ρ(2150)

$$I^{G}(J^{PC}) = 1^{+}(1^{--})$$

OMITTED FROM SUMMARY TABLE This entry was previously called $T_1(2190)$.

ρ(2150) MASS

$e^+e^- \rightarrow \pi^+\pi^-$, K^+K^- , 6π							
VALUE (MeV)	DOCUMENT IL)	TECN	CHG	COMMENT		
2149 \pm 17 OUR AVERAGE	Includes data from th	e data	block that	at follo	ows this one.		
2153±37	BIAGINI	91	RVUE		$e^+e^- \rightarrow$		
2110±50	² CLEGG	90	RVUE	0	$ \begin{array}{c} \pi^{+}\pi^{-}, \\ K^{+}K^{-} \\ e^{+}e^{-} \rightarrow \\ 3(\pi^{+}\pi^{-}), \\ 2(\pi^{+}\pi^{-}\pi^{0}) \end{array} $		

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ $ullet$ We do not use the following	data for averages	, fits	, limits,	etc. • • •
\sim 2191	HASAN	94	RVUE	$\overline{p}p \rightarrow \pi\pi$
\sim 1988	HASAN	94	RVUE	$\overline{p}p \rightarrow \pi\pi$
\sim 2070	¹ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
\sim 2170	³ MARTIN	80 B	RVUE	
\sim 2100	³ MARTIN	80C	RVUE	

¹See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J = 3 to be important but not significantly resonant.

S-CHANNEL $\overline{N}N$

 $\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for averages	s, fits	, limits,	etc. •	• •
2110 ± 35	⁴ ANISOVICH	02	SPEC		$\begin{array}{ccc} 0.61.9 \ p \overline{p} \rightarrow \\ & \omega \pi^0, \ \omega \eta \pi^0, \end{array}$
\sim 2190	⁵ CUTTS	78 B	CNTR		$ \begin{array}{c} \pi^{+}\pi^{-} \\ 0.97-3 \overline{p}p \rightarrow \\ \overline{N}N \end{array} $
2155 ± 15	^{5,6} COUPLAND	77	CNTR	0	$0.7-2.4 \ \overline{p}p \rightarrow \overline{p}p$
$2193\pm~2$	^{5,7} ALSPECTOR	73	CNTR		p S channel
2190 ± 10	⁸ ABRAMS	70	CNTR		S channel p N
0					

$\pi^- p \rightarrow \omega \pi^0 n$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
The data in this block is included in	the average printed f	or a prev	vious datablock.

2155 \pm 21 OUR AVERAGE

2140 ± 30	ALDE	95 GAM2	$38 \pi^- p \rightarrow \omega \pi^0 n$
$2170\!\pm\!30$	ALDE	92c GAM4	$100 \ \pi^- p \rightarrow \omega \pi^0 n$

HTTP://PDG.LBL.GOV

² Includes ATKINSON 85. ³ $I(J^P) = 1(1^-)$ from simultaneous analysis of $p\overline{p} \rightarrow \pi^- \pi^+$ and $\pi^0 \pi^0$. ⁴ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02. 5 Isospins 0 and 1 not separated. ⁶ From a fit to the total elastic cross section. ⁷ Referred to as T or T region by ALSPECTOR 73.

⁸Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results of ABRAMS 70, no narrow structure.

ρ(2150) WIDTH

$e^+e^- \rightarrow \pi^+\pi^-, K^+K^-, 6\pi$						
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
363 ± 50 OUR AVERAGE	Includes data from the	datal	block that	at follo	ows this one.	
389± 79 410±100	BIAGINI ¹⁰ CLEGG	91 90	RVUE RVUE	0	$e^{+}e^{-} \rightarrow \\\pi^{+}\pi^{-}, \\e^{+}e^{-} \rightarrow \\3(\pi^{+}\pi^{-}),$	
					$2(\pi^{+}\pi^{-}\pi^{0})$	

 $\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT ID	TECN COMMENT
\bullet \bullet We do not use the follow	ing data for average	es, fits, limits, etc. • • •
~ 296	HASAN	94 RVUE $\overline{p}p \rightarrow \pi\pi$
~ 244	HASAN	94 RVUE $\overline{p}p \rightarrow \pi\pi$
\sim 40	⁹ OAKDEN	94 RVUE 0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
~ 250	¹¹ MARTIN	80B RVUE
~ 200	11 MARTIN	80C RVUE

⁹See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

S-CHANNEL NN

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
$\bullet \bullet \bullet$ We do not use the fo	ollowing data for averages	, fits	, limits, e	tc. •	••
230±50	¹² ANISOVICH	02	SPEC		$0.6-1.9 \ p\overline{p} \rightarrow \\ \omega \pi^{0}, \ \omega \eta \pi^{0}, \\ \pi^{+} \pi^{-}$
$135 \pm 75 \\ 98 \pm 8 \\ \sim 85$	^{13,14} COUPLAND ¹⁴ ALSPECTOR ¹⁵ ABRAMS	77 73 70	CNTR (CNTR CNTR	C	$\begin{array}{l} 0.7 - 2.4 \ \overline{p}p \rightarrow \overline{p}p \\ \overline{p}p \ S \ \text{channel} \\ S \ \text{channel} \ \overline{p}N \end{array}$

$\pi^- p \rightarrow \omega \pi^0 n$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
The data in this block is included in	the average printed	for a pre	vious datablock.

95 GAM2 38 $\pi^- p \rightarrow \omega \pi^0 n$ ALDE 320 ± 70 • • • We do not use the following data for averages, fits, limits, etc. • • • 92C GAM4 100 $\pi^- p \rightarrow \omega \pi^0 n$ ALDE ~ 300

HTTP://PDG.LBL.GOV Page 2

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov)

¹⁰ Includes ATKINSON 85. ¹¹ $I(J^P) = 1(1^-)$ from simultaneous analysis of $p\overline{p} \rightarrow \pi^- \pi^+$ and $\pi^0 \pi^0$. ¹² From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02. ¹³ From a fit to the total elastic cross section. ¹⁴ Isospins 0 and 1 not separated.

NP B96 109

PL 29B 451

PRL 18 1209

- ¹⁵Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results of ABRAMS 70, no narrow structure.

$\rho(2150)$ REFERENCES

ANISOVICH	02	PL B542 8	A.V. Anisovich et al.	
ANISOVICH	01D	PL B508 6	A.V. Anisovich et al.	
ANISOVICH	01E	PL B513 281	A.V. Anisovich et al.	
ANISOVICH	00 J	PL B491 47	A.V. Anisovich et al.	
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
ALDE	95	ZPHY C66 379	D.M. Alde <i>et al.</i>	(GAMS Collab.) JP
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN	94	NP A574 731	M.N. Oakden, M.R. Penningt	con (DURH)
ALDE	92C	ZPHY C54 553	D.M. Alde <i>et al.</i> (BELG, SERP, KEK, LANL+)
BIAGINI	91	NC 104A 363	M.E. Biagini <i>et al.</i>	(FRAS, PRAG)
CLEGG	90	ZPHY C45 677	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ATKINSON	85	ZPHY C29 333	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Penningto	n (DURH) JP
CUTTS	78B	PR D17 16	D. Cutts <i>et al.</i>	(STON, WISC)
COUPLAND	77	PL 71B 460	M. Coupland <i>et al.</i>	(LOQM, RHEL)
PEASLEE	75	PL 57B 189	D.C. Peaslee <i>et al.</i>	(CANB, BARI, BROW+)
ALSPECTOR	73	PRL 30 511	J. Alspector <i>et al.</i>	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	R.J. Abrams <i>et al.</i>	(BNL)
COOPER	68	PRL 20 1059	W.A. Cooper et al.	(ANL)
		OTHER	RELATED PAPERS	
AMELIN	00	NP A668 83	D. Amelin <i>et al.</i>	(VES Collab.)

E. Eisenhandler et al.

C. Bricman et al.

R.J. Abrams et al.

EISENHAND... 75

69

67C

BRICMAN

ABRAMS

(LOQM, LIVP, DARE+) (CERN, CAEN, SACL)

(BNL)