p \rightarrow K_S^{0} \pi^- p$	
896.0	± 1.9	380		DELFOSSE	81	SPEC	+	$50 \ K^{\pm} p \rightarrow \ K^{\pm} \pi^0 p$	
886.0	± 2.3	187		DELFOSSE	81	SPEC	_	50 $K^{\pm} p \rightarrow K^{\pm} \pi^0 p$	
894.2	± 2.0	765	3	CLARK	73	HBC	_	$3.13 \ K^{-} p \rightarrow K^{0} \pi^{-} p$	
894.3	± 1.5	1150	3,4	CLARK	73	HBC	_	$3.3 \ K^- p \rightarrow \overline{K}^0 \pi^- p$	
892.0	± 2.6	341	3	SCHWEING	68	HBC	_	5.5 $K^- p \rightarrow \overline{K}^0 \pi^- p$	
1									

¹K-matrix pole.

NEUTRAL ONLY							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
896.10±0.27 OUR	AVERAGE	Error includes s	cale	factor of	F 1.4.	See the ideogram below.	
896 ±2		BARBERIS	98E	OMEG		450 $pp \rightarrow$	
						р _f р _s К* К *	
$895.9\ \pm 0.5\ \pm 0.2$		ASTON	88	LASS	0	$11 \ K^- p \rightarrow \ K^- \pi^+ n$	
$894.52 \!\pm\! 0.63$	25k	² ATKINSON	86	OMEG		20–70 <i>γ p</i>	
$894.63 \!\pm\! 0.76$	20k	² ATKINSON	86	OMEG		20–70 <i>γ p</i>	
897 ± 1	28k	EVANGELISTA	80	OMEG	0	10 $\pi^- p \rightarrow$	
						$K^+\pi^-(\Lambda,\Sigma)$	
898.4 ± 1.4	1180	AGUILAR	78 B	HBC	0	$0.76 \overline{p} p \rightarrow$	
						$K^+ K^0_S \pi^{\pm}$	
894.9 ± 1.6		WICKLUND	78	ASPK	0	3,4,6 $K^{\pm}N \rightarrow$	
						$(K\pi)^0 N$	
$897.6\ \pm 0.9$		BOWLER	77	DBC	0	5.4 $K^+ d \rightarrow$	
	2600		75		•	$K^+\pi^-pp$	
895.5 ± 1.0	3600		75 	HBC	0	3.6 K $p \rightarrow K \pi^{+} n$	
897.1 ±0.7	22k	² PALER	75	HRC	0	$\begin{array}{ccc} 14.3 \ K & p \to \ (K \pi)^{o} \\ X \end{array}$	
896.0 ±0.6	10k	FOX	74	RVUE	0	$2 \stackrel{\frown}{K^-} p \rightarrow K^- \pi^+ n$	
896.0 ±0.6		FOX	74	RVUE	0	$2 K^+ n \rightarrow K^+ \pi^- p$	
896 ±2		⁶ MATISON	74	НВС	0	12 $K^+ p \rightarrow K^+ \pi^- \Delta$	
896 ±1	3186	LEWIS	73	НВС	0	2.1–2.7 $K^+ p \rightarrow$	
		-		-	-	Κππρ	
$894.0 \hspace{0.1in} \pm 1.3$		⁶ LINGLIN	73	HBC	0	2–13 K ⁺ p \rightarrow	
		2				$K^{+}\pi^{-}\pi^{+}p$	
898.4 ± 1.3	1700	³ BUCHNER	72	DBC	0	$4.6 K^+ n \rightarrow K^+ \pi^- p$	
897.9 ± 1.1	2934	³ AGUILAR	71 B	HBC	0	3.9,4.6 $K^- p \rightarrow$	
	5262	3 4 61 11 4 5	71 -		•	$K^-\pi^+n$	
898.0 ±0.7	5362	SAGUILAR	1 18	HRC	0	3.9,4.6 K $p \rightarrow$	
00E 1	4200		70		0	$K \pi' \pi p$	
895 ± 1	4300		70 60	DBC	0	$3 \land N \rightarrow \land \pi' \land$	
893.7 ±2.0	TOK	DAVIS	69	HBC	0	$12 \text{ K} + p \rightarrow \mu + \mu$	
9017 ± 11	1040	3 DALIDED	670		0	$\kappa'\pi\pi'p$	
094.7 ±1.4	1040	DAUDER	076	прс	0	$2.0 \text{ K} \rho \rightarrow \\ \text{K}^{-} = \pi^{+} = \pi^{-} \text{ n}$	
• • • We do not us	e the follow	wing data for aver	arec	fits lin	nits e	$\mathbf{r} \pi \cdot \pi \mathbf{p}$	
			ages	, 11.3, 111	, e		
900.7 ± 1.1	5900	BARTH	83	HBC	0	$70 \ K^+ p \rightarrow \ K^+ \pi^- X$	

HTTP://PDG.LBL.GOV Page 2 Created: 6/24/2005 17:08

 $K^*(892)^0$ mass (MeV)

 2 Inclusive reaction. Complicated background and phase-space effects.

³ Mass errors enlarged by us to Γ/\sqrt{N} . See note.

⁴Number of events in peak reevaluated by us.

⁵ From a partial wave amplitude analysis.

⁶From pole extrapolation.

A REVIEW GOES HERE – Check our WWW List of Reviews

		т _{K*(892)⁰ —}	^m K*(892) [±]		
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
6.7±1.2 OUR AVE	RAGE				
7.7 ± 1.7	2980	AGUILAR	78b HBC	± 0	$0.76 \overline{p} p \rightarrow$
					$K^{\mp}K^0_S\pi^{\pm}$
5.7 ± 1.7	7338	AGUILAR	718 HBC	-0	3.9,4.6 K ⁻ p
6.3 ± 4.1	283	⁷ BARASH	67B HBC		0.0 <u>p</u> p
⁷ Number of even	nts in peak	reevaluated by us	i.		

K*(892) RANGE PARAMETER

All from partial wave amplitude analyses.

VALUE (GeV $^{-1}$)	DOCUMENT ID		TECN	CHG	COMMENT
3.4±0.7	ASTON	88	LASS	0	$11 \ \mathrm{K}^- \mathrm{p} \rightarrow \ \mathrm{K}^- \pi^+ \mathrm{n}$
$\bullet \bullet \bullet$ We do not use the	following data t	for a	verages,	fits, lir	mits, etc. ● ● ●
$12.1 \pm 3.2 \pm 3.0$	BIRD	89	LASS	_	11 $K^- p \rightarrow \overline{K}^0 \pi^- p$

K*(892) WIDTH

CHARGED ONLY	Y EVTS		DOCUMENT ID		TECN	CHG	COMMENT
50.8±0.9 OUR FIT							
50.8±0.9 OUR AVI	ERAGE						
49 ±2	5840		BAUBILLIER	84 B	HBC	_	$8.25 \begin{array}{c} K^{-} p \rightarrow \\ \overline{K}^{0} \pi^{-} p \end{array}$
56 ±4			NAPIER	84	SPEC	_	$200 \pi^{-} p \rightarrow 2K_{S}^{0} X$
51 ±2	4100		TOAFF	81	HBC	_	$6.5 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$
50.5 ± 5.6			AJINENKO	80	HBC	+	$32 K^+ p \rightarrow K^0 \pi^+ X$
45.8±3.6	1800		AGUILAR	78 B	HBC	±	$ \begin{array}{c} 0.76 \ \overline{\rho} p \rightarrow \\ \kappa^{\mp} \kappa_{S}^{0} \pi^{\pm} \end{array} $
52.0 ± 2.5	6706	9	COOPER	78	HBC	±	$0.76 \ \overline{p} p \rightarrow (K \pi)^{\pm} X$
52.1 ± 2.2	9000	10	PALER	75	HBC	_	14.3 $K^- p \rightarrow (K \pi)^-$
46.3±6.7	765	9	CLARK	73	HBC	_	$\begin{array}{c} X \\ 3.13 \ K^{-} p \rightarrow \\ \overline{K}^{0} \pi^{-} p \end{array}$
48.2±5.7	1150	9,11	CLARK	73	HBC	_	$3.3 \ K^- p \rightarrow \overline{K}^0 \pi^- p$
54.3±3.3	4404	9	AGUILAR	71 B	HBC	_	3.9,4.6 $K^- p \rightarrow (K^-)^- r$
46 ±5	1700	9,11	WOJCICKI	64	HBC	-	$(K\pi) p$ $1.7 K^- p \rightarrow \overline{K}^0 \pi^- p$
• • • We do not us	se the fo	llowi	ng data for aver	ages	, fits, lin	nits, et	C. ● ● ●
54.8 ± 1.7	27k	8	ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow K^+ K^- \pi^0$
45.2±1 ±2	79709± 801	12	BIRD	89	LASS	_	$11 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$
42.8 ± 7.1	3700		BARTH	83	HBC	+	70 $K^+ p \rightarrow K^0 \pi^+ X$
64.0 ± 9.2	800	9,11	CLELAND	82	SPEC	+	$30 \ K^+ p \rightarrow \ K^0_S \pi^+ p$
62.0 ± 4.4	3200	9,11	CLELAND	82	SPEC	+	$50 \ K^+ p \rightarrow \ K_S^0 \pi^+ p$
55 ±4	3600	9,11	CLELAND	82	SPEC	_	$50 \ K^+ p \rightarrow \ K^{\bar{0}}_S \pi^- p$
62.6±3.8	380		DELFOSSE	81	SPEC	+	$50 K^{\pm} p \rightarrow K^{\pm} \pi^0 p$
50.5 ± 3.9	187		DELFOSSE	81	SPEC	_	$50 \ K^{\pm} p \rightarrow \ K^{\pm} \pi^{0} p$
•							

⁸K-matrix pole.

NEUTRAL ONL	Y					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
50.7±0.6 OUR FIT	Error	includes scale factor	of 1	.1.		
50.7±0.6 OUR AV	ERAGE	Error includes scale	fact	or of 1.1	L.	
54 ±3		BARBERIS	98E	OMEG		450 $pp \rightarrow$
						р _f р _s К* К *
$50.8\!\pm\!0.8\!\pm\!0.9$		ASTON	88	LASS	0	$11 \ K^- p \rightarrow \ K^- \pi^+ n$
46.5±4.3	5900	BARTH	83	HBC	0	70 $K^+ p \rightarrow K^+ \pi^- X$
54 ±2	28k	EVANGELISTA	80	OMEG	0	10 $\pi^- p \rightarrow$
						$K^+\pi^-(\Lambda,\Sigma)$
45.9 ± 4.8	1180	AGUILAR	78 B	HBC	0	$0.76 \overline{p} p \rightarrow$
						$\kappa^{\mp}\kappa^{0}_{S}\pi^{\pm}$
51.2 ± 1.7		WICKLUND	78	ASPK	0	3,4,6 $K^{\pm}N \rightarrow$
						(<i>K</i> π) ⁰ <i>N</i>
48.9 ± 2.5		BOWLER	77	DBC	0	5.4 $K^+_{\downarrow} d \rightarrow$
						$K^+\pi^-$ pp
48 + 3 - 2	3600	MCCUBBIN	75	HBC	0	$3.6 \ K^- p \rightarrow \ K^- \pi^+ n$
50.6 ± 2.5	22k	¹⁰ PALER	75	HBC	0	14.3 $K^- p \to (K\pi)^0$
					•	Χ
47 ±2	10k	FOX	74	RVUE	0	$2 K^{-} p \rightarrow K^{-} \pi^{+} n$
51 ±2		FOX	74	RVUE	0	$2 K^+ n \rightarrow K^+ \pi^- p$
46.0 ± 3.3	3186	⁹ LEWIS	73	HBC	0	$2.1-2.7 \ K^+ p \rightarrow$
	1700		70		0	$K\pi\pi p$
51.4±5.0	1700	S BUCHNER	72	DRC	0	4.0 K $n \rightarrow K \pi p$
$55.8^{+4.2}_{-3.4}$	2934	⁹ AGUILAR	71 B	HBC	0	3.9,4.6 $K^- p \rightarrow$
					•	$K^-\pi^+n$
48.5 ± 2.7	5362	AGUILAR	1 1B	HRC	0	3.9,4.6 K $p \rightarrow$
F40122	4200	911	70		0	$K \pi' \pi p$
54.0 ± 3.3	4300		10	DBC	0	$3 \land N \rightarrow \land \pi' \land$
53.2 ± 2.1	TOK	⁹ DAVIS	69	HBC	0	$12 \text{ K}^+ p \rightarrow \mu^+ - \mu^+$
	1040	9 DALIDED	670		0	$n'\pi \pi'p$
44 ± 3.3	1040		018	HDC	U	2.0 r $p \rightarrow k^{-} - +$
						$\mathbf{n} \pi' \pi \mathbf{p}$

⁹ Width errors enlarged by us to $4 \times \Gamma/\sqrt{N}$; see note. ¹⁰ Inclusive reaction. Complicated background and phase-space effects. ¹¹ Number of events in peak reevaluated by us. ¹² From a partial wave amplitude analysis.

K*(892) DECAY MODES

Mode	Fraction (Γ_i/Γ)	Confidence level
$ \begin{array}{cccc} \Gamma_{1} & K\pi \\ \Gamma_{2} & (K\pi)^{\pm} \\ \Gamma_{3} & (K\pi)^{0} \\ \Gamma_{4} & K^{0}\gamma \\ \Gamma_{5} & K^{\pm}\gamma \\ \Gamma_{5} & K\pi\pi \end{array} $	$ \sim 100 \\ (99.901 \pm 0.009) \\ (99.770 \pm 0.020) \\ (2.30 \pm 0.20) \\ (9.9 \pm 0.9) \\ < 7 $	% % % × 10 ⁻³ × 10 ⁻⁴ × 10 ⁻⁴

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 13 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 = 7.8$ for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{c|c} x_5 & -100 \\ \Gamma & 19 & -19 \\ \hline & x_2 & x_5 \end{array}$$

	Mode	Rate (MeV)
Г ₂ Г ₅	$(\kappa \pi)^{\pm} \ \kappa^{\pm} \gamma$	$\begin{array}{ccc} 50.7 & \pm 0.9 \\ 0.050 \pm 0.005 \end{array}$

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 19 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 = 19.7$ for 17 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 4	-100	
Г	14	-14
	<i>x</i> 3	<i>x</i> 4

Rate (MeV)	Scale factor
50.6 ± 0.6 0.117 ± 0.010	1.1
	Rate (MeV) 50.6 ±0.6 0.117±0.010

K*(892) PARTIAL WIDTHS

Γ(Κ⁰γ)							Г4
VALUE (keV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
$116 \pm 10 0$							
116.5± 9.9	584	CARLSMITH	86	SPEC	0	$\kappa_L^0 A \rightarrow \kappa_S^0 \pi^0 A$	

$\Gamma(K^{\pm}\gamma)$								Γ5
VALUE (keV)	DC	CUMENT ID		TECN	CHG	COM	IMENT	
$50\pm$ 5 OUR FIT								
50± 5 OUR AVE	KAGE		00			150		
48±11	BE		83	SPEC		150	$K \rightarrow K\pi A$	
51± 5	Cr	IANDLEE	03	SPEC	. +	200	$K + A \rightarrow K \pi A$	
	K	(*(892) Bl	RAN	CHIN	G RAT	IOS		
$\Gamma(K^0\gamma)/\Gamma_{ ext{total}}$								Г4/Г
VALUE (units 10^{-3})	DC	CUMENT ID		TECN	CHG	COM	IMENT	
2.30 ± 0.20 OUR F	IT							
• • • We do not ι	use the fol	lowing data	for av	verages	s, fits, li	mits,	etc. ● ● ●	
$1.5\ \pm 0.7$	CA	RITHERS	75 B	CNT	R 0	8–16	5 <u>К</u> 0А	
$\Gamma(K^{\pm}\gamma)/\Gamma_{ ext{total}}$								Г ₅ /Г
VALUE (units 10^{-3})	<u>CL%</u>	DOCUMEI	NT ID		TECN	CHG	COMMENT	
0.99 ± 0.09 OUR	FIT							
 • • We do not ι 	use the fol	lowing data	for av	verages	s, fits, li	mits,	etc. • • •	
<1.6	95	BEMPO	RAD	73	CNTR	+	10–16 <i>K</i> ⁺ A	
Γ(Κππ)/Γ((Κ	π) [±])							Γ_6/Γ_2
VALUE	<u>CL%</u>	<u>DOCUMEI</u>	NT ID		TECN	<u>CHG</u>	<u>COMMENT</u>	
<0.0007	95	JONGEJ	ANS	78	HBC		$4 K^{-} p \rightarrow p \overline{K}$	$0_{2\pi}$
 • • We do not ι 	use the fol	lowing data	for a	verages	s, fits, li	mits,	etc. • • •	
<0.002		WOJCIC	KI	64	HBC	_	1.7 $K^- p \rightarrow \overline{K}$	$^{70} \pi^{-} p$

K*(892) REFERENCES

ABELE	99D	PL B468 178	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
BARBERIS	98E	PL B436 204	D. Barberis <i>et al.</i>	(Omega Expt.)
BIRD	89	SLAC-332	P.F. Bird	(SLAC)
ASTON	88	NP B296 493	D. Aston <i>et al.</i>	(SLAC, NAGO, CINC, INUS)
ATKINSON	86	ZPHY C30 521	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
CARLSMITH	86	PRL 56 18	D. Carlsmith et al.	(EFI, SACL)
BAUBILLIER	84B	ZPHY C26 37	M. Baubillier <i>et al.</i>	(BIRM, CERN, GLAS+)
NAPIER	84	PL 149B 514	A. Napier <i>et al.</i>	(TUFTS, ARIZ, FNAL, FLOR+)
BARTH	83	NP B223 296	M. Barth et al.	(BRUX, CERN, GENO, MONS+)
BERG	83	Thesis UMI 83-21652	D.M. Berg	(ROCH)
CHANDLEE	83	PRL 51 168	C. Chandlee et al.	(ROCH, FNAL, MINN)
CLELAND	82	NP B208 189	W.E. Cleland <i>et al.</i>	(DURH, GEVA, LAUS+)
DELFOSSE	81	NP B183 349	A. Delfosse et al.	(GEVA, LAUS)
TOAFF	81	PR D23 1500	S. Toaff <i>et al.</i>	(ANL, KANS)
AJINENKO	80	ZPHY C5 177	I.V. Ajinenko <i>et al.</i>	(SERP, BRÙX, MONS+)
EVANGELISTA	80	NP B165 383	C. Evangelista <i>et al.</i>	(BARI, BONN, CERN+)
AGUILAR	78B	NP B141 101	M. Aguilar-Benitez et al.	(MADR, TATA+)
BALAND	78	NP B140 220	J.F. Baland <i>et al.</i>	(MONS, BELG, CERN+)
COOPER	78	NP B136 365	A.M. Cooper <i>et al.</i>	(TATA, CERN, CDEF+)
JONGEJANS	78	NP B139 383	B. Jongejans <i>et al.</i>	(ZEEM, CERN, NIJM+)
WICKLUND	78	PR D17 1197	A.B. Wicklund et al.	(ANL)
BOWLER	77	NP B126 31	M.G. Bowler <i>et al.</i>	(OXF)
CARITHERS	75B	PRL 35 349	W.C.J. Carithers et al.	(ROCH, MCGI)
MCCUBBIN	75	NP B86 13	N.A. McCubbin, L. Lyon	s (OXF)

HTTP://PDG.LBL.GOV Page 7

Created: 6/24/2005 17:08

	75	ND DOG 1	K Dalar at al			
	75	NP D90 1	K. Paler <i>et al.</i>	(RHEL, SACL, EPUL)		
FUX	74	NP B80 403	G.C. FOX, IVI.L. Griss	(CII)		
MATISON	74	PR D9 1872	M.J. Matison <i>et al.</i>	(LBL)		
BEMPORAD	73	NP B51 1	C. Bemporad et al.	(CERN, ETH, LOIC)		
CLARK	73	NP B54 432	A.G. Clark, L. Lyons, D.	Radojicic (OXF)		
LEWIS	73	NP B60 283	P.H. Lewis et al.	(LOWC, LOIC, CDEF)		
LINGLIN	73	NP B55 408	D. Linglin	(CERN)		
BUCHNER	72	NP B45 333	K. Buchner <i>et al.</i>	(MPIM, CERN, BRUX)		
AGUILAR	71B	PR D4 2583	M. Aguilar-Benitez, R.L.	Eisner, J.B. Kinson (BNL)		
HABER	70	NP B17 289	B. Haber <i>et al.</i>	(REHO, SACL, BGNA, EPOL)		
CRENNELL	69D	PRL 22 487	D.J. Crennell et al.	(BNL)		
DAVIS	69	PRL 23 1071	P.J. Davis <i>et al.</i>	(LRL)		
SCHWEING	68	PR 166 1317	F. Schweingruber <i>et al.</i>	(ANL, NWES)		
BARASH	67B	PR 156 1399	N. Barash et al.	(COLU)		
BARLOW	67	NC 50A 701	J. Barlow <i>et al.</i>	(CERN, CDEF, IRAD, LIVP)		
DAUBER	67B	PR 153 1403	P.M. Dauber <i>et al.</i>	(UCLA)		
DEBAERE	67B	NC 51A 401	W. de Baere <i>et al.</i>	(BRUX, CERN)		
WOJCICKI	64	PR 135B 484	S.G. Wojcicki	(LRL)		

– OTHER RELATED PAPERS –

BENAYOUN	99B	PR D59 114027	M. Benayoun <i>et al.</i>	
KAMAL	92	PL B284 421	A.N. Kamal, Q.P. Xu	(ALBE)
NAPIER	84	PL 149B 514	A. Napier <i>et al.</i>	(TUFTS, ARIZ, FNAL, FLOR+)
CLELAND	82	NP B208 189	W.E. Cleland et al.	(DURH, GEVA, LAUS+)
ALEXANDER	62	PRL 8 447	G. Alexander <i>et al.</i>	(LRL)
ALSTON	61	PRL 6 300	M.H. Alston et al.	(LRL)