LIGHT QUARKS (u, d, s)

OMITTED FROM SUMMARY TABLE

u-QUARK MASS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\mathrm{MS}}$. The ratios m_{u} / m_{d} and m_{s} / m_{d} are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

$\frac{\text { VALUE }(\mathrm{MeV})}{\mathbf{1 . 5} \text { to } \mathbf{4 . 0} \text { OUR EVALUATION }}$

- - We do not use the following data for averages, fits, limits, etc. - • -

1.7 ± 0.3	1	AUBIN	04A LATT
$\overline{\mathrm{MS}}$ scheme			
2.9 ± 0.6	2 JAMIN	02 THEO	$\overline{\mathrm{MS}}$ scheme
2.3 ± 0.4	3 NARISON	99	THEO
MS			
scheme			
3.9 ± 1.1	4 JAMIN	95	THEO
MS scheme			
3.0 ± 0.7	5 NARISON	$95 C$	THEO
$\overline{\mathrm{MS}}$ scheme			

${ }^{1}$ AUBIN 04A employ a partially quenched lattice calculation of the pseudoscalar meson masses.
2 JAMIN 02 first calculates the strange quark mass from QCD sum rules using the scalar channel, and then combines with the quark mass ratios obtained from chiral perturbation theory to obtain m_{u}.
${ }^{3}$ NARISON 99 uses sum rules to order α_{s}^{3} for ϕ meson decays to get m_{s}, and finds m_{u} by combining with sum rule estimates of $m_{u}+m_{d}$ and Dashen's formula.
4 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{u}(1 \mathrm{GeV})$ $=5.3 \pm 1.5$ to $\mu=2 \mathrm{GeV}$.
${ }^{5}$ For NARISON 95C, we have rescaled $m_{u}(1 \mathrm{GeV})=4 \pm 1$ to $\mu=2 \mathrm{GeV}$.

d-QUARK MASS

See the comment for the u quark above.
We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35 . The values of "Our Evaluation" were determined in part via Figures 1 and 2.
VALUE (MeV) DOCUMENT ID TECN COMMENT

4 to 8 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - • -

3.9 ± 0.5	6 AUBIN	04A LATT	$\overline{\mathrm{MS}}$ scheme
5.2 ± 0.9	7 JAMIN	02 THEO	$\overline{\mathrm{MS}}$ scheme
6.4 ± 1.1	8 NARISON	99 THEO	$\overline{\mathrm{MS}}$ scheme
7.0 ± 1.1	9 JAMIN	95 THEO	$\overline{\mathrm{MS}}$ scheme
7.4 ± 0.7	10 NARISON	95C THEO	$\overline{\mathrm{MS}}$ scheme

${ }^{6}$ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.
7 JAMIN 02 first calculates the strange quark mass from QCD sum rules using the scalar channel, and then combines with the quark mass ratios obtained from chiral perturbation theory to obtain m_{d}.
${ }^{8}$ NARISON 99 uses sum rules to order α_{s}^{3} for ϕ meson decays to get m_{s}, and finds m_{d} by combining with sum rule estimates of $m_{u}+m_{d}$ and Dashen's formula.
9 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{d}(1 \mathrm{GeV})$ $=9.4 \pm 1.5$ to $\mu=2 \mathrm{GeV}$.
${ }^{10}$ For NARISON 95C, we have rescaled $m_{d}(1 \mathrm{GeV})=10 \pm 1$ to $\mu=2 \mathrm{GeV}$.

$$
\bar{m}=\left(m_{u}+m_{d}\right) / 2
$$

See the comments for the u quark above.
We have normalized the $\overline{M S}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

VALUE (MeV) DOCUMENT ID				TECN	COMMENT
3.0 to 5.5 OUR EVALUATION					
- - We do not use the following data for averages, fits, limits, etc. - -					
2.8	± 0.3	11 AUBIN	04	LATT	$\overline{\mathrm{MS}}$ scheme
4.29	$\pm 0.14 \pm 0.65$	12 AOKI	03	LATT	$\overline{\mathrm{MS}}$ scheme
3.223	+0.046 -0.069	13 AOKI	03B	LATT	$\overline{\mathrm{MS}}$ scheme
4.4	$\pm 0.1 \pm 0.4$	14 BECIREVIC	03	LATT	$\overline{\mathrm{MS}}$ scheme
4.1	$\pm 0.3 \pm 1.0$	15 CHIU	03	LATT	$\overline{\mathrm{MS}}$ scheme
3.45	$\begin{array}{r} +0.14 \\ -0.20 \end{array}$	16 ALIKHAN	02	LATT	$\overline{\mathrm{MS}}$ scheme
5.3	± 0.3	17 CHIU	02	LATT	$\overline{\mathrm{MS}}$ scheme
3.9	± 0.6	18 MALTMAN	02	THEO	$\overline{\mathrm{MS}}$ scheme
3.9	± 0.6	19 MALTMAN	01	THEO	$\overline{\mathrm{MS}}$ scheme
4.57	± 0.18	20 AOKI	00	LATT	$\overline{\mathrm{MS}}$ scheme
4.4	± 2	21 GOECKELER	00	LATT	$\overline{\mathrm{MS}}$ scheme
4.23	± 0.29	22 AOKI	99	LATT	$\overline{\mathrm{MS}}$ scheme
≥ 2.1		23 STEELE	99	THEO	$\overline{\mathrm{MS}}$ scheme
4.5	± 0.4	24 BECIREVIC	98	LATT	$\overline{\mathrm{MS}}$ scheme
4.6	± 1.2	25 DOSCH	98	THEO	$\overline{\mathrm{MS}}$ scheme
4.7	± 0.9	26 PRADES	98	THEO	$\overline{\mathrm{MS}}$ scheme
2.7	± 0.2	27 EICKER	97	LATT	$\overline{\mathrm{MS}}$ scheme
3.6	± 0.6	28 GOUGH	97	LATT	$\overline{\mathrm{MS}}$ scheme
3.4	$\pm 0.4 \pm 0.3$	29 GUPTA	97	LATT	$\overline{\mathrm{MS}}$ scheme
>3.8		30 LELLOUCH	97	THEO	$\overline{\mathrm{MS}}$ scheme
4.5	± 1.0	31 BIJNENS	95	THEO	$\overline{\mathrm{MS}}$ scheme

${ }^{11}$ AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
${ }^{12}$ AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory.
${ }^{13}$ AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
${ }^{14}$ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization.
${ }^{15}$ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
${ }^{16}$ ALIKHAN 02 uses lattice simulation of the meson and baryon masses with two dynamical flavors and degenerate light quarks.
${ }^{17}$ CHIU 02 extracts the average light quark mass from quenched lattice simulations using quenched chiral perturbation theory.
18 MALTMAN 02 uses finite energy sum rules in the $u d$ and $u s$ pseudoscalar channels. Other mass values are also obtained by similar methods.
19 MALTMAN 01 uses Borel transformed and finite energy sum rules.
${ }^{20}$ AOKI 00 obtain the light quark masses from a quenched lattice simulation of the meson and baryon spectrum with the Wilson quark action.
${ }^{21}$ GOECKELER 00 obtained from a quenched lattice computation of the pseudoscalar meson masses using $\mathcal{O}(a)$ improved Wilson fermions and nonperturbative renormalization.
${ }^{22}$ AOKI 99 obtain the light quark masses from a quenched lattice simulation of the meson spectrum with the staggered quark action employing the regularization independent scheme.
${ }^{23}$ STEELE 99 obtain a bound on the light quark masses by applying the Holder inequality to a sum rule. We have converted their bound of $\left(m_{u}+m_{d}\right) / 2 \geq 3 \mathrm{MeV}$ at $\mu=1 \mathrm{GeV}$ to $\mu=2 \mathrm{GeV}$.
${ }^{24}$ BECIREVIC 98 compute the quark mass using the Alpha action in the quenched approximation. The conversion from the regularization independent scheme to the $\overline{\mathrm{MS}}$ scheme is at NNLO.
${ }^{25}$ DOSCH 98 use sum rule determinations of the quark condensate and chiral perturbation theory to obtain $9.4 \leq\left(m_{u}+m_{d}\right)(1 \mathrm{GeV}) \leq 15.7 \mathrm{MeV}$. We have converted to result to $\mu=2 \mathrm{GeV}$.
${ }^{26}$ PRADES 98 uses finite energy sum rules for the axial current correlator.
${ }^{27}$ EICKER 97 use lattice gauge computations with two dynamical light flavors.
${ }^{28}$ GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives $2.1<\bar{m}<3.5 \mathrm{MeV}$ at $\mu=2 \mathrm{GeV}$.
29 GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamic flavors at $\mu=2 \mathrm{GeV}$ is $2.7 \pm 0.3 \pm 0.3 \mathrm{MeV}$.
${ }^{30}$ LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions.
${ }^{31}$ BIJNENS 95 determines $m_{u}+m_{d}(1 \mathrm{GeV})=12 \pm 2.5 \mathrm{MeV}$ using finite energy sum rules. We have rescaled this to 2 GeV .

s-QUARK MASS

See the comment for the u quark above.
We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35 .

HTTP://PDG.LBL.GOV
Page 3
Created: 6/24/2005 17:12

76 ± 8	${ }^{32}$ AUBIN	04	LATT	$\overline{\mathrm{MS}}$ scheme
$116 \pm 6 \pm 0.65$	${ }^{33}$ AOKI	03	LATT	$\overline{\mathrm{MS}}$ scheme
$84.5{ }_{-1}^{+12}$	34 AOKI	03B	LATT	$\overline{\mathrm{MS}}$ scheme
$106 \pm 2 \pm 8$	35 BECIREVIC	03	LATT	$\overline{\mathrm{MS}}$ scheme
$92 \pm 9 \pm 16$	${ }^{36}$ CHIU	03	LATT	$\overline{\mathrm{MS}}$ scheme
117 ± 17	37 GAMIZ	03	THEO	$\overline{\mathrm{MS}}$ scheme
103 ± 17	38 GAMIZ	03	THEO	$\overline{\mathrm{MS}}$ scheme
88 ± 3	39 ALIKHAN	02	LATT	$\overline{\mathrm{MS}}$ scheme
115 ± 8	40 CHIU	02	LATT	$\overline{\mathrm{MS}}$ scheme
99 ± 16	41 JAMIN	02	THEO	$\overline{\mathrm{MS}}$ scheme
100 ± 12	42 MALTMAN	02	THEO	$\overline{\mathrm{MS}}$ scheme
$\begin{gathered} +20 \\ -25 \end{gathered}$	43 CHEN	01B	THEO	$\overline{\mathrm{MS}}$ scheme
125 ± 27	44 KOERNER	01	THEO	$\overline{\mathrm{MS}}$ scheme
130 ± 15	${ }^{45}$ AOKI	00	LATT	$\overline{\mathrm{MS}}$ scheme
105 ± 4	46 GOECKELER	00	LATT	$\overline{\mathrm{MS}}$ scheme
118 ± 14	47 AOKI	99	LATT	$\overline{\mathrm{MS}}$ scheme
$\begin{gathered} \left.170 \begin{array}{c} +44 \\ -55 \end{array}\right] \end{gathered}$	48 BARATE	99R	ALEP	$\overline{\mathrm{MS}}$ scheme
115 ± 8	${ }^{49}$ MALTMAN	99	THEO	$\overline{\mathrm{MS}}$ scheme
129 ± 24	50 NARISON	99	THEO	$\overline{\mathrm{MS}}$ scheme
114 ± 23	${ }_{51} \mathrm{PICH}$	99	THEO	$\overline{\mathrm{MS}}$ scheme
111 ± 12	52 BECIREVIC	98	LATT	$\overline{\mathrm{MS}}$ scheme
148 ± 48	53 CHETYRKIN	98	THEO	$\overline{\mathrm{MS}}$ scheme
103 ± 10	54 CUCCHIERI	98	LATT	$\overline{\mathrm{MS}}$ scheme
115 ± 19	55 DOMINGUEZ	98	THEO	$\overline{\mathrm{MS}}$ scheme
152.4 ± 14.1	${ }^{56}$ CHETYRKIN	97	THEO	$\overline{\mathrm{MS}}$ scheme
≥ 89	57 COLANGELO	97	THEO	$\overline{\mathrm{MS}}$ scheme
140 ± 20	58 EICKER	97	LATT	$\overline{\mathrm{MS}}$ scheme
95 ± 16	59 GOUGH	97	LATT	$\overline{\mathrm{MS}}$ scheme
$100 \pm 21 \pm 10$	60 GUPTA	97	LATT	$\overline{\mathrm{MS}}$ scheme
>100	${ }^{61}$ LeLLOUCH	97	THEO	$\overline{\mathrm{MS}}$ scheme
140 ± 24	62 JAMIN	95	THEO	$\overline{\mathrm{MS}}$ scheme

${ }^{32}$ AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
${ }^{33}$ AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines $\mathrm{m}_{s}=113.8 \pm 2.3_{-2.9}^{+5.8}$ using K mass as input and $\mathrm{m}_{s}=142.3 \pm 5.8_{-}^{+22}$ using ϕ mass as input. We have performed a weighted average of these values.
${ }^{34}$ AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
${ }^{35}$ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization. They also quote $\bar{m} / \mathrm{m}_{s}=24.3 \pm 0.2 \pm 0.6$.
${ }^{36}$ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
${ }^{37}$ GAMIZ 03 determines m_{s} from $\operatorname{SU}(3)$ breaking in the τ hadronic width. The value of $V_{u s}$ is chosen to satisfy CKM unitarity.
${ }^{38}$ GAMIZ 03 determines m_{s} from $\operatorname{SU}(3)$ breaking in the τ hadronic width. The value of $V_{u s}$ is taken from the PDG.

39 ALIKHAN 02 uses lattice simulation of the meson and baryon masses with two dynamical flavors and degenerate light quarks. The above value uses the K-meson mass to determine m_{s}. If the ϕ meson is used, the number changes to 90_{-10}^{+}.
${ }^{40}$ CHIU 02 extracts the strange quark mass from quenched lattice simulations using quenched chiral perturbation theory.
41 JAMIN 02 calculates the strange quark mass from QCD sum rules using the scalar channel.
42 MALTMAN 02 uses finite energy sum rules in the $u d$ and $u s$ pseudoscalar channels. Other mass values are also obtained by similar methods.
43 CHEN 01B uses an analysis of the hadronic spectral function in τ decay.
44 KOERNER 01 obtain the s quark mass of $m_{s}\left(m_{\tau}\right)=130 \pm 27$ (exp) ± 9 (thy) MeV from an analysis of Cabibbo suppressed τ decays. We have converted this to $\mu=2 \mathrm{GeV}$.
45 AOKI 00 obtain the light quark masses from a quenched lattice simulation of the meson and baryon spectrum with the Wilson quark action. We have averaged their results of $m_{s}=115.6 \pm 2.3$ and $m_{s}=143.7 \pm 5.8$ obtained using m_{K} and m_{ϕ}, respectively, to normalize the spectrum.
46 GOECKELER 00 obtained from a quenched lattice computation of the pseudoscalar meson masses using $\mathcal{O}(a)$ improved Wilson fermions and nonperturbative renormalization.
47 AOKI 99 obtain the light quark masses from a quenched lattice simulation of the meson spectrum with the Staggered quark action employing the regularization independent scheme. We have averaged their results of $m_{s}=106.0 \pm 7.1$ and $m_{s}=129 \pm 12$ obtained using m_{K} and m_{ϕ}, respectively, to normalize the spectrum.
48 BARATE 99R obtain the strange quark mass from an analysis of the observed mass spectra in τ decay. We have converted their value of $m_{s}\left(m_{\tau}\right)=176_{-57}^{+46} \mathrm{MeV}$ to $\mu=2 \mathrm{GeV}$.
49 MALTMAN 99 determines the strange quark mass using finite energy sum rules.
50 NARISON 99 uses sum rules to order α_{s}^{3} for ϕ meson decays.
51 PICH 99 obtain the s-quark mass from an analysis of the moments of the invariant mass distribution in τ decays.
52 BECIREVIC 98 compute the quark mass using the Alpha action in the quenched approximation. The conversion from the regularization independent scheme to the $\overline{\mathrm{MS}}$ scheme is at NNLO.
53 CHETYRKIN 98 uses spectral moments of hadronic τ decays to determine $m_{s}(1 \mathrm{GeV})=200 \pm 70 \mathrm{MeV}$. We have rescaled the result to $\mu=2 \mathrm{GeV}$.
54 CUCCHIERI 98 obtains the quark mass using a quenched lattice computation of the hadronic spectrum.
55 DOMINGUEZ 98 uses hadronic spectral function sum rules (to four loops, and including dimension six operators) to determine $m_{s}(1 \mathrm{GeV})<155 \pm 25 \mathrm{MeV}$. We have rescaled the result to $\mu=2 \mathrm{GeV}$.
${ }^{56}$ CHETYRKIN 97 obtains $205.5 \pm 19.1 \mathrm{MeV}$ at $\mu=1 \mathrm{GeV}$ from QCD sum rules including fourth-order QCD corrections. We have rescaled the result to 2 GeV .
57 COLANGELO 97 is QCD sum rule computation. We have rescaled $m_{s}(1 \mathrm{GeV})>120$ to $\mu=2 \mathrm{GeV}$.
58 EICKER 97 use lattice gauge computations with two dynamical light flavors.
59 GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting for quenching gives $54<m_{s}<92 \mathrm{MeV}$ at $\mu=2 \mathrm{GeV}$.
60 GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The value for two light dynamical flavors at $\mu=2 \mathrm{GeV}$ is $68 \pm 12 \pm 7 \mathrm{MeV}$.
61 LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions.
62 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled $m_{s}(1 \mathrm{GeV})$ $=189 \pm 32$ to $\mu=2 \mathrm{GeV}$.

LIGHT QUARK MASS RATIOS

u / d MASS RATIO

VALUE DOCUMENT ID TECN COMMENT

0.3 to 0.7 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. - - -

0.43 ± 0.08	63 AUBIN	04A LATT	$\overline{\mathrm{MS}}$ scheme
0.410 ± 0.036	64 NELSON	03 LATT	$\overline{\mathrm{MS}}$ scheme
0.44	65 GAO	97 THEO	$\overline{\mathrm{MS}}$ scheme
0.553 ± 0.043	66 LEUTWYLER	96 THEO	Compilation
<0.3	67 CHOI	92 THEO	
0.26	68 DONOGHUE	92 THEO	
0.30 ± 0.07	69 DONOGHUE	92B THEO	
0.66	70 GERARD	90 THEO	
0.4 to 0.65	${ }^{71}$ LEUTWYLER	90B THEO	
0.05 to 0.78	72 MALTMAN	90 THEO	

63 AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.
64 NELSON 03 computes coefficients in the order p^{4} chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio m_{u} / m_{d} is obtained by combining this with the chiral perturbation theory computation of the meson masses to order p^{4}.
65 GAO 97 uses electromagnetic mass splittings of light mesons.
66 LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3 \pi$ and $\psi^{\prime} \rightarrow J / \psi(\pi, \eta)$ decay rates, and the electromagnetic mass differences of the π and K.
67 CHOI 92 result obtained from the decays $\psi(2 S) \rightarrow J / \psi(1 S) \pi$ and $\psi(2 S) \rightarrow J / \psi(1 S) \eta$, and a dilute instanton gas estimate of some unknown matrix elements.
68 DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \rightarrow 3 \pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi)(2 S) \rightarrow$ $J / \psi(1 S) \pi) /(\psi(2 S) \rightarrow J / \psi(1 S) \eta)$.
69 DONOGHUE 92B computes quark mass ratios using $(\psi(2 S) \rightarrow J / \psi(1 S) \pi) /(\psi(2 S) \rightarrow$ $J / \psi(1 S) \eta)$, and an estimate of L_{14} using Weinberg sum rules.
70 GERARD 90 uses large N and $\eta-\eta^{\prime}$ mixing.
71 LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_{7}.
72 MALTMAN 90 uses second-order chiral perturbation theory including nonanalytic terms for the meson masses. Uses a criterion of "maximum reasonableness" that certain coefficients which are expected to be of order one are ≤ 3.

s / d MASS RATIO

$\frac{V A L U E}{17 \text { to } 22 \text { OUR EVALUATION }}$ TECN COMMENT
$\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$

20.0	73 GAO	97	THEO	$\overline{M S}$ scheme
18.9 ± 0.8	74 LEUTWYLER	96	THEO	Compilation
21	75 DONOGHUE	92	THEO	
18	76 GERARD	90	THEO	
18 to 23	77 LEUTWYLER	$90 B$	THEO	

${ }^{73}$ GAO 97 uses electromagnetic mass splittings of light mesons.
${ }^{74}$ LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3 \pi$ and $\psi^{\prime} \rightarrow J / \psi(\pi, \eta)$ decay rates, and the electromagnetic mass differences of the π and K.
75 DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \rightarrow 3 \pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2 S) \rightarrow$ $J / \psi(1 S) \pi) /(\psi(2 S) \rightarrow J / \psi(1 S) \eta)$.
76 GERARD 90 uses large N and $\eta-\eta^{\prime}$ mixing.
77 LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_{7}.

$\boldsymbol{m}_{\boldsymbol{s}} / \overline{\boldsymbol{m}}$ MASS RATIO

$$
\begin{aligned}
& \bar{m} \equiv\left(m_{u}+m_{d}\right) / 2 \\
& \text { VALUE DOCUMENT ID TECN }
\end{aligned}
$$

25 to 30 OUR EVALUATION

- - We do not use the following data for averages, fits, limits, etc. • • -
27.4 ± 0.4
78 AUBIN
04 LATT

78 Three flavor dynamical lattice calculation of pseudoscalar meson masses.
Q MASS RATIO

$$
Q \equiv \sqrt{\left(m_{s}^{2}-\bar{m}^{2}\right) /\left(m^{2}{ }_{d}-m_{s}^{2}\right)} ; \quad \bar{m} \equiv\left(m_{u}+m_{d}\right) / 2
$$

VALUE
DOCUMENTID TECN

- - We do not use the following data for averages, fits, limits, etc. - - -
22.8 ± 0.4
79 MARTEMYAN. 05
THEO
22.7 ± 0.8
80 ANISOVICH 96 THEO
${ }^{79}$ MARTEMYANOV 05 determine Q from $\eta \rightarrow 3 \pi$ decay.
80 ANISOVICH 96 find Q from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS ($u, d, s)$ REFERENCES

| MARTEMYAN...05 | PR D71 017501 | B.V. Martemyanov, V.S. Sopov
 (HPQCD, MILC, UKQCD Collabs.)
 AUBIN | 04 | PR D70 $031504 R$ |
| :--- | :--- | :--- | :--- | :--- |\quad| C. Aubin et al. |
| :--- | (MILC Collab.)

BECIREVIC	98	PL B444 401	D. Becirevic et al.
CHETYRKIN	98	NP B533 473	K.G. Chetyrkin, J.H. Kuehn, A.A. Pivovarov
CUCCHIERI	98	PL B422 212	A. Chucchieri et al.
DOMINGUEZ	98	PL B425 193	C.A. Dominguez, L. Pirovano, K. Schilcher
DOSCH	98	PL B417 173	H.G. Dosch, S. Narison
PRADES	98	NPBPS 64253	J. Prades
CHETYRKIN	97	PL B404 337	K.G. Chetyrkin, D. Pirjol, K. Schilcher
COLANGELO	97	PL B408 340	P. Colangelo et al.
EICKER	97	PL B407 290	N. Eicker et al. (SESAM Collab.)
GAO	97	PR D56 4115	D.-N. Gao, B.A. Li, M.-L. Yan
GOUGH	97	PRL 791622	B. Gough et al.
GUPTA	97	PR D55 7203	R. Gupta, T. Bhattacharya
LELLOUCH	97	PL B414 195	L. Lellouch, E. de Rafael, J. Taron
ANISOVICH	96	PL B375 335	A.V. Anisovich, H. Leutwyler
LEUTWYLER	96	PL B378 313	H. Leutwyler
BIJNENS	95	PL B348 226	J. Bijnens, J. Prades, E. de Rafael (NORD, BOHR+)
JAMIN	95	ZPHY C66 633	M. Jamin, M. Munz (HEIDT, MUNT)
NARISON	95C	PL B358 113	S. Narison (MONP)
CHOI	92	PL B292 159	K.W. Choi (UCSD)
DONOGHUE	92	PRL 693444	J.F. Donoghue, B.R. Holstein, D. Wyler (MASA+)
DONOGHUE	92B	PR D45 892	J.F. Donoghue, D. Wyler (MASA, ZURI, UCSBT)
GERARD	90	MPL A5 391	J.M. Gerard (MPIM)
LEUTWYLER	90B	NP B337 108	H. Leutwyler (BERN)
MALTMAN	90	PL B234 158	K. Maltman, T. Goldman, Stephenson Jr. (YORKC+)

