b' (4th Generation) Quark, Searches for

107755 LIMITS for b (4 Generation) Quark of fladron in pp consisting							
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT			
>190	95	¹ ACOSTA	03 CDF	quasi-stable <i>b</i> ′			
>199	95	² AFFOLDER	00 CDF	NC: $b' \rightarrow bZ$			
>128	95	³ ABACHI	95F D0	$\ell\ell+{\sf jets},\ell+{\sf jets}$			
• • • We do no	ot use th	ne following data for	averages, fits	s, limits, etc. ● ● ●			
>148	95	⁴ ABE	98N CDF	NC: $b' \rightarrow bZ$ +decay vertex			
> 96	95	⁵ ABACHI	97d D0	NC: $b' \rightarrow b\gamma$			
> 75	95	⁶ MUKHOPAD	.93 RVUE	NC: $b' \rightarrow b\ell\ell$			
> 85	95	⁷ ABE	92 CDF	CC: <i>ℓℓ</i>			
> 72	95	⁸ ABE	90b CDF	CC: $e + \mu$			
> 54	95	⁹ AKESSON	90 UA2	CC: $e + jets + missing E_T$			
> 43	95	¹⁰ ALBAJAR	90b UA1	CC: μ + jets			
> 34	95	¹¹ ALBAJAR	88 UA1	CC: $e \text{ or } \mu + \text{jets}$			

MASS I IMITS for H (Ath Generation) Quark or Hadron in pp Collisions

 1 ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8$ TeV $p\overline{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.

²AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZevents where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes $B(b' \rightarrow bZ) = 100\%$. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \rightarrow \overline{b}') \times B^2(b' \rightarrow bZ)$ is also given (see their Fig. 2).

³ABACHI 95F bound on the top-quark also applies to b' and t' quarks that decay predominantly into W. See FROGGATT 97.

 4 ABE 98N looked for $Z
ightarrow e^+e^-$ decays with displaced vertices. Quoted limit assumes $B(b' \rightarrow bZ)=1$ and $c\tau_{\mu}=1$ cm. The limit is lower than m_Z+m_h (~ 96 GeV) if $c\tau$ > 22 cm or $c\tau$ < 0.009 cm. See their Fig. 4.

 5 ABACHI 97D searched for b^\prime that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\overline{b}' \rightarrow \gamma + 3$ jets) and B($b'\overline{b}' \rightarrow 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_b$.

 6 MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $B(b' \rightarrow$ $b\ell^+\ell^-$)=1%. For an exotic quark decaying only via virtual Z [B($b\ell^+\ell^-$) = 3%], the limit is 85 GeV.

⁷ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b' quarks, as discussed in ABE 90B. ⁸ ABE 90B exclude the region 28–72 GeV.

 9 AKESSON 90 searched for events having an electron with p_{T} > 12 GeV, missing momentum > 15 GeV, and a jet with E_T > 10 GeV, $|\eta| < 2.2$, and excluded m_{μ} between 30 and 69 GeV.

 10 For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.

¹¹ ALBAJAR 88 study events at $E_{cm} = 546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for

HTTP://PDG.LBL.GOV

the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b' \overline{b}'$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_c^3)$ cross section of ALTARELLI 88.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for. CL% VALUE (GeV) DOCUMENT ID TECN COMMENT ¹² DECAMP >46.0 95 90F ALEP any decay • • • We do not use the following data for averages, fits, limits, etc. • • • ¹³ ADRIANI 93G L3 Quarkonium >44.7 95 ADRIANI 93M L3 $\Gamma(Z)$ >45 95 ABREU 91F DLPH $\Gamma(Z)$ none 19.4-28.2 95 ABE 90D VNS Any decay; event shape ABREU 90D DLPH B(CC) = 1; event >45.0 95 shape ¹⁴ ABREU $b' \rightarrow c H^-, H^- \rightarrow$ 95 90D DLPH >44.5 $\overline{c}s, \tau^-\nu$ ¹⁵ ABREU >40.5 95 90D DLPH $\Gamma(Z \rightarrow hadrons)$ >28.3 95 ADACHI 90 TOPZ B(FCNC)=100%; isol. γ or 4 jets ¹⁶ AKRAWY >41.4 95 90B OPAL Any decay; acoplanarity ¹⁶ AKRAWY 90B OPAL B(CC) = 1; acopla->45.2 95 narity ¹⁷ AKRAWY 90J OPAL $b' \rightarrow \gamma + any$ >46 95 ¹⁸ ABE 95 89E VNS $B(CC) = 1; \mu, e$ >27.5 ¹⁹ ABE $\mathsf{B}(b' \rightarrow b\gamma) > 10\%;$ none 11.4-27.3 95 89G VNS isolated γ ²⁰ ABRAMS 89C MRK2 B(CC) = 100%; isol. >44.7 95 track ²⁰ ABRAMS 89C MRK2 B(bg) = 100%; event >42.7 95 shape ²⁰ ABRAMS 89C MRK2 Any decay; event shape >42.0 95 ^{21,22} ADACHI 95 >28.4 89C TOPZ $B(CC) = 1; \mu$ ²³ ENO 95 89 AMY $B(CC) \gtrsim 90\%; \mu, e$ >28.8 ^{23,24} ENO >27.2 95 89 AMY any decay; event shape ²³ ENO 95 89 $\mathsf{B}(b' \rightarrow bg) \gtrsim 85\%;$ >29.0 AMY event shape ²⁵ IGARASHI >24.4 95 AMY 88 μ, e ²⁶ SAGAWA >23.8 95 88 AMY event shape ²⁷ ADEVA 86 MRKJ >22.7 95 μ ²⁸ ALTHOFF 84C TASS >21 R, event shape ²⁹ ALTHOFF 841 TASS >19 Aplanarity

¹² DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \rightarrow bg$ for $B(b' \rightarrow bg) > 65\% b' \rightarrow b\gamma$ for $B(b' \rightarrow b\gamma) > 5\%$ are excluded. Charged Higgs decay were not discussed.

¹³ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium-Z mixing parameter $\delta m^2 < (10-30) \text{ GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using

HTTP://PDG.LBL.GOV

Richardson potential, a 1S $(b'\overline{b'})$ state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

- ¹⁴ ABREU 90D assumed $m_{H^-} < m_{b'} 3$ GeV.
- ¹⁵ Superseded by ABREU 91F.
- 16 AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm}=91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between $(m_{H^+}\ +\ 1.5\ {\rm GeV})$ and 45.5 GeV.
- ¹⁷ AKRAWY 90J search for isolated photons in hadronic Z decay and derive B($Z \rightarrow b' \overline{b}'$)·B($b' \rightarrow \gamma X$)/B($Z \rightarrow$ hadrons) < 2.2 × 10⁻³. Mass limit assumes B($b' \rightarrow \gamma X$) > 10%.
- ¹⁸ABE 89E search at $E_{\rm cm} = 56-57$ GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.
- $^{19}\,\mathrm{ABE}$ 89G search was at E_cm = 55–60.8 GeV at TRISTAN.
- ²⁰ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for for Higgs decay ($b' \rightarrow cH^-$, $H^- \rightarrow \overline{c}s$) is 45.2 GeV.
- 21 ADACHI 89C search was at $E_{\rm cm}=56.5\text{--}60.8~{\rm GeV}$ at TRISTAN using multi-hadron events accompanying muons.
- 22 ADACHI 89C also gives limits for any mixture of $\it CC$ and $\it bg$ decays.
- 23 ENO 89 search at $E_{\rm cm} = 50-60.8$ at TRISTAN.
- 24 ENO 89 considers arbitrary mixture of the charged current, bg, and b γ decays.
- ²⁵ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b'} > 24.4$ GeV.
- 26 SAGAWA 88 set limit $\sigma(top) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\rm CM} = 52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.
- ²⁷ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm} = 45.4$ GeV.
- ²⁸ ALTHOFF 84C narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m > 21 GeV, CL = 95%.
- ²⁹ ALTHOFF 841 exclude heavy quark pair production for 7 < m < 19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

ACOSTA	03	PRL 90 131801	D. Acosta <i>et al.</i>	(CDF	Collab.)
AFFOLDER	00	PRL 84 835	A. Affolder <i>et al.</i>	(CDF	Collab.)
ABE	98N	PR D58 051102	F. Abe <i>et al.</i>	(CDF	Collab.)
ABACHI	97D	PRL 78 3818	S. Abachi <i>et al.</i>	(D0	Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B. Nielsen	. (GLAS+)
ABACHI	95F	PR D52 4877	S. Abachi <i>et al.</i>	(D0	Collab.)
ADRIANI	93G	PL B313 326	O. Adriani <i>et al.</i>	(L3	Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani <i>et al.</i>	(L3	Collab.)
MUKHOPAD	93	PR D48 2105	B. Mukhopadhyaya, D.P. Roy		(TATA)
ABE	92	PRL 68 447	F. Abe <i>et al.</i>	(CDF	Collab.)
Also	92G	PR D45 3921	F. Abe <i>et al.</i>	(CDF	Collab.)
ABE	92G	PR D45 3921	F. Abe <i>et al.</i>	(CDF	Collab.)
ABREU	91F	NP B367 511	P. Abreu <i>et al.</i> (1	DELPHI	Collab.)
ABE	90B	PRL 64 147	F. Abe <i>et al.</i>	(CDF	Collab.)
ABE	90D	PL B234 382	K. Abe <i>et al.</i> (VENUS	Collab.)
ABREU	90D	PL B242 536	P. Abreu <i>et al.</i> (1	DELPHI	Collab.)
ADACHI	90	PL B234 197	I. Adachi <i>et al.</i>	TOPAZ	Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson <i>et al.</i>	(UA2	Collab.)

HTTP://PDG.LBL.GOV

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov)

	000	DI 2026 264	MZ Akrowe at al	(OPAL Callab)
	900	FL B230 304	IVI.Z. AKIAWY EL AL	
AKRAWY	90J	PL B240 285	IVI.Z. Akrawy et al.	(OPAL Collab.)
ALBAJAR	90B	ZPHY C48 1	C. Albajar <i>et al.</i>	(UA1 Collab.)
DECAMP	90F	PL B236 511	D. Decamp <i>et al.</i>	(ALEPH Collab.)
ABE	89E	PR D39 3524	K. Abe <i>et al.</i>	(VENUS Collab.)
ABE	89G	PRL 63 1776	K. Abe <i>et al.</i>	(VENUS Collab.)
ABRAMS	89C	PRL 63 2447	G.S. Abrams <i>et al.</i>	(Mark II Collab.)
ADACHI	89C	PL B229 427	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
ENO	89	PRL 63 1910	S. Eno <i>et al.</i>	(AMY Collab.)
ALBAJAR	88	ZPHY C37 505	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALTARELLI	88	NP B308 724	G. Altarelli <i>et al.</i>	(CERN, ROMA, ETH)
IGARASHI	88	PRL 60 2359	S. Igarashi <i>et al.</i>	(AMY Collab.)
SAGAWA	88	PRL 60 93	H. Sagawa <i>et al.</i>	(AMY Collab.)
ADEVA	86	PR D34 681	B. Adeva <i>et al.</i>	(Ňark-J Collab.)
ALTHOFF	84C	PL 138B 441	M. Althoff <i>et al.</i>	(TASSO Collab.)
ALTHOFF	84I	ZPHY C22 307	M. Althoff <i>et al.</i>	(TASSO Collab.)