Quark and Lepton Compositeness, Searches for

A REVIEW GOES HERE – Check our WWW List of Reviews

SCALE LIMITS for Contact Interactions: $\Lambda(eeee)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

$\Lambda_{LL}^+({ m TeV})$	$\Lambda_{LL}^-({\sf TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>8.3	>10.3	95	¹ BOURILKOV	01	RVUE	E _{cm} = 192–208 GeV
• • • We	do not use	the foll	owing data for aver			
>4.7	>6.1	95	² ABBIENDI	04G		$E_{\rm cm} = 130 - 207 \; {\rm GeV}$
>3.8	>5.6	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \text{ GeV}$
>4.4	>5.4	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
>3.5	>3.2	95	BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 \; {\rm GeV}$
>6.0	>7.7	95	³ BOURILKOV	00	RVUE	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>3.1	>3.8	95	ABBIENDI	99	OPAL	E _{cm} = 130–136, 161–172, 183 GeV
>2.2	>2.8	95	ABREU	99A	DLPH	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.7	>2.4	95	ACCIARRI	98J	L3	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>3.0	>2.5	95	ACKERSTAFF	98V	OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.4	>2.2	95	ACKERSTAFF	97 C	OPAL	$E_{\rm cm} = 130 - 136, 161 \text{ GeV}$
>1.7	>2.3	95	ARIMA	97	VNS	$E_{\rm cm} = 57.77 \; {\rm GeV}$
>1.6	>2.0	95	⁴ BUSKULIC	93Q	ALEP	E _{cm} =88.25–94.25 GeV
>1.6		95	^{4,5} BUSKULIC	93Q	RVUE	
	>2.2	95	BUSKULIC	93Q	RVUE	
	>3.6	95	⁶ KROHA	92	RVUE	
>1.3		95	⁶ KROHA	92	RVUE	
>0.7	>2.8	95	BEHREND	91 C	CELL	$E_{\rm cm}=35~{\rm GeV}$
>1.3	>1.3	95	_ KIM	89	AMY	E _{cm} =50–57 GeV
>1.4	>3.3	95	⁷ BRAUNSCH	88	TASS	E _{cm} =12-46.8 GeV
>1.0	>0.7	95	⁸ FERNANDEZ	87 B	MAC	E _{cm} =29 GeV
>1.1	>1.4	95	⁹ BARTEL	86 C	JADE	E _{cm} =12-46.8 GeV
>1.17	>0.87	95	¹⁰ DERRICK	86	HRS	E _{cm} =29 GeV
>1.1	>0.76	95	¹¹ BERGER	85 B	PLUT	$E_{\rm cm}$ =34.7 GeV
1						

 $^{^1}$ A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL. 2 ABBIENDI 04G limits are from $e^+e^- \rightarrow e^+e^-$ cross section at $\sqrt{s}=130$ –207 GeV.

 $^{^3\}mathrm{A}$ combined analysis of the data from ALEPH, L3, and OPAL.

⁴ BUSKULIC 93Q uses the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit. 5 This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-

analyzed by KROHA 92.

 $^{^6}$ KROHA 92 limit is from fit to BERGER 85B, BARTEL 86C, DERRICK 86B, FERNANDEZ 87B, BRAUNSCHWEIG 88, BEHREND 91B, and BEHREND 91C. The fit gives $\eta/\Lambda_{LL}^2=+0.230\pm0.206~{\rm TeV}^{-2}.$

⁷ BRAUNSCHWEIG 88 assumed $m_Z = 92$ GeV and $\sin^2 \theta_W = 0.23$.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

$\Lambda_{LL}^+({ m TeV})$	$\Lambda_{LL}^-(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>8.1	> 7.3	95	12 ABBIENDI	04G		$E_{\rm cm} = 130-207 \; {\rm GeV}$
> 8.5	>3.8	95	ACCIARRI	00P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
• • • We	do not use	the f	ollowing data for aver	ages,	fits, lim	
>7.3	>4.6	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \; {\rm GeV}$
>6.6	>6.3	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>4.0	>4.7	95	BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 \; {\rm GeV}$
>4.5	>4.3	95	ABBIENDI	99	OPAL	E _{cm} = 130–136, 161–172, 183 GeV
>3.4	>2.7	95	ABREU	99A	DLPH	$E_{\rm cm} = 130 - 172 \text{ GeV}$
>3.6	>2.4	95	ACCIARRI	98J	L3	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.9	>3.4	95	ACKERSTAFF	98V	OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>3.1	>2.0	95	MIURA	98	VNS	$E_{\rm cm} = 57.77 {\rm GeV}$
>2.4	>2.9	95	ACKERSTAFF	97 C	OPAL	$E_{\rm cm} = 130 - 136, 161 \text{ GeV}$
>1.7	>2.2	95	¹³ VELISSARIS	94	AMY	E _{cm} =57.8 GeV
>1.3	>1.5	95	¹³ BUSKULIC	93Q	ALEP	E _{cm} =88.25–94.25 GeV
>2.6	>1.9	95	^{13,14} BUSKULIC	93Q	RVUE	Citi
>2.3	>2.0	95	HOWELL	92	TOPZ	$E_{\rm cm} = 52 - 61.4 \text{GeV}$
	>1.7	95	¹⁵ KROHA	92	RVUE	Citi
>2.5	>1.5	95	BEHREND	91 C	CELL	$E_{\rm cm} = 35 - 43 \text{GeV}$
>1.6	>2.0	95	¹⁶ ABE	90ı	VNS	$E_{\rm cm} = 50 - 60.8 {\rm GeV}$
>1.9	>1.0	95	KIM	89	AMY	E _{cm} =50–57 GeV
>2.3	>1.3	95	BRAUNSCH			$E_{\rm cm} = 30 - 46.8 \text{GeV}$
>4.4	>2.1	95	¹⁷ BARTEL		JADE	CIII
>2.9	>0.86	95	¹⁸ BERGER	85	PLUT	E _{cm} =34.7 GeV
12	ENIDL 04 - I		. + -			100 007 6 14

 $^{^{12}}$ ABBIENDI 04G limits are from $e^+e^ightarrow~\mu\mu$ cross section at $\sqrt{s}=$ 130–207 GeV.

 $^{^8}$ FERNANDEZ 87B assumed $\sin^2\!\theta_W = 0.22$.

 $^{^9}$ BARTEL 86C assumed $m_Z=93$ GeV and $\sin^2\!\theta_W=0.217$.

 $^{^{10}}$ DERRICK 86 assumed $m_Z=93$ GeV and $g_V^2=(-1/2+2\sin^2\theta_W)^2=0.004.$ 11 BERGER 85B assumed $m_Z=93$ GeV and $\sin^2\theta_W=0.217.$

 $^{^{13}}$ BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

 $^{^{14}\,\}mathrm{This}$ BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

¹⁵ KROHA 92 limit is from fit to BARTEL 86C, BEHREND 87C, BRAUNSCHWEIG 88D, BRAUNSCHWEIG 89C, ABE 90I, and BEHREND 91C. The fit gives $\eta/\Lambda_{II}^2=-0.155\pm$

 $^{^{0.095}~{\}rm TeV}^{-2}.$ $^{16}~{\rm ABE}~90$ l assumed m_Z =91.163 GeV and $\sin^2\!\theta_W=0.231.$

 $^{^{17}}$ BARTEL 86C assumed $m_Z=93$ GeV and $\sin^2\theta_W=0.217$.

 $^{^{18}}$ BERGER 85 assumed $m_{Z}=93$ GeV and $\sin^{2}\! heta_{W}=0.217$.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>4.9	>7.2	95	¹⁹ ABBIENDI	04G		$E_{\rm cm} = 130-207 \; {\rm GeV}$
> 5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	do not use	the foll	owing data for aver	ages,	fits, lim	its, etc. • • •
>3.9	>6.5	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \; {\rm GeV}$
>5.2	>5.4	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>3.9	>3.7	95	BARATE	001	ALEP	$E_{\rm cm} = 130 - 183 {\rm GeV}$
>3.8	>4.0	95	ABBIENDI	99	OPAL	E _{cm} = 130–136, 161–172, 183 GeV
>2.8	>2.6	95	ABREU			$E_{\rm cm} = 130 - 172 \text{ GeV}$
>2.4	>2.8	95	ACCIARRI	98J	L3	$E_{\rm cm} = 130 - 172 \text{ GeV}$
>2.3	>3.7	95	ACKERSTAFF	98V	OPAL	$E_{\rm cm} = 130 - 172 \text{ GeV}$
>1.9	>3.0	95	ACKERSTAFF	97C	OPAL	$E_{\rm cm} = 130 - 136, 161 \text{ GeV}$
>1.4	>2.0	95	²⁰ VELISSARIS	94	AMY	$E_{\rm cm}$ =57.8 GeV
>1.0	>1.5	95	²⁰ BUSKULIC	93Q	ALEP	E _{cm} =88.25–94.25 GeV
>1.8	>2.3	95 20	^{0,21} BUSKULIC	93Q	RVUE	
>1.9	>1.7	95	HOWELL	92	TOPZ	E _{cm} =52-61.4 GeV
>1.9	>2.9	95	²² KROHA	92	RVUE	
>1.6	>2.3	95	BEHREND	91 C	CELL	E _{cm} =35–43 GeV
>1.8	>1.3	95	²³ ABE	90ı	VNS	E _{cm} =50-60.8 GeV
>2.2	>3.2	95	²⁴ BARTEL	86	JADE	$E_{\rm cm} = 12 - 46.8 {\rm GeV}$

 $^{^{19}}$ ABBIENDI 04G limits are from $e^+e^-
ightarrow ~ au au$ cross section at $\sqrt{s}=$ 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

$\Lambda_{LL}^{\top}(\text{TeV})$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.7	>9.5	95	²⁵ ABBIENDI	04G		$E_{\rm cm} = 130-207 {\rm GeV}$
> 9.0	>5.2	95	ACCIARRI	00P L	.3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
• • • W	/e do not us	e the fo	ollowing data for aver	ages, fi	its, lim	its, etc. • • •
			²⁶ BABICH	03 R	RVUE	
>6.4	>7.2	95	ABBIENDI	00R C	PAL	$E_{\rm cm} = 189 \; {\rm GeV}$
>7.3	>7.8	95	ABREU	00s D	DLPH	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>5.3	>5.5	95	BARATE	00ı A	LEP	$E_{cm} = 130-183 \text{ GeV}$
>5.2	>5.3	95	ABBIENDI	99 C	PAL	$E_{cm} = 130-136, 161-172,$
>4.4	>4.2	95	ABREU	99A D	DLPH	183 GeV E _{cm} = 130–172 GeV

HTTP://PDG.LBL.GOV

Page 3

²⁰ BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted for the limit.

 $^{^{21}\,\}mathrm{This}$ BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-

analyzed by KROHA 92.
22 KROHA 92 limit is from fit to BARTEL 86C BEHREND 89B, BRAUNSCHWEIG 89C, ABE 90I, and BEHREND 91C. The fit gives $\eta/\Lambda_{LL}^2=+0.095\pm0.120~{\rm TeV}^{-2}$.

²³ ABE 90I assumed m_Z =91.163 GeV and $\sin^2\!\theta_W =$ 0.231.

²⁴BARTEL 86 assumed $m_7 = 93$ GeV and $\sin^2 \theta_W = 0.217$.

>4.0	>3.1	95	²⁷ ACCIARRI	98J L3	$E_{\rm cm} = 130 - 172 \; {\rm GeV}$
>3.4	>4.4	95	ACKERSTAFF	98V OPAL	$E_{\rm cm} = 130 - 172 {\rm GeV}$
>2.7	>3.8	95	ACKERSTAFF	97C OPAL	$E_{\rm cm} = 130 - 136, 161 \text{ GeV}$
>3.0	>2.3		^{27,28} BUSKULIC	93Q ALEP	E _{cm} =88.25–94.25 GeV
>3.5	>2.8	95		93Q RVUE	
>2.5	>2.2	95	³⁰ HOWELL	92 TOPZ	E _{cm} =52-61.4 GeV
>3.4	>2.7	95	³¹ KROHA	92 RVUE	

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{IJ}^{\pm} only. For other cases, see each reference.

$\Lambda_{LL}^+({ m TeV})$	$\Lambda_{LL}^-({ m TeV})$	CL%	DOCU	MENT ID		TECN	COMMENT
>23.3	>12.5	95	32 CHEU	JNG	<u>01</u> в	RVUE	(eeuu)
>11.1	>26.4	95	32 CHEU	JNG	01 B	RVUE	(eedd)
> 5.6	>4.9	95	33 BARA		001	ALEP	(eebb)
> 1.0	>2.1	95	³⁴ ABRI	EU	99A	DLPH	(eecc)
• • • We	do not use	the follo	wing dat	a for avera	ges,	fits, lim	its, etc. • • •
> 8.2	>3.7	95	35 ABBI	ENDI	04G		(eeqq)
> 5.9	>9.1	95	³⁵ ABBI		04 G		(eeuu)
> 8.6	>5.5	95	³⁵ ABBI	ENDI	04 G		(eedd)
> 2.7	>1.7	95			04 B	ZEUS	(eeqq)
> 2.8	>1.6	95	36 ADLO		03	H1	(eeqq)
> 2.7	>2.7	95	37 ACH		02J	L3	(eetc)
> 5.5	>3.1	95	38 ABBI			OPAL	(eeqq)
> 4.9	>6.1	95	38 ABBI			OPAL	(e e u u)
> 5.7	>4.5	95	38 ABBI			OPAL	(eedd)
> 4.2	>2.8	95	³⁹ ACCI		00 P		(eeqq)
> 2.4	>1.3	95	40 ADLO	OFF	00		(eeqq)
> 5.4	>6.2	95	41 BARA			ALEP	(eeqq)
			⁴² BREI		00 B	ZEUS	
> 4.4	>2.8	95	43 ABBI			OPAL	(eeqq)
> 4.0	>4.8	95	44 ABBI		99	OPAL	(eebb)
> 3.3	>4.2	95	45 ABB0	TTC	99 D	D0	(eeqq)
> 2.4	>2.8	95	34 ABRI		99A	DLPH	(eeqq) $(d or s quark)$
> 4.4	>3.9	95	34 ABRI		99A	DLPH	(eebb)
> 1.0	>2.4	95	34 ABRI		99A	DLPH	(e e u u)
> 4.0	>3.4	95	⁴⁶ ZARI	NECKI	99	RVUE	(eedd)

²⁵ ABBIENDI 04G limits are from $e^+e^- \rightarrow \ell^+\ell^-$ cross section at $\sqrt{s}=130$ –207 GeV. ²⁶ BABICH 03 obtain a bound $-0.175~{\rm TeV}^{-2}<1/\Lambda_{LL}^2<0.095~{\rm TeV}^{-2}$ (95%CL) in a model independent analysis allowing all of Λ_{LL} , Λ_{LR} , Λ_{RL} , Λ_{RR} to coexist. ²⁷ From $e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$, and $\tau^+\tau^-$.

 $^{^{28}}$ BUSKULIC 93Q uses the following prescription to obtain the limit: when the naive 95%CL limit is better than the statistically expected sensitivity for the limit, the latter is adopted

for the limit.

29 This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data reanalyzed by KROHA 92.

 $^{^{30}}$ HOWELL 92 limit is from $e^+\,e^-\to\,\mu^+\mu^-$ and $\tau^+\,\tau^-.$ 31 KROHA 92 limit is from fit to most PEP/PETRA/TRISTAN data. The fit gives η/Λ_{LL}^2 $= -0.0200 \pm 0.0666 \text{ TeV}^{-2}$.

```
<sup>46</sup> ZARNECKI
                                                    99 RVUE (eeuu)
> 4.3
           >5.6
                       95
                                <sup>47</sup> ACCIARRI
> 3.0
           > 2.1
                       95
                                                    98J L3
                                                                  (eeqq)
                                <sup>48</sup> ACKERSTAFF 98V OPAL
> 3.4
                       95
           > 2.2
                                                                 (eeqq)
                                <sup>49</sup> ACKERSTAFF 98V OPAL
> 4.0
           > 2.8
                       95
                                <sup>50</sup> BARGER
> 9.3
           >12.0
                       95
                                                    98E RVUE (eeuu)
                                <sup>50</sup> BARGER
> 8.8
                                                    98E RVUE (eedd)
           >11.9
                       95
                                <sup>51</sup> ABE
> 2.5
           >3.7
                       95
                                                    97T CDF
                                                                  (eeqq) (isosinglet)
                                ^{52} ACKERSTAFF 97C OPAL (eeqq)
> 2.5
           > 2.1
                       95
                                <sup>53</sup> ACKERSTAFF 97C OPAL (eebb)
> 3.1
           >2.9
                       95
                                <sup>54</sup> DEANDREA
> 7.4
                       95
                                                    97 RVUE eeuu, atomic parity viola-
           > 11.7
                                <sup>55</sup> AID
> 2.3
                                                                  (eeqq)(u, d \text{ quarks})
           > 1.0
                       95
                                                    95 H1
                                <sup>56</sup> ABE
   1.7
           >2.2
                       95
                                                    91D CDF
                                                                  (eeqq)(u, d \text{ quarks})
                                <sup>57</sup> ADACHI
                                                    91 TOPZ (eeqq)
> 1.2
                       95
                                                                     (flavor-universal)
                                <sup>57</sup> ADACHI
                                                    91 TOPZ (eeqq)
                       95
           > 1.6
                                                                     (flavor-universal)
                                <sup>58</sup> BEHREND
                                                    91C CELL (eecc)
> 0.6
           > 1.7
                       95
                       95
                                <sup>58</sup> BEHREND
                                                    91c CELL
> 1.1
           >1.0
                                                                 (eebb)
                                <sup>59</sup> ABE
                       95
                                                    89L VNS
> 0.9
                                                                  (eeqq)
                                                                     (flavor-universal)
                                <sup>59</sup> ABF
                       95
                                                    89L VNS
           >1.7
                                                                  (eeqq)
                                                                     (flavor-universal)
                                <sup>60</sup> HAGIWARA
                                                    89 RVUE (eecc)
> 1.05
           > 1.61
                       95
                                <sup>61</sup> HAGIWARA
                      95
                                                    89 RVUE (eebb)
> 1.21
           > 0.53
```

³²CHEUNG 01B is an update of BARGER 98E.

 $^{^{33}\,\}mathrm{BARATE}$ 001 limits are from R_b and jet-charge asymmetry at 130–183 GeV.

³⁴ ABREU 99A limits are from flavor-tagged $e^+e^- \rightarrow q \overline{q}$ cross section at 130–172 GeV.

³⁵ ABBIENDI 04G limits are from $e^+e^- \to q \overline{q}$ cross section at $\sqrt{s}=130$ –207 GeV. ³⁶ ADLOFF 03 limits are from the $d\sigma/dQ^2$ measurement of $e^\pm p \to e^\pm X$.

 $^{^{37}}$ ACHARD 02J limit is from the bound on the $e^+e^ightarrow~t\,\overline{c}$ cross section. $\Lambda_{LL}=\Lambda_{LR}$ $=\Lambda_{RL}=\Lambda_{RR}$ and $m_t=175$ GeV are assumed.

³⁸ ABBIENDI 00R limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at \sqrt{s} = 130–189 GeV.

³⁹ ACCIARRI 00P limit is from $e^+e^- \rightarrow qq$ cross section at \sqrt{s} =130–189 GeV.

⁴⁰ ADLOFF 00 limits are from the Q^2 spectrum measurement of $e^+p \rightarrow e^+X$.

⁴¹BARATE 001 limits are from $e^+e^- \rightarrow q \overline{q}$ cross section and jet-charge asymmetry at

⁴² BREITWEG 00B limits are from Q^2 spectrum measurement of e^+p collisions. See their

Table 3 for the limits of various models. 43 ABBIENDI 99 limits are from $e^+e^- \rightarrow q\overline{q}$ cross section at 130–136, 161–172, 183

 $^{^{\}rm 44}$ ABBIENDI 99 limits are from R_b at 130–136, 161–172, 183 GeV.

 $^{^{45}}$ ABBOTT 99D limits are from e^+e^- mass distribution in $p\overline{p}
ightarrow~e^+e^-$ X at $E_{
m cm}=$ 1.8 TeV.

⁴⁶ ZARNECKI 99 use data from HERA, LEP, Tevatron, and various low-energy experiments.

⁴⁷ ACCIARRI 98J limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at $E_{\rm cm}=$ 130–172 GeV.

 $^{^{48}}$ ACKERSTAFF 98V limits are from $e^+e^-
ightarrow q \overline{q}$ at $E_{
m cm} = 130$ –172 GeV.

 $^{^{49}\,\}mathrm{ACKERSTAFF}$ 98V limits are from R_b measurements at $E_\mathrm{cm} =$ 130–172 GeV.

 $^{^{50}\,\}mathrm{BARGER}$ 98E use data from HERA, LEP, Tevatron, and various low-energy experiments.

⁵¹ ABE 97T limits are from e^+e^- mass distribution in $\overline{p}p \to e^+e^-$ X at $E_{\rm cm}{=}1.8$ TeV.

⁵² ACKERSTAFF 97C limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at $E_{\rm cm}=130$ –136 GeV

 $^{^{53}}$ ACKERSTAFF 97C limits are R_b measurements at $E_{
m cm}=133$ GeV and 161 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu \mu q q)$

$\Lambda_{LL}^+({ m TeV})$	$\Lambda_{LL}^-({ m TeV})$	CL%	DOCUMENT	T ID	TECN	COMMENT
> 2.9	> 4.2	95	62 ABE	97T	CDF	$(\mu \mu q q)$ (isosinglet)
• • • We	e do not use	e the fo	llowing data for	averages,	fits, lin	nits, etc. • • •
>1.4	>1.6	95	ABE	92 B	CDF	$(\mu \mu q q)$ (isosinglet)
62 ABE	97⊤ limits a	re from	$\mu^+\mu^-$ mass di	istribution	in p p –	$\rightarrow \mu^{+}\mu^{-}$ X at $E_{\rm cm}=1.8$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.10	90	63 JODIDIO	86	SPEC	$\Lambda_{LR}^{\pm}(\nu_{\mu}\nu_{e}\mu e)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

>3.8	⁶⁴ DIAZCRUZ	94	RVUE	$\Lambda_{II}^+(au u_{ au}\mathrm{e} u_{\mathrm{e}})$
>8.1	⁶⁴ DIAZCRUZ			
>4.1	⁶⁵ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{}(au u_{ au}\mu u_{\mu})$
>6.5	⁶⁵ DIAZCRUZ	94	RVUE	$\Lambda_{II}^-(\tau\nu_{\tau}\mu\nu_{\mu})$

⁶³ JODIDIO 86 limit is from $\mu^+ \to \overline{\nu}_\mu \, e^+ \, \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $[\eta_{LL} \; (\overline{\nu}_\mu L \gamma^\alpha \mu_L) \; (\overline{e}_L \gamma_\alpha \nu_{e\,L}) + \eta_{LR} \; (\overline{\nu}_\mu L \gamma^\alpha \nu_{e\,L} \; (\overline{e}_R \gamma_\alpha \mu_R)] \; \text{with} \; g^2/4\pi = 1 \; \text{and} \; (\eta_{LL}, \eta_{LR}) = (0, \pm 1) \; \text{are taken}.$ No limits are given for $\Lambda^\pm_{LL} \; \text{with} \; (\eta_{LL}, \eta_{LR}) = (\pm 1, 0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu qq)$

VALUE (TeV)	CL%	DOCUMENT ID	•	TECN
>2.81	95	66 AFFOLDER	011	CDF

⁵⁴ DEANDREA 97 limit is from atomic parity violation of cesium. The limit is eluded if the contact interactions are parity conserving.

 $^{^{55}}$ AID 95 limits are from the Q^2 spectrum measurement of $\mathit{ep} \rightarrow \mathit{eX}.$

⁵⁶ ABE 91D limits are from e^+e^- mass distribution in $p\overline{p} \rightarrow e^+e^-$ X at $E_{cm} = 1.8$ TeV.

⁵⁷ ADACHI 91 limits are from differential jet cross section. Universality of $\Lambda(eeqq)$ for five flavors is assumed.

 $^{^{58}}$ BEHREND 91C is from data at $E_{\rm cm} = 35$ –43 GeV.

⁵⁹ ABE 89L limits are from jet charge asymmetry. Universality of $\Lambda(eeqq)$ for five flavors is assumed.

 $^{^{60}}$ The HAGIWARA 89 limit is derived from forward-backward asymmetry measurements of D/D^* mesons by ALTHOFF 83C, BARTEL 84E, and BARINGER 88.

⁶¹ The HAGIWARA 89 limit is derived from forward-backward asymmetry measurement of b hadrons by BARTEL 84D.

⁶⁴ DIAZCRUZ 94 limits are from $\Gamma(\tau \to e \nu \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

⁶⁵ DIAZCRUZ 94 limits are from $\Gamma(\tau \to \mu \nu \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Limits are for Λ_{LL}^{\pm} with color-singlet isoscalar exchanges among u_L 's and d_L 's only, unless otherwise noted. See EICHTEN 84 for details.

VALUE (TeV)	CL%	DOCUMENT ID		IECN	COMMENT
>2.7	95	⁶⁷ ABBOTT	99 C	D0	$p\overline{p} ightarrow dijet$ mass. Λ^+_{LL}
ullet $ullet$ We do not use the	following	g data for averages,	, fits,	limits, e	etc. • • •
>2.0	95	⁶⁸ ABBOTT	00E	D0	H_T distribution; Λ_{LL}^+
>2.1	95	⁶⁹ ABBOTT	98G	D0	$p\overline{p} \rightarrow \text{dijet angl. } \Lambda_{II}^{-1}$
		⁷⁰ BERTRAM 71 _{ABE}		RVUE CDF	$p\overline{p} \rightarrow \text{dijet mass}$ $p\overline{p} \rightarrow \text{jets inclusive}$
>1.6	95	⁷² ABE	96 S	CDF	$p\overline{p} \rightarrow \text{dijet angl.}; \Lambda_{LL}^+$
>1.3	95	⁷³ ABE		CDF	$p\overline{p} o dijet$ mass
>1.4	95	⁷⁴ ABE	92 D	CDF	$p\overline{p} \rightarrow \text{jets inclusive}$
>1.0	99	⁷⁵ ABE	92M	CDF	$p\overline{p} \rightarrow \text{dijet angl.}$
>0.825	95	⁷⁶ ALITTI	91 B	UA2	$p\overline{p} \rightarrow \text{jets inclusive}$
>0.700	95	⁷⁴ ABE	89	CDF	$p\overline{p} \rightarrow \text{jets inclusive}$
>0.330	95	⁷⁷ ABE	89н	CDF	$p\overline{p} \rightarrow \text{dijet angl.}$
>0.400	95	⁷⁸ ARNISON	86 C	UA1	$p\overline{p} \rightarrow \text{jets inclusive}$
>0.415	95	⁷⁹ ARNISON	86 D	UA1	$p\overline{p} \rightarrow \text{dijet angl.}$
>0.370	95	⁸⁰ APPEL	85	UA2	$p\overline{p} \rightarrow \text{jets inclusive}$
>0.275	95	⁸¹ BAGNAIA	84C	UA2	Repl. by APPEL 85

- ⁶⁷ The quoted limit is from inclusive dijet mass spectrum in $p\bar{p}$ collisions at $E_{cm}=1.8$ TeV. ABBOTT 99C also obtain $\Lambda_{LL}^->$ 2.4 TeV. All quarks are assumed composite.
- ⁶⁸ The quoted limit for ABBOTT 00E is from H_T distribution in $p\bar{p}$ collisions at $E_{cm}=1.8$ TeV. CTEQ4M PDF and $\mu = E_T^{ ext{max}}$ are assumed. For limits with different assumptions, see their Tables 2 and 3. All quarks are assumed composite.
- 69 ABBOTT 98G limit is from dijet angular distribution in $p\overline{p}$ collisions at $E_{\rm cm}=$ 1.8 TeV. All quarks are assumed composite.
- 70 BERTRAM 98 obtain limit on the scale of color-octet axial-vector flavor-universal contact interactions: $\Lambda_{A8} > 2.1 \, \text{TeV}$. They also obtain a limit $\Lambda_{V8} > 2.4 \, \text{TeV}$ on a color-octet flavor-universal vectorial contact interaction.
- 71 ABE 96 finds that the inclusive jet cross section for $E_{T}>$ 200 GeV is significantly higher than the $\mathcal{O}(\alpha_s^3)$ perturbative QCD prediction. This could be interpreted as the effect of a contact interaction with $\Lambda_{LL}~\sim$ 1.6 TeV. However, ABE 96 state that uncertainty in the parton distribution functions, higher-order QCD corrections, and the detector calibration may possibly account for the effect.
- 72 ABE 96S limit is from dijet angular distribution in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit for Λ_{II}^- is > 1.4 TeV. ABE 96S also obtain limits for flavor symmetric contact interactions among all quark flavors: $\Lambda_{LL}^{+}~>1.8\,\text{TeV}$ and $\Lambda_{LL}^{-}~>1.6\,\text{TeV}.$
- 73 ABE 93G limit is from dijet mass distribution in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The
- limit is the weakest from several choices of structure functions and renormalization scale. 74 Limit is from inclusive jet cross-section data in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.

- 75 ABE 92M limit is from dijet angular distribution for $m_{\mbox{dijet}}$ >550 GeV in $p\overline{p}$ collisions at $E_{\mbox{cm}}{=}1.8$ TeV.
- ⁷⁶ ALITTI 91B limit is from inclusive jet cross section in $p\bar{p}$ collisions at $E_{\rm cm}=630$ GeV. The limit takes into account uncertainties in choice of structure functions and in choice of process scale.
- 77 ABE 89H limit is from dijet angular distribution for $m_{
 m dijet} > 200$ GeV at the Fermilab Tevatron Collider with $E_{
 m cm} = 1.8$ TeV. The QCD prediction is quite insensitive to choice of structure functions and choice of process scale.
- 78 ARNISON 86C limit is from the study of inclusive high- p_T jet distributions at the CERN $\overline{p}p$ collider ($E_{\rm cm}=546$ and 630 GeV). The QCD prediction renormalized to the low- p_T region gives a good fit to the data.
- ARNISON 86D limit is from the study of dijet angular distribution in the range 240 < m(dijet) < 300 GeV at the CERN $\overline{p}p$ collider ($E_{\rm cm}=630$ GeV). QCD prediction using EHLQ structure function (EICHTEN 84) with $\Lambda_{\rm QCD}=0.2$ GeV for the choice of $Q^2=p_T^2$ gives the best fit to the data.
- APPEL 85 limit is from the study of inclusive high- p_T jet distributions at the CERN $\overline{p}p$ collider ($E_{\rm cm}=630$ GeV). The QCD prediction renormalized to the low- p_T region gives a good description of the data.
- 81 BAGNAIA 84C limit is from the study of jet p_T and dijet mass distributions at the CERN $\overline{p}p$ collider ($E_{\rm cm}=540$ GeV). The limit suffers from the uncertainties in comparing the data with the QCD prediction.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu\nu qq)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

 82 MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating $(\eta_L=\eta_R)$. However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited e (e*) from Pair Production

These limits are obtained from $e^+e^- \to e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \to e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45,** 1 June, Part II (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>103.2	95	⁸³ ABBIENDI	02G OPAL	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
• • • We d	do not u	se the following data t	for averages,	fits, limits, etc. • • •
>102.8	95	⁸⁴ ACHARD	03B L3	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
>100.0	95	⁸⁵ ACCIARRI	01D L3	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 91.3	95	⁸⁶ ABBIENDI	00ı OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 94.2	95	⁸⁷ ACCIARRI	00E L3	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
> 90.7	95	⁸⁸ ABREU	990 DLPH	Homodoublet type
> 85.0	95	⁸⁹ ACKERSTAFF	98c OPAL	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
		⁹⁰ BARATE	98∪ ALEP	$Z \rightarrow e^* e^*$
> 79.6	95	^{91,92} ABREU	97B DLPH	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 77.9	95	^{91,93} ABREU	97B DLPH	$e^+e^- ightarrowe^*e^*$ Sequential type
> 79.7	95	⁹¹ ACCIARRI	97G L3	$e^+e^- ightarrowe^*e^*$ Sequential type
> 79.9	95	91,94 ACKERSTAFF	97 OPAL	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 62.5	95	⁹⁵ ABREU	96ĸ DLPH	$e^+e^- ightarrow e^*e^*$ Homodoublet type
> 64.7	95	⁹⁶ ACCIARRI	96D L3	$e^+e^- ightarrowe^*e^*$ Sequential type
> 66.5	95	⁹⁶ ALEXANDER	96Q OPAL	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
> 65.2	95	⁹⁶ BUSKULIC	96w ALEP	$e^+e^- ightarrowe^*e^*$ Sequential type
> 45.6	95	ADRIANI	93M L3	$Z \rightarrow e^* e^*$
> 45.6	95	ABREU	92c DLPH	$Z \rightarrow e^*e^*$
> 29.8	95	⁹⁷ BARDADIN	92 RVUE	$\Gamma(Z)$
> 26.1	95	⁹⁸ DECAMP	92 ALEP	$Z \rightarrow e^*e^*$; $\Gamma(Z)$
> 46.1	95	DECAMP	92 ALEP	$Z \rightarrow e^*e^*$
> 33	95	⁹⁸ ABREU	91F DLPH	$Z \rightarrow e^*e^*$; $\Gamma(Z)$
> 45.0	95	⁹⁹ ADEVA	90F L3	$Z \rightarrow e^*e^*$
> 44.9	95	AKRAWY	90ı OPAL	$Z \rightarrow e^*e^*$
> 44.6	95	¹⁰⁰ DECAMP	90G ALEP	$e^+e^- ightarrow~e^*e^*$
> 30.2	95	ADACHI	89B TOPZ	$e^+e^- ightarrow e^*e^*$
> 28.3	95	KIM	89 AMY	$e^+e^- ightarrow e^*e^*$
> 27.9	95	¹⁰¹ ABE	88B VNS	$e^+e^- ightarrow e^*e^*$
83 -				<i>cl</i> :

⁸³ From e^+e^- collisions at $\sqrt{s}=$ 183–209 GeV. f=f' is assumed.

⁸⁴ From e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{\alpha^*} > 96.6$ GeV.

 $^{85 \, {\}rm From} \, \, e^+ \, e^-$ collisions at $\sqrt{s} = 192 - 202 \, {\rm GeV}. \, f = f'$ is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{\alpha^*} > 93.4$ GeV.

⁸⁶ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for $f{=}{-}f'$ (e* $\stackrel{\cdot}{\rightarrow}~\nu\,W$): $m_{e^*}>$ 86.0 GeV.

 $^{87\,\}mathrm{From}~e^+e^-$ collisions at $\sqrt{s}{=}189\,\mathrm{GeV}.~f{=}f'$ is assumed. ACCIARRI 00E also obtain limit for f = -f' ($e^* \rightarrow \nu W$): $m_{e^*} > 92.6$ GeV.

⁸⁸ From e^+e^- collisions at $\sqrt{s}=$ 183 GeV. f=f' is assumed. ABREU 990 also obtain limit for $f = -f'(e^* \to \nu W)$: $m_{e^*} > 81.3 \text{ GeV}$.

 $^{^{89}}$ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $e^*
ightarrow \
u \, W$ decay mode: $m_{
ho^*} > 81.3$ GeV.

 $^{^{90}\,\}mathrm{BARATE}$ 980 obtain limits on the form factor. See their Fig. 14 for limits in mass-form

⁹¹ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.

- ⁹² ABREU 97B also obtain limit from charged current decay mode $e^* \to \nu W$, $m_{e^*} > 70.9$ GeV.
- 93 ABREU 97B also obtain limit from charged current decay mode $e^* \to ~\nu\,W,~m_{e^*} >$ 44.6 GeV.
- ⁹⁴ ACKERSTAFF 97 also obtain limit from charged current decay mode $e^* \rightarrow \nu W$, $m_{\nu_e^*} >$
- 95 From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ⁹⁶ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.
- $^{97}\, \text{BARDADIN-OTWINOWSKA}$ 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.
- 98 Limit is independent of e^* decay mode.
- ⁹⁹ ADEVA 90F is superseded by ADRIANI 93M.
- ¹⁰⁰ Superseded by DECAMP 92.
- ¹⁰¹ ABE 88B limits assume $e^+e^- \rightarrow e^{*+}e^{*-}$ with one photon exchange only and $e^* \rightarrow e\gamma$ giving $e\,e\gamma\gamma$.

Limits for Excited $e(e^*)$ from Single Production

These limits are from $e^+e^- \to e^*e$, $W \to e^*\nu$, or $ep \to e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \to e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review **D45,** 1 June, Part II (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>255	95	¹⁰² ADLOFF	02B H1	$ep \rightarrow e^*X$
• • • We do	not use	the following data	for averages,	fits, limits, etc. • • •
>206	95	¹⁰³ ACHARD	03B L3	$e^+e^- ightarrow e e^*$
>208	95	¹⁰⁴ ABBIENDI	02G OPAL	$e^+e^- ightarrow e e^*$
>228	95			
>202			01 D L3	$e^+e^- ightarrow e e^*$
				$e^+e^- ightarrow e e^*$
				$e^+e^- ightarrow e e^*$
>223	95	109 ADLOFF		
		¹¹⁰ ABREU		
none 20–170	95	¹¹¹ ACCIARRI		
		¹¹² ACKERSTAFF		
	114	113 BARATE		
		-, ¹¹⁵ ABREU		
	114	^{-,116} ACCIARRI		
		117 ACKERSTAFF		
				Lepton-flavor violation
none 30–200	95	119 BREITWEG		
		120 ABREU		
		121 ACCIARRI		
		122 ALEXANDER		
		¹²³ BUSKULIC	96w ALEP	$e^+e^- \rightarrow ee^*$

	¹²⁴ DERRICK ¹²⁵ ABT	95B ZEUS 93 H1	$e p \rightarrow e^* X$ $e p \rightarrow e^* X$
95	ADRIANI	93M L3	$\lambda_{\gamma} > 0.04$
95	ADRIANI ¹²⁶ DERRICK	93м L3 93в ZEUS	$Z \rightarrow ee^*,\lambda_Z > 0.5$ Superseded by DERRICK 95B
95	ABREU	92C DLPH	$Z ightarrow$ ee * , λ_Z >0.5
95	ABREU	92C DLPH	$e^+e^- o$ ee^* , λ_{γ} >0.1
95	DECAMP	92 ALEP	$Z ightarrow e e^*$, $\lambda_Z > 1$
95	¹²⁷ ADEVA	90F L3	$Z ightarrow~ee^*$, $\lambda_Z^->0.5$
95	¹²⁷ ADEVA	90F L3	$Z ightarrow ~ee^*$, $\lambda_Z ~> 0.04$
95	AKRAWY	90ı OPAL	$Z ightarrow ~ee^*$, $\lambda_Z~>0.5$
95	¹²⁸ DECAMP	90G ALEP	$Z ightarrow \mathrm{e} \mathrm{e}^*$, $\lambda_Z > 1$
95	ADACHI	89B TOPZ	$e^+e^- o ee^*$, $\lambda_\gamma>0.04$
95	KIM	89 AMY	$e^+e^- ightarrow~ee^*$, $\lambda_{\gamma}>0.03$
95	¹²⁹ ABE	88B VNS	$e^+e^- \rightarrow e e^* \lambda_{\gamma} > 0.04$
95	¹³⁰ ANSARI	87D UA2	$W \rightarrow e^* \nu; \lambda_W > 0.7$
95		87D UA2	$W \rightarrow e^* \nu; \lambda_W > 0.2$
95	¹³⁰ ANSARI	87D UA2	$W \rightarrow e^* \nu$; $\lambda_W > 0.09$
	95 95 95 95 95 95 95 95 95 95 95	125 ABT 95 ADRIANI 95 ADRIANI 126 DERRICK 95 ABREU 95 ABREU 95 DECAMP 95 127 ADEVA 95 128 DECAMP 95 AKRAWY 95 ALECAMP 95 ALECAMP 95 ADACHI 95 KIM 95 129 ABE 95 130 ANSARI 130 ANSARI	125 ABT 93 H1 95 ADRIANI 93M L3 95 ADRIANI 93M L3 95 ADRIANI 93M L3 126 DERRICK 93B ZEUS 95 ABREU 92C DLPH 95 ABREU 92C DLPH 95 DECAMP 92 ALEP 95 127 ADEVA 90F L3 95 127 ADEVA 90F L3 95 AKRAWY 90I OPAL 95 ADACHI 89B TOPZ 95 KIM 89 AMY 95 129 ABE 88B VNS 95 130 ANSARI 87D UA2

- ¹⁰² ADLOFF 02B search for single e^* production in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 3 for the exclusion plot in the mass-coupling plane.
- 103 ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ¹⁰⁴ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{e^*}$ is assumed for e^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- ¹⁰⁵ CHEKANOV 02D search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 5a for the exclusion plot in the mass-coupling plane.
- 106 ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. $f=f'=\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- 107 ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ¹⁰⁸ ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ¹⁰⁹ ADLOFF 00E search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f=f'=\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.
- 110 ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=183$ GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- 111 ACCIARRI 98T search for single e^* production in quasi-real Compton scattering. The limit is for $|\lambda| > 1.0 \times 10^{-1}$ and non-chiral coupling of e^* . See their Fig. 7 for the exclusion plot in the mass-coupling plane.
- ¹¹² ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- ¹¹³BARATE 98U is from e^+e^- collision at $\sqrt{s}=M_Z$. See their Fig. 12 for limits in mass-coupling plane
- ¹¹⁴ From e^+e^- collisions at \sqrt{s} = 161 GeV.
- 115 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.

- 116 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- ¹¹⁷ ACKERSTAFF 97 result is from e^+e^- collisions at \sqrt{s} = 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹¹⁸ ADLOFF 97 search for single e^* production in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio into a specific decay channel.
- ¹¹⁹ BREITWEG 97C search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f=f'=2\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.
- 120 ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ¹²¹ ACCIARRI 96D result is from e^+e^- collisions at $\sqrt{s}=130$ –140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹²² ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ¹²³ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹²⁴ DERRICK 95B search for single e^* production via $e^*e\gamma$ coupling in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . See their Fig. 13 for the exclusion plot in the $m_{e^*} \lambda \gamma$ plane.
- ^ 125 ABT 93 search for single e^* production via $e^*e\gamma$ coupling in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . See their Fig. 4 for exclusion plot in the $m_{e^*} \lambda_{\gamma}$ plane.
- ¹²⁶ DERRICK 93B search for single e^* production via $e^*e\gamma$ coupling in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . See their Fig. 3 for exclusion plot in the $m_{e^*} \lambda_{\gamma}$ plane.
- 127 Superseded by ADRIANI 93M.
- ¹²⁸ Superseded by DECAMP 92.
- 129 ABE 88B limits use $e^+e^- \rightarrow ee^*$ where t-channel photon exchange dominates giving $e\gamma(e)$ (quasi-real compton scattering).
- $^{130}\,\mathrm{ANSARI}$ 87D is at $E_\mathrm{cm}=$ 546–630 GeV.

Limits for Excited e (e^*) from $e^+e^- \rightarrow \gamma \gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and $e^*.$ All limits are for $\lambda_{\gamma}=1.$ All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L=\eta_R=1.$ We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review **D45,** 1 June, Part II (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>310	95	ACHARD	02D L3	\sqrt{s} = 192–209 GeV
• • • We do not use the	followi	ng data for averages	s, fits, limits,	etc. • • •
>356	95	¹³¹ ABDALLAH	04N DLPH	\sqrt{s} = 161–208 GeV
>311	95	ABREU	00a DLPH	\sqrt{s} = 189–202 GeV
>283	95	¹³² ACCIARRI	00G L3	$\sqrt{s} = 183 – 189 \; {\sf GeV}$
>306	95	ABBIENDI	99P OPAL	\sqrt{s} $= 189 \; GeV$
>231	95	ABREU	98J DLPH	\sqrt{s} = 130–183 GeV
>194	95	ACKERSTAFF	98 OPAL	\sqrt{s} = 130–172 GeV
>227	95	ACKER,K	98B OPAL	\sqrt{s} $= 183 \; GeV$
>250	95	BARATE	98J ALEP	\sqrt{s} $= 183 \; {\sf GeV}$
>160	95	¹³³ BARATE	98∪ ALEP	
>210	95	¹³⁴ ACCIARRI	97W L3	\sqrt{s} = 161, 172 GeV

HTTP://PDG.LBL.GOV

Page 12

>129	95	ACCIARRI	96L L3	\sqrt{s} =133 GeV
>147	95	ALEXANDER	96K OPAL	
>136	95	BUSKULIC	96z ALEP	\sqrt{s} =130, 136 GeV
>146	95	ACCIARRI	95G L3	
		¹³⁵ BUSKULIC	93Q ALEP	
>127	95	¹³⁶ ADRIANI	92B L3	
>114	95	¹³⁷ BARDADIN	92 RVUE	
> 99	95	DECAMP	92 ALEP	
		¹³⁸ SHIMOZAWA	92 TOPZ	
>100	95	ABREU	91E DLPH	
>116	95	AKRAWY	91F OPAL	
> 83	95	ADEVA	90K L3	
> 82	95	AKRAWY	90F OPAL	
> 68	95	¹³⁹ ABE	89」VNS	$\eta_I = 1, \ \eta_R = 0$
> 90.2	95	ADACHI	89B TOPZ	
> 65	95	KIM	89 AMY	

 $^{^{131}}$ ABDALLAH 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{e^*} > 295 \text{ GeV at } 95\% \text{ CL}.$

Indirect Limits for Excited e (e*)

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

DOCUMENT ID TECN COMMENT VALUE (GeV)

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

Created: 6/29/2005 14:55

 140 DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{\rm cut}^2/m_{e^*}^2 < 2.6$ (95% CL), where $\Lambda_{\rm cut}$ is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\rm cut}$ = 1 TeV and λ_{γ} = 1, one obtains m_{e^*} > 620 GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*}/\Lambda_{\rm cut}$ in composite models.

¹⁴¹ GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

 $^{^{132}}$ ACCIARRI 00G also obtain a limit on e^* with chiral coupling, $m_{o^*} > 213$ GeV.

¹³³BARATE 980 is from e^+e^- collision at $\sqrt{s}=M_7$. See their Fig. 5 for limits in masscoupling plane

 $^{^{134}}$ ACCIARRI 97W also obtain a limit on e^* with chiral coupling, $m_{e^*} > 157$ GeV (95%CL).

 $^{^{135}}$ BUSKULIC 93Q obtain $\Lambda^+>121$ GeV (95%CL) from ALEPH experiment and $\Lambda^+>135$ GeV from combined TRISTAN and ALEPH data. These limits roughly correspond to limits on m_{ρ^*} .

¹³⁶ ADRIANI 92B superseded by ACCIARRI 95G.

¹³⁷ BARDADIN-OTWINOWSKA 92 limit from fit to the combined data of DECAMP 92, ABREU 91E, ADEVA 90K, AKRAWY 91F.

 $^{^{138}\,\}mathrm{SHIMOZAWA}$ 92 fit the data to the limiting form of the cross section with $m_{e^*}\gg E_{\mathrm{cm}}$ and obtain $m_{\alpha^*} > 168$ GeV at 95%CL. Use of the full form would reduce this limit by a few GeV. The statistically unexpected large value is due to fluctuation in the data.

 $^{^{139}}$ The ABE 89J limit assumes chiral coupling. This corresponds to $\lambda_{\gamma}=$ 0.7 for nonchiral coupling.

 142 RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ *)

Limits for Excited μ (μ *) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \to \mu \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45, 1 June, Part II (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>103.2	95	¹⁴³ ABBIENDI	02G OPAL	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
• • • We do	not use	e the following data	for averages,	fits, limits, etc. • • •
>102.8	95	¹⁴⁴ ACHARD	03B L3	$e^+e^- ightarrow \ \mu^*\mu^*$ Homodoublet type
>100.2	95	¹⁴⁵ ACCIARRI	01D L3	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 91.3	95	¹⁴⁶ ABBIENDI	00ı OPAL	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 94.2	95	¹⁴⁷ ACCIARRI	00E L3	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 90.7	95	¹⁴⁸ ABREU		Homodoublet type
> 85.3	95	¹⁴⁹ ACKERSTAFI	98c OPAL	$e^+e^- ightarrow \ \mu^*\mu^*$ Homodoublet type
		¹⁵⁰ BARATE	98∪ ALEP	
> 79.6		^{1,152} ABREU	97B DLPH	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 78.4	₉₅ 151	^{1,153} ABREU	97B DLPH	$e^+e^- ightarrow~\mu^*\mu^*$ Sequential type
> 79.9	95	¹⁵¹ ACCIARRI	97G L3	
> 80.0	95 ¹⁵¹	^{l,154} ACKERSTAFI	97 OPAL	$e^+e^- ightarrow \ \mu^*\mu^*$ Homodoublet type
> 62.6	95	¹⁵⁵ ABREU	96ĸ DLPH	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type
> 64.9	95			$e^+e^- ightarrow~\mu^*\mu^*$ Sequential type
> 66.8	95	¹⁵⁶ ALEXANDER	96Q OPAL	$e^+e^- ightarrow~\mu^*\mu^*$ Homodoublet type
> 65.4	95	¹⁵⁶ BUSKULIC	96w ALEP	$e^+e^- ightarrow~\mu^*\mu^*$ Sequential type
> 45.6	95	ADRIANI	93M L3	$Z \rightarrow \mu^* \mu^*$
> 45.6	95	ABREU		$Z \rightarrow \mu^* \mu^*$
> 29.8	95	157 BARDADIN	. 92 RVUE	$\Gamma(Z)$
> 26.1	95	¹⁵⁸ DECAMP		$Z \rightarrow \mu^* \mu^*$; $\Gamma(Z)$
> 46.1	95	DECAMP		$Z \rightarrow \mu^* \mu^*$
> 33	95	¹⁵⁸ ABREU	91F DLPH	$Z \rightarrow \mu^* \mu^*$; $\Gamma(Z)$
> 45.3	95	¹⁵⁹ ADEVA	90F L3	$Z \rightarrow \mu^* \mu^*$
> 44.9	95	AKRAWY		$Z \rightarrow \mu^* \mu^*$
> 44.6	95	¹⁶⁰ DECAMP		$e^+e^- ightarrow~\mu^*\mu^*$
> 29.9	95	ADACHI	89B TOPZ	$e^+e^- ightarrow~\mu^*\mu^*$
> 28.3	95	KIM	89 AMY	$e^+e^- ightarrow~\mu^*\mu^*$
143 Erom o+		licione at $\sqrt{s} = 102$	200 Cal/ f	- fl is assumed

¹⁴³ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

¹⁴⁴ From e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{\mu^*} > 96.6$ GeV.

¹⁴⁵ From e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{\mu^*} > 93.4$ GeV.

- ¹⁴⁶ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' ($\mu^* \to \nu W$): $m_{\mu^*} >$ 86.0 GeV.
- ¹⁴⁷ From e^+e^- collisions at $\sqrt{s}=189$ GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' ($\mu^*\to \nu W$): $m_{\mu^*}>92.6$ GeV.
- ¹⁴⁸ From e^+e^- collisions at $\sqrt{s}=183$ GeV. f=f' is assumed. ABREU 990 also obtain limit for f=-f' ($\mu^* \to \nu W$): $m_{\mu^*}>81.3$ GeV.
- ¹⁴⁹ From e^+e^- collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $\mu^* \to \nu W$ decay mode: $m_{\mu^*} > 81.3$ GeV.
- $^{150}\,\mathrm{BARATE}$ 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ¹⁵¹ From e^+e^- collisions at \sqrt{s} = 161 GeV.
- 152 ABREU 97B also obtain limit from charged current decay mode $\mu^* \to ~\nu\,W,~m_{\mu^*} > 70.9$ GeV.
- 153 ABREU 97B also obtain limit from charged current decay mode $\mu^* \to ~\nu\,W,~m_{\mu^*} >$ 44.6 GeV.
- ACKERSTAFF 97 also obtain limit from charged current decay mode $\mu^* \to \nu W$, $m_{\nu_\mu^*} >$ 77.1 GeV.
- ¹⁵⁵ From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ¹⁵⁶ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.
- 157 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.
- ¹⁵⁸ Limit is independent of μ^* decay mode.
- ¹⁵⁹ Superseded by ADRIANI 93M.
- ¹⁶⁰ Superseded by DECAMP 92.

Limits for Excited μ (μ^*) from Single Production

These limits are from $e^+e^- \to \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \to \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review **D45,** 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID	TECN	COMMENT
>190	95	161	ABBIENDI	02G OPAL	$e^+e^- ightarrow \mu \mu^*$
• • • We do	not use	e the	following data f	or averages,	fits, limits, etc. • • •
>180	95	162	ACHARD	03B L3	$e^+e^- ightarrow \mu \mu^*$
>178	95			01D L3	$e^+e^- o \mu \mu^*$
				00ı OPAL	$e^+e^- o \mu \mu^*$
			ACCIARRI		$e^+e^- ightarrow \mu \mu^*$
		166	ABREU	990 DLPH	$e^+e^- ightarrow \mu \mu^*$
					$e^+e^- ightarrow \mu \mu^*$
		168	BARATE	98∪ ALEP	$Z \rightarrow \mu \mu^*$
					$e^+e^- ightarrow \mu \mu^*$
	169				$e^+e^- ightarrow \mu \mu^*$
		172	ACKERSTAFF	97 OPAL	$e^+e^- ightarrow~\mu\mu^*$
		173	ABREU	96K DLPH	$e^+e^- o \mu \mu^*$

		¹⁷⁴ ACCIARRI ¹⁷⁵ ALEXANDER	96D L3 96Q OPAL	$e^+e^- ightarrow \mu \mu^* \ e^+e^- ightarrow \mu \mu^*$
		176 BUSKULIC	96W ALEP	$e^+e^- \rightarrow \mu\mu^*$
> 89	95	ADRIANI	93M L3	$Z \rightarrow \mu \mu^*, \lambda_Z > 0.5$
> 88	95	ABREU	92c DLPH	$Z \rightarrow \mu \mu^*, \lambda_Z > 0.5$
> 91	95	DECAMP	92 ALEP	$Z \rightarrow \mu \mu^*, \lambda_Z > 1$
> 85	95	¹⁷⁷ ADEVA	90F L3	$Z \rightarrow \mu \mu^*, \lambda_Z > 1$
> 75	95	¹⁷⁷ ADEVA	90F L3	$Z \rightarrow \mu \mu^*, \lambda_Z^- > 0.1$
> 87	95	AKRAWY	90ı OPAL	$Z \rightarrow \mu \mu^*, \lambda_Z > 1$
> 80	95	¹⁷⁸ DECAMP		$e^+e^- o \mu\mu^*$, λ_Z =1
> 50	95	ADACHI	89B TOPZ	$e^+e^- \rightarrow \mu\mu^*, \lambda_{\gamma}^-=0.7$
> 46	95	KIM		$e^+e^- \rightarrow \mu\mu^*, \lambda_{\gamma}^{'}=0.2$

- 161 ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\mu^*}$ is assumed for μ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- 162 ACHARD 03B result is from e $^+$ e $^-$ collisions at $\sqrt{s}=189$ –209 GeV. $f=f'=\Lambda/m_{\mu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ¹⁶³ ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. $f=f'=\Lambda/m_{\mu^*}$ is assumed for the μ^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ¹⁶⁴ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ¹⁶⁵ ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ¹⁶⁶ ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=$ 183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ¹⁶⁷ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- 168 BARATE 98U obtain limits on the $Z\mu\mu^*$ coupling. See their Fig. 12 for limits in mass-coupling plane
- ¹⁶⁹ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 170 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- 171 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- 172 ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- 173 ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- 174 ACCIARRI 96D result is from e^+e^- collisions at $\sqrt{s}=130$ –140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ¹⁷⁵ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ¹⁷⁶ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ¹⁷⁷ Superseded by ADRIANI 93M.
- ¹⁷⁸ Superseded by DECAMP 92.

Indirect Limits for Excited μ (μ *)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

 VALUE (GeV)
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 179 RENARD
 82 THEO g-2 of muon

MASS LIMITS for Excited au (au^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \to \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \to \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45,** 1 June, Part II (1992)).

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>103.2	95	180	ABBIENDI	02 G	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
• • • We do	not use	the	following data f	or av	erages,	fits, limits, etc. • • •
>102.8	95		ACHARD	03 B	L3	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 99.8	95		ACCIARRI	01 D	L3	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 91.2	95	183	ABBIENDI	001	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 94.2	95	184	ACCIARRI	00E	L3	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 89.7	95		ABREU			Homodoublet type
> 84.6	95	186	ACKERSTAFF	98 C	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
			BARATE	98 U	ALEP	$Z \rightarrow \tau^* \tau^*$
> 79.4			ABREU	97 B	DLPH	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 77.4	₉₅ 188		ABREU	97 B	DLPH	$e^+e^- ightarrow~ au^* au^*$ Sequential type
> 79.3	95		ACCIARRI	97 G		$e^+e^- ightarrow~ au^* au^*$ Sequential type
> 79.1	95 ¹⁸⁸		ACKERSTAFF	97	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 62.2	95		ABREU	96K	DLPH	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 64.2	95		ACCIARRI	96 D	L3	$e^+e^- ightarrow~ au^* au^*$ Sequential type
> 65.3	95		ALEXANDER	96Q	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
> 64.8	95	193	BUSKULIC	96W	ALEP	$e^+e^- ightarrow~ au^* au^*$ Sequential type
> 45.6	95		ADRIANI	93M	L3	$Z \rightarrow \tau^* \tau^*$
> 45.3	95		ABREU		DLPH	$Z \rightarrow \tau^* \tau^*$
> 29.8	95		BARDADIN-		RVUE	$\Gamma(Z)$
> 26.1	95	195	DECAMP	92	ALEP	$Z \rightarrow \tau^* \tau^*$; $\Gamma(Z)$
> 46.0	95		DECAMP	-		$Z \rightarrow \tau^* \tau^*$
> 33	95		ABREU	91F	DLPH	$Z \rightarrow \tau^* \tau^*$; $\Gamma(Z)$
> 45.5	95	196	ADEVA		L3	
> 44.9	95		AKRAWY			$Z \rightarrow \tau^* \tau^*$
> 41.2	95	197	DECAMP			$e^+e^- ightarrow~ au^* au^*$
> 29.0	95		ADACHI	89 B	TOPZ	$\mathrm{e^+e^-} ightarrow \ au^* au^*$

 $^{^{179}}$ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

- ¹⁸⁰ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.
- 181 From $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon\,m_{_{T}^*}>96.6$ GeV.
- 182 From $e^+\,e^-$ collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for $f=-f'\colon m_{\tau^*}>93.4$ GeV.
- $^{183}\,\mathrm{From}~e^+\,e^-$ collisions at $\sqrt{s}{=}161{-}183$ GeV. $f{=}f'$ is assumed. ABBIENDI 001 also obtain limit for $f{=}{-}f'$ $(\tau^*\to~\nu\,W):~m_{\tau^*}>86.0$ GeV.
- ¹⁸⁴ From e⁺e⁻ collisions at \sqrt{s} =189 GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' ($\tau^* \rightarrow \nu W$): $m_{\tau^*} >$ 92.6 GeV.
- ¹⁸⁵ From e^+e^- collisions at $\sqrt{s}=$ 183 GeV. f=f' is assumed. ABREU 990 also obtain limit for f=-f' ($\tau^* \to \nu W$): $m_{\tau^*} >$ 81.3 GeV.
- ¹⁸⁶ From e⁺ e⁻ collisions at \sqrt{s} =170–172 GeV. ACKERSTAFF 98C also obtain limit from $\tau^* \to \nu W$ decay mode: $m_{\tau^*} >$ 81.3 GeV.
- ¹⁸⁷ BARATE 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ¹⁸⁸ From e^+e^- collisions at \sqrt{s} = 161 GeV.
- 189 ABREU 97B also obtain limit from charged current decay mode $\tau^* \to \, \nu \, W, \, m_{\tau^*} > 70.9$. . . GeV.
- ¹⁹⁰ ABREU 97B also obtain limit from charged current decay mode $\tau^* \to \nu W$, $m_{\tau^*} >$ 44.6 GeV.
- 191 ACKERSTAFF 97 also obtain limit from charged current decay mode $\tau^* \to \nu \, W$, $m_{\nu_-^*} >$ 77.1 GeV.
- ¹⁹² From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ¹⁹³ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.
- 194 BARDADIN-OTWINOWSKA 92 limit is independent of decay modes. Based on $\Delta\Gamma(Z){<}36$ MeV.
- 195 Limit is independent of au^* decay mode.
- ¹⁹⁶ Superseded by ADRIANI 93M.
- ¹⁹⁷ Superseded by DECAMP 92.

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \to \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \to \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

<i>VALUE</i> (GeV)	CL%		DOCUMENT ID	7	rECN	COMMENT
>185	95	198	ABBIENDI	02G C	PAL	$e^+e^- ightarrow au au^*$
ullet $ullet$ We do	not use	the	following data f	or ave	rages, f	fits, limits, etc. • • •
>180	95		ACHARD	03B L	.3	$e^+e^- ightarrow au au^*$
>173	95	200	ACCIARRI	01D L	.3	$e^+e^- ightarrow au au^*$
				00ı C)PAL	$e^+e^- ightarrow au au^*$
		202	ACCIARRI	00E L	.3	$e^+e^- ightarrow au au^*$
		203	ABREU	990 D	DLPH	$e^+e^- ightarrow au au^*$
		204	ACKERSTAFF	98C C)PAL	$e^+e^- ightarrow au au^*$
		205	BARATE	98U A	ALEP	$Z \rightarrow \tau \tau^*$
	206	,207	ABREU	97B D	DLPH	$e^+e^- ightarrow au au^*$
	206	,208	ACCIARRI	97G L	.3	$e^+e^- ightarrow au au^*$
		209	ACKERSTAFF	97 C)PAL	$e^+e^- \rightarrow \tau \tau^*$

			210 ABREU 211 ACCIARRI 212 ALEXANDER 213 BUSKULIC	96K DLPH 96D L3 96Q OPAL 96W ALEP	$e^{+}e^{-} \rightarrow \tau \tau^{*}$ $e^{+}e^{-} \rightarrow \tau \tau^{*}$ $e^{+}e^{-} \rightarrow \tau \tau^{*}$ $e^{+}e^{-} \rightarrow \tau \tau^{*}$
> 8	88	95	ADRIANI		$Z \rightarrow \tau \tau^*, \lambda_7 > 0.5$
>	87	95	ABREU		$Z \rightarrow \tau \tau^*, \lambda_7 > 0.5$
>	90	95	DECAMP	92 ALEP	$Z \rightarrow \tau \tau^*, \lambda_Z > 0.18$
>	88	95	²¹⁴ ADEVA	90L L3	$Z \rightarrow \tau \tau^*, \lambda_Z > 1$
>	86.5	95	AKRAWY	90ı OPAL	$Z \rightarrow \tau \tau^*, \lambda_Z^- > 1$
> !	59	95	²¹⁵ DECAMP	90G ALEP	$Z \rightarrow \tau \tau^*, \lambda_Z = 1$
> '	40	95	²¹⁶ BARTEL	86 JADE	$e^+e^- ightarrow~ auar{ au^*}$, $\lambda_{\gamma}{=}1$
> '	41.4	95	²¹⁷ BEHREND		${ m e^+e^-} ightarrow~ au au^*$, $\lambda_{\gamma}^{'}{=}1$
> '	40.8	95	²¹⁷ BEHREND		$e^+e^- \rightarrow \tau \tau^*, \lambda_{\gamma}^{\prime} = 0.7$

- ¹⁹⁸ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- ¹⁹⁹ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ²⁰⁰ ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed for the τ^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ²⁰¹ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ²⁰² ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ²⁰³ ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=183$ GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ²⁰⁴ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- $^{205}\, \rm BARATE~98U$ obtain limits on the $Z\,\tau\,\tau^*$ coupling. See their Fig. 12 for limits in mass-coupling plane
- ²⁰⁶ From e^+e^- collisions at $\sqrt{s}=$ 161 GeV.
- 207 See Fig. 4a and Fig. 5a of ABREU 97B for the exclusion limit in the mass-coupling plane.
- 208 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- ²⁰⁹ ACKERSTAFF 97 result is from e^+e^- collisions at \sqrt{s} = 161 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ²¹⁰ ABREU 96K result is from e^+e^- collisions at \sqrt{s} = 130–136 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ²¹¹ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ²¹² ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3a for the exclusion limit in the mass-coupling plane.
- ²¹³ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ²¹⁴ Superseded by ADRIANI 93M.
- ²¹⁵ Superseded by DECAMP 92.
- 216 BARTEL 86 is at $E_{\rm cm}=$ 30–46.78 GeV.
- 217 BEHREND 86 limit is at $E_{\rm cm}=$ 33–46.8 GeV.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^*
ightharpoonup$ $\nu\gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>102.6	95	²¹⁸ ACHARD	03B L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
• • • We do	not use	the following data	for averages,	fits, limits, etc. • • •
		²¹⁹ ABBIENDI	04N OPAL	
> 99.4	95	²²⁰ ACCIARRI	01D L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
> 91.2	95	²²¹ ABBIENDI	00ı OPAL	$e^+e^- ightarrow u^* u^*$ Homodoublet type
		²²² ABBIENDI,G	00D OPAL	
> 94.1	95	²²³ ACCIARRI	00E L3	$e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type
		224 ABBIENDI	99F OPAL	
> 90.0	95	²²⁵ ABREU	990 DLPH	Homodoublet type
> 84.9	95	²²⁶ ACKERSTAFF	98C OPAL	$e^+e^- ightarrow u^* u^*$ Homodoublet type
		²²⁷ BARATE	98∪ ALEP	$Z \rightarrow \nu^* \nu^*$
> 77.6		^{3,229} ABREU	97B DLPH	$e^+e^- ightarrow u^* u^*$ Homodoublet type
> 64.4		^{3,230} ABREU	97в DLPH	$e^+e^- ightarrow \ u^* u^*$ Sequential type
> 71.2		^{3,231} ACCIARRI	97G L3	$e^+e^- ightarrow \ u^* u^*$ Sequential type
> 77.8		^{3,232} ACKERSTAFF	97 OPAL	
> 61.4		^{3,234} ACCIARRI	96D L3	$e^+e^- ightarrow u^* u^*$ Sequential type
> 65.0	₉₅ 235	,236 ALEXANDER	96Q OPAL	$e^+e^- ightarrow u^* u^*$ Homodoublet type
> 63.6	95	²³³ BUSKULIC	96w ALEP	$e^+e^- ightarrow u^* u^*$ Sequential type
> 43.7		237 BARDADIN	. 92 RVUE	$\Gamma(Z)$
> 47	95	²³⁸ DECAMP	92 ALEP	
> 42.6	95	239 DECAMP	92 ALEP	$\Gamma(Z)$
> 35.4		^{0,241} DECAMP	900 ALEP	$\Gamma(Z)$
> 46	95 ²⁴¹	., ²⁴² DECAMP	900 ALEP	

 218 From $e^+\,e^-$ collisions at $\sqrt{s}=$ 189–209 GeV. f=-f' is assumed. ACHARD 03B also obtain limit for $f=f'\colon m_{\nu_{\mu}^*}>101.7$ GeV, $m_{\nu_{\mu}^*}>101.8$ GeV, and $m_{\nu_{\tau}^*}>92.9$ GeV.

See their Fig. 4 for the exclusion plot in the mass-coupling plane. 219 From $\,e^+\,e^-\,$ collisions at $\sqrt{s}=192$ –209 GeV, ABBIENDI 04N obtain limit on $\sigma(e^+\,e^-\to\,\nu^*\nu^*)$ B $^2(\nu^*\to\,\nu\gamma)$. See their Fig.2. The limit ranges from 20 to 45fb for $m_{\nu^*}^{}>$ 45 GeV.

²²⁰ From e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{\nu_e^*} >$ 99.1 GeV, $m_{\nu_\mu^*} >$ 99.3 GeV, $m_{\nu_\tau^*} >$ 90.5 GeV.

²²¹ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=-f' (photonic decay) is assumed. AB-BIENDI 001 also obtain limit for f=f' ($\nu^* \rightarrow \ell W$): $m_{\nu^*} > 91.1$ GeV, $m_{\nu^*} > 91.1$

GeV, $m_{\nu^*} > 83.1$ GeV.

²²² From e^+e^- collisions at $\sqrt{s}=$ 189 GeV. ABBIENDI,G 00D obtain limit on $\sigma(e^+e^- \rightarrow$ $\nu^*\nu^*$)B($\nu^* \rightarrow \nu \gamma$)². See their Fig. 14. The limit ranges from 50 to 80 fb for $\sqrt{s}/2=$ 95 GeV> m_{v^*} >45 GeV.

- ²²³ From e^+e^- collisions at $\sqrt{s}=189$ GeV. f=-f' (photonic decay) is assumed. ACCIA-RRI 00E also obtain limit for f=f' ($\nu^*\to \ell\,W$): $m_{\nu_e^*}>93.9$ GeV, $m_{\nu_\mu^*}>94.0$ GeV, $m_{\nu_\mu^*}>91.5$ GeV.
- From e⁺e⁻ collisions at \sqrt{s} = 130–183 GeV, ABBIENDI 99F obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*)$ B($\nu^* \rightarrow \nu\gamma$)². See their Fig. 13. The limit ranges from 0.094 to 0.14 pb for $\sqrt{s}/2 > m_{\nu^*} >$ 45 GeV.
- ²²⁵ From e^+e^- collisions at $\sqrt{s}=183$ GeV. f=-f' is assumed. ABREU 990 also obtain limit for f=f': $m_{\nu_{e^*}}>87.3$ GeV, $m_{\nu_{\mu^*}}>88.0$ GeV, $m_{\nu_{\tau^*}}>81.0$ GeV.
- 226 From $e^+\,e^-$ collisions at $\sqrt{s}{=}170{-}172$ GeV. ACKERSTAFF 98C also obtain limit from charged decay modes: $m_{\nu_e^*} >$ 84.1 GeV, $m_{\nu_\mu^*} >$ 83.9 GeV, and $m_{\nu_\tau^*} >$ 79.4 GeV.
- 227 BARATE 98U obtain limits on the form factor. See their Fig. 14 for limits in mass-form factor plane.
- ²²⁸ From e^+e^- collisions at \sqrt{s} = 161 GeV.
- $^{229} \rm ABREU~97B$ also obtain limits from charged current decay modes, $m_{\nu^*} > 56.4~\rm GeV.$
- $^{230}\,\mathrm{ABREU}$ 97B also obtain limits from charged current decay modes, $m_{\nu^*} >$ 44.9 GeV.
- ²³¹ ACCIARRI 97G also obtain limits from charged current decay mode $\nu_e^* \to e W$, $m_{\nu^*} > 64.5$ GeV.
- ²³² ACKERSTAFF 97 also obtain limits from charged current decay modes $m_{\nu_e^*} > 78.3$ GeV, $m_{\nu_\mu^*} > 78.9$ GeV, $m_{\nu_\tau^*} > 76.2$ GeV.
- ²³³ From e^+e^- collisions at \sqrt{s} = 130–140 GeV.
- ²³⁴ ACCIARRI 96D also obtain limit from $\nu^* \rightarrow eW$ decay mode: $m_{\nu^*} > 57.3$ GeV.
- 235 From e^+e^- collisions at \sqrt{s} = 130–136 GeV.
- ²³⁶ ALEXANDER 96Q also obtain limits from charged current decay modes: $m_{\nu_e^*} >$ 66.2 GeV, $m_{\nu_\mu^*} >$ 66.5 GeV, $m_{\nu_\tau^*} >$ 64.7 GeV.
- ²³⁷ BARDADIN-OTWINOWSKA 92 limit is for Dirac ν^* . Based on $\Delta\Gamma(Z)$ <36 MeV. The limit is 36.4 GeV for Majorana ν^* , 45.4 GeV for homodoublet ν^* .
- ²³⁸ Limit is based on B($Z \rightarrow \nu^* \overline{\nu}^*$)×B($\nu^* \rightarrow \nu \gamma$)² < 5 × 10⁻⁵ (95%CL) assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.
- ²³⁹ Limit is for Dirac ν^* . The limit is 34.6 GeV for Majorana ν^* , 45.4 GeV for homodoublet ν^* .
- ²⁴⁰ DECAMP 900 limit is from excess $\Delta\Gamma(Z)$ < 89 MeV. The above value is for Dirac ν^* ; 26.6 GeV for Majorana ν^* ; 44.8 GeV for homodoublet ν^* .
- ²⁴¹ Superseded by DECAMP 92.
- ²⁴² DECAMP 900 limit based on B($Z \rightarrow \nu^* \nu^*$)·B($\nu^* \rightarrow \nu \gamma$)² < 7 × 10⁻⁵ (95%CL), assuming Dirac ν^* , B($\nu^* \rightarrow \nu \gamma$) = 1.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \to \nu\nu^*$, $Z \to \nu\nu^*$, or $ep \to \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>190	95	243 ACHARD	03B L3	$e^+e^- ightarrow u u^*$

• • • We do not use the following data for averages, fits, limits, etc. • • •

none 50–150 >158 >171 >114	95 95 95 95	245 246 247 248 249 250 251 252	ADLOFF CHEKANOV ACCIARRI ABBIENDI,G ABBIENDI,G ACCIARRI ADLOFF ABBIENDI ABREU ACKERSTAFF	02D 01D 00I 00D 00E 00E 99F 99O	ZEUS L3 OPAL OPAL L3 H1 OPAL DLPH	$e^{+}e^{-} \rightarrow \nu \nu^{*}$ $e p \rightarrow \nu^{*} X$ $e^{+}e^{-} \rightarrow \nu \nu^{*}$ $e^{+}e^{-} \rightarrow \nu^{*} \nu^{*}$ Ho-
none 40–96		,256 257 258 ,259 260 261 262 263 264 265 266	BARATE ABREU ABREU ACCIARRI ACKERSTAFF ADLOFF BREITWEG ACCIARRI ALEXANDER BUSKULIC DERRICK ABT	97B 97I 97G 97 97 97C 96D 96Q 95B	DLPH DLPH L3 OPAL H1 ZEUS L3 OPAL	$\begin{array}{ll} e^{+}e^{-} \rightarrow \nu \nu^{*} \\ \nu^{*} \rightarrow \ell W, \nu Z \\ \nu^{*} \rightarrow \nu \gamma \\ e^{+}e^{-} \rightarrow \nu \nu^{*} \\ e^{+}e^{-} \rightarrow \nu \nu^{*} \\ \text{Lepton-flavor violation} \\ e p \rightarrow \nu^{*} X \\ e^{+}e^{-} \rightarrow \nu \nu^{*} \\ e^{+}e^{-} \rightarrow \nu \nu^{*} \\ e^{+}e^{-} \rightarrow \nu \nu^{*} \end{array}$
> 91	95		ADRIANI	93M	L3	$\lambda_Z > 1$, $\nu^* \rightarrow \nu \gamma$
> 89	95		ADRIANI		L3	$\lambda_Z > 1$, $\nu_e^* \rightarrow eW$
> 87	95		ADRIANI		L3	$\lambda_Z > 0.1, \ \nu^* \rightarrow \ \nu \gamma$
> 74	95	268	ADRIANI BARDADIN	93M 92		$\lambda_Z > 0.1$, $\nu_e^* \rightarrow eW$
> 91	95	269	DECAMP		ALEP	$\lambda_Z > 1$
> 74	95	269	DECAMP		ALEP	$\lambda_Z > 0.034$
> 91			ADEVA	900	L3	$\lambda_Z > 1$
> 83	95		ADEVA		L3	$\lambda_Z > 0.1$, $\nu^* \rightarrow \nu \gamma$
> 74	95		ADEVA	900		$\lambda_Z > 0.1$, $\nu_e^* \rightarrow eW$
> 90	95 272	,273	DECAMP		ALEP	$\lambda_Z > 1$
> 74.7	95 272	,273	DECAMP	900	ALEP	$\lambda_Z > 0.06$

²⁴³ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. The quoted limit is for ν_e^* . $f=-f'=\Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

²⁴⁴ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.

²⁴⁵CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f = f' = \Lambda/m_{\nu^*}$: $m_{\nu^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

- 246 ACCIARRI 01D search for $\nu\nu^*$ production in e^+e^- collisions at $\sqrt{s}=192$ –202 GeV with decays $\nu^* \to \nu\gamma$, $\nu^* \to eW$. $f\!=\!-f'\!=\!\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ²⁴⁷ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ²⁴⁸ From e^+e^- collisions at $\sqrt{s}=$ 189 GeV. ABBIENDI,G 00D obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*)$ B $(\nu^* \rightarrow \nu\gamma)^2$. See their Fig. 11.
- ²⁴⁹ ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ²⁵⁰ ADLOFF 00E search for single ν^* production in $e\,p$ collisions with the decays $\nu^* \to \nu\,\gamma$, $\nu\,Z$, $e\,W$. The quoted limit assumes $f\!=\!-f'\!=\!\Lambda/m_{\nu^*}$. See their Fig. 10 for the exclusion plot in the mass-coupling plane.
- ²⁵¹ From e^+e^- collisions at $\sqrt{s}=$ 130–183 GeV, ABBIENDI 99F obtain limit on $\sigma(e^+e^- \rightarrow \nu\nu^*)$ B($\nu^* \rightarrow \nu\gamma$). See their Fig. 8.
- ²⁵² ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=$ 183 GeV. See their Figs. 4 and 5 for the exclusion limit in the mass-coupling plane.
- ²⁵³ ACKERSTAFF 98C from e^+e^- collisions at \sqrt{s} =170–172 GeV. See their Fig. 11 for the exclusion limit in the mass-coupling plane.
- 254 BARATE 98U obtain limits on the $Z\nu\nu^*$ coupling. See their Fig. 13 for limits in mass-coupling plane
- ²⁵⁵ From e^+e^- collisions at \sqrt{s} = 161 GeV.
- 256 See Fig. 4b and Fig. 5b of ABREU 97B for the exclusion limit in the mass-coupling plane.
- ²⁵⁷ ABREU 971 limit is from $Z \to \nu \nu^*$. See their Fig. 12 for the exclusion limit in the mass-coupling plane.
- ²⁵⁸ ABREU 97J limit is from $Z \to \nu \nu^*$. See their Fig. 5 for the exclusion limit in the mass-coupling plane.
- 259 See Fig. 2 and Fig. 3 of ACCIARRI 97G for the exclusion limit in the mass-coupling plane.
- ²⁶⁰ ACKERSTAFF 97 result is from e^+e^- collisions at $\sqrt{s}=$ 161 GeV, for homodoublet ν^* . See their Fig. 3 for the exclusion limit in the mass-coupling plane.
- ²⁶¹ ADLOFF 97 search for single e^* production in ep collisions with the decays $e^* \to e\gamma$, eZ, ν W. See their Fig. 4 for the rejection limits on the product of the production cross section and the branching ratio.
- ²⁶² BREITWEG 97C search for single ν^* production in ep collisions with the decay $\nu^* \rightarrow \nu \gamma$. $f = -f' = 2\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 10 for the exclusion plot in the mass-coupling plane.
- ²⁶³ ACCIARRI 96D result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 2 for the exclusion limit in the mass-coupling plane.
- ²⁶⁴ ALEXANDER 96Q result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV for homodoublet ν^* . See their Fig. 3b and Fig. 3c for the exclusion limit in the mass-coupling plane.
- ²⁶⁵ BUSKULIC 96W result is from e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 4 for the exclusion limit in the mass-coupling plane.
- ²⁶⁶ DERRICK 95B search for single ν^* production via ν^* e W coupling in e p collisions with the decays $\nu^* \to \nu \gamma$, νZ , e W. See their Fig. 14 for the exclusion plot in the $m_{\nu^*} \lambda \gamma$ plane.
- ²⁶⁷ ABT 93 search for single ν^* production via $\nu^* eW$ coupling in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. See their Fig. 4 for exclusion plot in the $m_{\nu \nu} \lambda_W$ plane.
- ²⁶⁸ See Fig. 5 of BARDADIN-OTWINOWSKA 92 for combined limit of ADEVA 900, DE-CAMP 900, and DECAMP 92.
- ²⁶⁹ DECAMP 92 limit is based on B($Z \to \nu^* \overline{\nu}$)×B($\nu^* \to \nu \gamma$) < 2.7 × 10⁻⁵ (95%CL) assuming Dirac ν^* , B($\nu^* \to \nu \gamma$) = 1.
- ²⁷⁰ Limit is either for $\nu^* \rightarrow \nu \gamma$ or $\nu^* \rightarrow e W$.

MASS LIMITS for Excited $q(q^*)$

DOCUMENT ID

Limits for Excited $q(q^*)$ from Pair Production

CL%

These limits are obtained from $e^+e^- \to q^* \overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

TECN COMMENT

>45.6	95	²⁷⁴ ADRIANI	93M L3	u or d type, $Z \rightarrow q^* q^*$
• • • We do not use th	ne follow	ing data for averages	s, fits, limits,	etc. • • •
		275 BARATE		
		²⁷⁶ ADRIANI		$Z \rightarrow q^* q^*$
>41.7	95	277 BARDADIN		
>44.7	95	277 BARDADIN	92 RVUE	d -type, $\Gamma(Z)$
>40.6	95	²⁷⁸ DECAMP	92 ALEP	u -type, $\Gamma(Z)$
>44.2	95	278 DECAMP	92 ALEP	d -type, $\Gamma(Z)$
>45	95	²⁷⁹ DECAMP	92 ALEP	u or d type,
				$Z \rightarrow q^* q^*$
>45	95	²⁷⁸ ABREU	91F DLPH	<i>u</i> -type, $\Gamma(Z)$
>45	95	²⁷⁸ ABREU	91F DLPH	<i>d</i> -type, $\Gamma(Z)$
>21.1	95	²⁸⁰ BEHREND	86C CELL	$e(q^*) = -1/3, q^* \to$
>22.3	95	²⁸⁰ BEHREND	86c CELL	$\begin{array}{c} qg \\ e(q^*) = 2/3, \ q^* \rightarrow \ qg \end{array}$
>22.5	95	²⁸⁰ BEHREND		$e(q^*) = -1/3, q^* \rightarrow$
>23.2	95	²⁸⁰ BEHREND	86c CELL	$e(q^*) = 2/3, q^* \rightarrow q\gamma$

²⁷⁴ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

²⁷¹ Superseded by ADRIANI 93M.

²⁷² DECAMP 900 limit based on B($Z \rightarrow \nu \nu^*$)·B($\nu^* \rightarrow \nu \gamma$) < 6 × 10⁻⁵ (95%CL), assuming B($\nu^* \rightarrow \nu \gamma$) = 1.

²⁷³ Superseded by DECAMP 92.

²⁷⁵ BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

²⁷⁶ ADRIANI 92F search for $Z \to q^* \overline{q}^*$ followed with $q^* \to q \gamma$ decays and give the limit $\sigma_Z + \mathsf{B}(Z \to q^* \overline{q}^*) + \mathsf{B}^2(q^* \to q \gamma) < 2\,\mathrm{pb}$ at 95%CL. Assuming five flavors of degenerate q^* of homodoublet type, $\mathsf{B}(q^* \to q \gamma) < 4\%$ is obtained for $m_{q^*} < 45~\mathrm{GeV}$.

 $^{^{277}}$ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z){<}36$ MeV.

²⁷⁸ These limits are independent of decay modes.

²⁷⁹ Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

²⁸⁰ BEHREND 86C search for $e^+e^- \to q^* \overline{q}^*$ for $m_{q^*} >$ 5 GeV. But m < 5 GeV excluded by total hadronic cross section. The limits are for point-like photon couplings of excited quarks.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \to q^*\overline{q}$ or $p\overline{p} \to q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>775	95	²⁸¹ ABAZOV	04C D0	$p\overline{p} \rightarrow q^*X, q^* \rightarrow qg$
none 200–520 and 580–760	95	²⁸² ABE	97G CDF	$p\overline{p} \rightarrow q^*X, q^* \rightarrow 2$
none 80–570	95	²⁸³ ABE	95N CDF	jets $p\overline{p} \rightarrow q^* X, q^* \rightarrow qg$ $q\gamma, qW$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		-		
>205	95	²⁸⁴ CHEKANOV	02D ZEUS	$ep \rightarrow q^*X$
>188	95	²⁸⁵ ADLOFF	00E H1	$ep \rightarrow q^*X$
		²⁸⁶ ABREU	990 DLPH	$e^+e^- ightarrow qq^*$
		²⁸⁷ BARATE	98∪ ALEP	$Z \rightarrow qq^*$
		²⁸⁸ ADLOFF	97 H1	Lepton-flavor violation
none 40-169	95	²⁸⁹ BREITWEG	97C ZEUS	$ep \rightarrow q^*X$
		²⁹⁰ DERRICK	95B ZEUS	$ep \rightarrow q^*X$
none 80-540	95	²⁹¹ ABE	94 CDF	$p\overline{p} \rightarrow q^* X, q^* \rightarrow q \gamma,$
> 79	95	²⁹² ADRIANI	93M L3	qW $\lambda_{\mathcal{Z}}(L3) > 0.06$
		293 ALITTI		=
>288	90			$p\overline{p} \rightarrow q^*X, q^* \rightarrow qg$
		²⁹⁴ ABREU	92D DLPH	$Z \rightarrow qq^*$
		²⁹⁵ ADRIANI	92F L3	$Z \rightarrow qq^*$
> 75	95	²⁹² DECAMP	92 ALEP	$Z \rightarrow qq^*, \lambda_Z > 1$
> 88	95	²⁹⁶ DECAMP		$Z \rightarrow qq^*, \lambda_7 > 1$
> 86	95	²⁹⁶ AKRAWY		$Z \rightarrow qq^*, \lambda_7 > 1.2$
		²⁹⁷ ALBAJAR		$p\overline{p} \rightarrow q^*X$,
				$q^* o q W$
> 39	95	²⁹⁸ BEHREND	86c CELL	$e^+e^- ightarrow q^*\overline{q}~(q^* ightarrow$
				$qg,q\gamma), \lambda_{\gamma}=1$

²⁸¹ ABAZOV 04C assume $f_{\rm S}=f=f'=\Lambda/m_{g^*}$.

²⁸² ABE 97G search for new particle decaying to dijets.

²⁸³ ABE 95N assume a degenerate u^* and d^* with $f_s = f = f' = \Lambda/m_{q^*}$. See their Fig. 4 for the excluded region in $m_{q^*} - f$ plane.

²⁸⁴ CHEKANOV 02D search for single q^* production in ep collisions with the decays $q^* \rightarrow q\gamma$, qZ, qW. $f_s=0$ and $f=f'=\Lambda/m_{q^*}$ is assumed for the q^* coupling. See their Fig. 5b for the exclusion plot in the mass-coupling plane.

²⁸⁵ ADLOFF 00E search for single q^* production in ep collisions with the decays $q^* \to q\gamma$, qZ, qW. $f_s=0$ and $f=f'=\Lambda/m_{q^*}$ is assumed for the q^* coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.

²⁸⁶ ABREU 990 result is from e^+e^- collisions at $\sqrt{s}=$ 183 GeV. See their Fig. 6 for the exclusion limit in the mass-coupling plane.

²⁸⁷ BARATE 980 obtain limits on the Zqq^* coupling. See their Fig. 16 for limits in mass-coupling plane

²⁸⁸ ADLOFF 97 search for single q^* production in ep collisions with the decay $q^* \rightarrow q\gamma$. See their Fig. 6 for the rejection limits on the product of the production cross section and the branching ratio.

- 289 BREITWEG 97C search for single q^* production in ep collisions with the decays $q^*
 ightarrow$ $q\gamma$, qW. $f_s=0$, and $f=-f'=2\Lambda/m_{\sigma^*}$ is assumed for the q^* coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.
- 290 DERRICK 95B search for single q^* production via $q^* \, q \, \gamma$ coupling in $e \, p$ collisions with the decays $q^* \rightarrow qW$, qZ, qg, $q\gamma$. See their Fig. 15 for the exclusion plot in the $m_{a^*}^{} - \lambda \gamma$ plane.
- 291 ABE 94 search for resonances in jet- γ and jet-W invariant mass in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.8 TeV. The limit is for $f_{\rm S}=f=f'=\Lambda/m_{q^*}$ and u^* and d^* are assumed to be degenerate. See their Fig. 4 for the excluded region in m_{a^*} -f plane.
- ²⁹² Assumes $B(q^* \rightarrow qg) = 1$.
- 293 ALITTI 93 search for resonances in the two-jet invariant mass. The limit is for $f_{
 m s}=f$ $=f'=\Lambda/m_{a^*}$. u^* and d^* are assumed to be degenerate. If not, the limit for u^* (d^*) is 277 (247) GeV if $m_{d^*} \gg m_{u^*} (m_{u^*} \gg m_{d^*})$.
- 294 ABREU 92D give $\sigma(e^+e^- \rightarrow Z \rightarrow q^*\overline{q} \text{ or } q\overline{q}^*) \times B(q^* \rightarrow q\gamma) < 15 \text{ pb } (95\% \text{ CL})$ for m_{a^*} <80 GeV.
- ²⁹⁵ ADRIANI 92F search for $Z \to qq^*$ with $q^* \to q\gamma$ and give the limit $\sigma_Z \cdot \mathsf{B}(Z \to qq^*)$ $q\,q^*)\cdot {\rm B}(q^*\, o\, q\,\gamma)<$ (2–10) pb (95%CL) for $m_{q^*}=$ (46–82) GeV.
- ²⁹⁶ Assumes B($q^* \rightarrow q\gamma$) = 0.1.
- ²⁹⁷ ALBAJAR 89 give $\sigma(q^* \rightarrow W + \text{jet})/\sigma(W) < 0.019$ (90% CL) for $m_{q^*} > 220$ GeV.
- 298 BEHREND 86C has $E_{\rm cm}=42.5$ – $^{46.8}$ GeV. See their Fig. 3 for excluded region in the ${\it m_{\it q^*}} - (\lambda_\gamma/{\it m_{\it q^*}})^2$ plane. The limit is for $\lambda_\gamma = 1$ with $\eta_L = \eta_R = 1$.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT	
>84	95	²⁹⁹ ABE	89D CDF	$p\overline{p} \rightarrow q_6\overline{q}_6$	

 299 ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

Created: 6/29/2005 14:55

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

 $\lambda \equiv m_{\ell_8}/\Lambda$

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>86	95	³⁰⁰ ABE	8 9 D	CDF	Stable ℓ_8 : $p\overline{p} \rightarrow \ell_8\overline{\ell}_8$
• • • We do not use the	followi	ng data for averages	, fits	, limits,	etc. • • •
		³⁰¹ ABT	93	H1	e ₈ : ep → e ₈ X
none 3.0-30.3	95	³⁰² KIM	90	AMY	e_8 : $e^+e^- \rightarrow ee +$
none 3.5–30.3	95	302 KIM	90	AMY	jets μ_8 : $e^+e^- o \mu\mu + jets$
		303 KIM	90	AMY	$e_0: e^+e^- \rightarrow gg; R$
>19.8	95	³⁰⁴ BARTEL	87 B	JADE	$e_8, \mu_8, \tau_8: e^+e^-; R$
none 5–23.2	95	³⁰⁴ BARTEL	87 B	JADE	μ_8 : $e^+e^- \rightarrow \mu\mu$ +
		305 BARTEL	85K	JADE	jets e_8 : $e^+e^- o gg$; R

HTTP://PDG.LBL.GOV

Page 26

- ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.
- 301 ABT 93 search for e_8 production via e-gluon fusion in $e\,p$ collisions with $e_8\to e\,g$. See their Fig. 3 for exclusion plot in the m_{e_8} – Λ plane for $m_{e_8}=$ 35–220 GeV.
- $^{302}\,\mathrm{KIM}$ 90 is at $E_\mathrm{cm}=$ 50–60.8 GeV. The same assumptions as in BARTEL 87B are used.
- 303 KIM 90 result $(m_{e_8}\Lambda_M)^{1/2}>178.4$ GeV (95%CL, $\alpha_s=0.16$ used) is subject to the same restriction as for BARTEL 85K.
- 304 BARTEL 87B is at $E_{\rm cm}=46.3$ –46.78 GeV. The limits assume ℓ_8 pair production cross sections to be eight times larger than those of the corresponding heavy lepton pair production.
- ³⁰⁵ In BARTEL 85K, R can be affected by $e^+e^- \rightarrow gg$ via e_q exchange. Their limit $m_{e_8} >$ 173 GeV (CL=95%) at $\lambda = m_{e_8}/\Lambda_M = 1$ ($\eta_L = \eta_R = 1$) is not listed above because the cross section is sensitive to the product $\eta_L \eta_R$, which should be absent in ordinary theory with electronic chiral invariance.

MASS LIMITS for Color Octet Neutrinos (ν_8)

 $\lambda \equiv m_{\ell_{\rm R}}/\Lambda$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
VALUE (GEV)	CL/0				
>110	90	³⁰⁶ BARGER	89	RVUE	ν_8 : $p\overline{p} \rightarrow \nu_8\overline{\nu}_8$
• • • We do not use the	e follow	ing data for averages	s, fits	, limits,	etc. • • •
none 3.8-29.8	95	³⁰⁷ KIM	90	AMY	$ u_8 \colon e^+e^- o \text{acoplanar} $ jets
none 9–21.9	95	308 BARTEL			jets $ u_8 \colon e^+e^- o \text{acoplanar}$ iets

 $^{306\,\}mathrm{BARGER}$ 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8\to~\nu\,g$ is assumed.

MASS LIMITS for W₈ (Color Octet W Boson)

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • We do not use the following data for averages, fits, limits, etc. • •

309 ALBAJAR 89 UA1
$$p \overline{p} \rightarrow W_8 X$$
, $W_8 \rightarrow W_g$

Created: 6/29/2005 14:55

 309 ALBAJAR 89 give $\sigma(W_8 \to~W+{\rm jet})/\sigma(W) < 0.019$ (90% CL) for $m_{W_8}~>$ 220 GeV.

 $^{307\,\}mathrm{KIM}$ 90 is at $E_\mathrm{cm}=$ 50–60.8 GeV. The same assumptions as in BARTEL 87B are used.

³⁰⁸ BARTEL 87B is at $E_{\rm cm}=46.3$ –46.78 GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)_L×U(1)_Y quantum numbers.

REFERENCES FOR Searches for Quark and Lepton Compositeness

ΛΡΛ 7 Ο\/	04C	DD D60 111101D	V.M. Abazov et al.	(D0 Collab.)
ABAZOV ABBIENDI	04C	PR D69 111101R EPJ C33 173	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	04N	PL B602 167	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04N	EPJ C37 405	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
CHEKANOV	04B	PL B591 23	S. Chekanov <i>et al.</i>	(ZEUS Collab.)
ACHARD	03B	PL B568 23	P. Achard et al.	` (L3 Collab.)
ADLOFF	03	PL B568 35	C. Adloff et al.	(H1 Collab.)
BABICH	03	EPJ C29 103	A.A. Babich et al.	,
ABBIENDI	02G	PL B544 57	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ACHARD	02D	PL B531 28	P. Achard <i>et al.</i>	(L3 Collab.)
ACHARD	02J	PL B549 290	P. Achard et al.	(L3 Collab.)
ADLOFF	02	PL B525 9	C. Adloff et al.	(H1 Collab.)
ADLOFF	02B	PL B548 35	C. Adloff et al.	(H1 Collab.)
CHEKANOV ACCIARRI	02D 01D	PL B549 32 PL B502 37	S. Chekanov <i>et al.</i> M. Acciarri <i>et al.</i>	(ZEUS Collab.) (L3 Collab.)
AFFOLDER	01D	PRL 87 231803	T. Affolder et al.	(CDF Collab.)
BOURILKOV	01	PR D64 071701	D. Bourilkov	(CDI Collab.)
CHEUNG	01B	PL B517 167	K. Cheung	
ABBIENDI	001	EPJ C14 73	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	00R	EPJ C13 553	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI,G	00D	EPJ C18 253	G. Abbiendi et al.	(OPAL Collab.)
ABBOTT	00E	PR D62 031101	B. Abbott et al.	(D0 Collab.)
ABREU	00A	PL B491 67	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00S	PL B485 45	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	00E	PL B473 177	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	00G	PL B475 198	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	00P	PL B489 81	M. Acciarri <i>et al.</i> C. Adloff <i>et al.</i>	(L3 Collab.)
ADLOFF	00 00E	PL B479 358	C. Adloff <i>et al.</i>	(H1 Collab.)
ADLOFF AFFOLDER	00L	EPJ C17 567 PR D62 012004	T. Affolder <i>et al.</i>	(H1 Collab.) (CDF Collab.)
BARATE	001	EPJ C12 183	R. Barate <i>et al.</i>	(ALEPH Collab.)
BOURILKOV	00	PR D62 076005	D. Bourilkov	(ALLI II Collab.)
BREITWEG	00B	EPJ C14 239	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
ABBIENDI	99	EPJ C6 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	99F	EPJ C8 23	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	99P	PL B465 303	G. Abbiendi et al.	(OPAL Collab.)
ABBOTT	99C	PRL 82 2457	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	99D	PRL 82 4769	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	99A	EPJ C11 383	P. Abreu et al.	(DELPHI Collab.)
ABREU	990	EPJ C8 41	P. Abreu <i>et al.</i> A.F. Zarnecki	(DELPHI Collab.)
ZARNECKI ABBOTT	99 98G	EPJ C11 539 PRL 80 666	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	98J	PL B433 429	P. Abreu <i>et al.</i>	(D0 Collab.) (DELPHI Collab.)
ACCIARRI	98J	PL B433 163	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	98T	PL B439 183	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACKERSTAFF	98	EPJ C1 21	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	98C	EPJ C1 45	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	98V	EPJ C2 441	K. Ackerstaff et al.	(OPAL Collab.)
ACKER,K	98B	PL B438 379	K. Ackerstaff et al.	(OPAL Collab.)
BARATE	98J	PL B429 201	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	98U	EPJ C4 571	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARGER	98E	PR D57 391	V. Barger <i>et al.</i>	
BERTRAM MCFARLAND	98 98	PL B443 347 EPJ C1 509	I. Bertram, E.H. Simmons K.S. McFarland <i>et al.</i>	(CCED/NuToV, Collab.)
MIURA	98	PR D57 5345	M. Miura <i>et al.</i>	(CCFR/NuTeV Collab.) (VENUS Collab.)
ABE	97G	PR D55 R5263	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97T	PRL 79 2198	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	97B	PL B393 245	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	97I	ZPHY C74 57	P. Abreu et al.	(DELPHI Collab.)
Also	97L	ZPHY C75 580 erratum		(DELPHI Collab.)
ABREU	97J	ZPHY C74 577	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	97G	PL B401 139	M. Acciarri et al.	(L3 Collab.)
ACCIARRI		PL B413 159	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	97 07 <i>C</i>	PL B391 197	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF ADLOFF	97C 97	PL B391 221 NP B483 44	K. Ackerstaff et al.C. Adloff et al.	(OPAL Collab.)
ARIMA	97 97	PR D55 19	T. Arima et al.	(H1 Collab.) (VENUS Collab.)
, MAHVI/A	51		, a and the ar.	(VENUS CONAD.)

BREITWEG DEANDREA ABE ABE ABREU ACCIARRI ACCIARRI	97C 97 96 96S 96K 96D 96L	ZPHY C76 631 PL B409 277 PRL 77 438 PRL 77 5336 PL B380 480 PL B370 211 PL B384 323		J. Breitweg et al. A. Deandrea F. Abe et al. F. Abe et al. P. Abreu et al. M. Acciarri et al. M. Acciarri et al.		(ZEUS Collab.) (MARS) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.)
ALEXANDER ALEXANDER BUSKULIC BUSKULIC ABE	96K 96Q 96W 96Z 95N	PL B377 222 PL B386 463 PL B385 445 PL B384 333 PRL 74 3538		 G. Alexander et al. G. Alexander et al. D. Buskulic et al. D. Buskulic et al. F. Abe et al. 		(OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.)
ACCIARRI AID DERRICK ABE DIAZCRUZ	95G 95 95B 94 94	PL B353 136 PL B353 578 ZPHY C65 627 PRL 72 3004 PR D49 R2149		M. Acciarri et al. S. Aid et al. M. Derrick et al. F. Abe et al. J.L. Diaz Cruz, O.A. Sar	npayo	(L3 Collab.) (H1 Collab.) (ZEUS Collab.) (CDF Collab.) (CINV)
VELISSARIS ABE ABT ADRIANI ALITTI	94 93G 93 93M 93	PL B331 227 PRL 71 2542 NP B396 3 PRPL 236 1 NP B400 3		C. Velissaris et al. F. Abe et al. I. Abt et al. O. Adriani et al. J. Alitti et al.		(AMY Collab.) (CDF Collab.) (H1 Collab.) (L3 Collab.) (UA2 Collab.)
BUSKULIC DERRICK ABE ABE ABE	93Q 93B 92B 92D	ZPHY C59 215 PL B316 207 PRL 68 1463 PRL 68 1104 PRL 69 2896		D. Buskulic et al. M. Derrick et al. F. Abe et al. F. Abe et al. F. Abe et al.		(ALEPH Collab.) (ZEUS Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABREU ABREU ADRIANI ADRIANI BARDADIN	92C 92D 92B 92F	ZPHY C53 41 ZPHY C53 555 PL B288 404 PL B292 472 ZPHY C55 163		P. Abreu et al. P. Abreu et al. O. Adriani et al. O. Adriani et al. M. Bardadin-Otwinowska		(DELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.)
DECAMP HOWELL KROHA PDG	92 92 92 92	PRPL 216 253 PL B291 206 PR D46 58 PR D45, 1 June,	Part II	D. Decamp <i>et al.</i> B. Howell <i>et al.</i> H. Kroha K. Hikasa <i>et al.</i>	(KE	(CLER) (ALEPH Collab.) (TOPAZ Collab.) (ROCH) EK, LBL, BOST+)
SHIMOZAWA ABE ABREU ABREU ADACHI	92 91D 91E 91F 91	PL B284 144 PRL 67 2418 PL B268 296 NP B367 511 PL B255 613		K. Shimozawa et al. F. Abe et al. P. Abreu et al. P. Abreu et al. I. Adachi et al.		(TOPAZ Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (TOPAZ Collab.)
AKRAWY ALITTI BEHREND BEHREND Also	91F 91B 91B 91C 91B	PL B257 531 PL B257 232 ZPHY C51 143 ZPHY C51 149 ZPHY C51 143		M.Z. Akrawy et al. J. Alitti et al. H.J. Behrend et al. H.J. Behrend et al. H.J. Behrend et al.		(OPAL Collab.) (UA2 Collab.) (CELLO Collab.) (CELLO Collab.) (CELLO Collab.)
ABE ADEVA ADEVA ADEVA ADEVA	90I 90F 90K 90L 90O	ZPHY C48 13 PL B247 177 PL B250 199 PL B250 205 PL B252 525		K. Abe et al. B. Adeva et al. B. Adeva et al. B. Adeva et al. B. Adeva et al.		(VENUS Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.)
AKRAWY AKRAWY AKRAWY DECAMP DECAMP KIM	90F 90I 90J 90G 90O 90	PL B241 133 PL B244 135 PL B246 285 PL B236 501 PL B250 172 PL B240 243		M.Z. Akrawy et al. M.Z. Akrawy et al. M.Z. Akrawy et al. D. Decamp et al. D. Decamp et al. G.N. Kim et al.		(OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.)
ABE ABE ABE ABE ABE	89 89B 89D 89H 89J	PRL 62 613 PRL 62 1825 PRL 63 1447 PRL 62 3020 ZPHY C45 175		F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. K. Abe et al.		(AMY Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (VENUS Collab.)
ABE ADACHI ALBAJAR BARGER BEHREND BRAUNSCH	89L 89B 89 89 89B 89C	PL B232 425 PL B228 553 ZPHY C44 15 PL B220 464 PL B222 163 ZPHY C43 549		K. Abe et al. I. Adachi et al. C. Albajar et al. V. Barger et al. H.J. Behrend et al. W. Braunschweig et al.		(VENUS Collab.) (TOPAZ Collab.) (UA1 Collab.) (WISC, KEK) (CELLO Collab.) (TASSO Collab.)
DORENBOS HAGIWARA KIM	89 89 89	ZPHY C41 567 PL B219 369 PL B223 476		J. Dorenbosch <i>et al.</i> K. Hagiwara, M. Sakuda, S.K. Kim <i>et al.</i>	N. Terunuma	(CHARM Collab.) (KEK, DURH+) (AMY Collab.)

ABE BARINGER BRAUNSCH BRAUNSCH ANSARI BARTEL BEHREND FERNANDEZ ARNISON ARNISON BARTEL BEHREND DERRICK Also DERRICK GRIFOLS JODIDIO Also APPEL BARTEL BERGER BERGER BERGER BAGNAIA BARTEL BARTEL BARTEL BERGER BARTEL BARTEL	88B 88 88D 87D 87B 87C 87B 86C 86C 86 86C 86 86C 86 86S 86S 86B 86B 86B 86B 86B 86B 86B 86B 86B 86B	PL B213 400 PL B206 551 ZPHY C37 171 ZPHY C40 163 PL B195 613 ZPHY C36 15 PL B191 209 PR D35 10 PL B172 461 PL B177 244 ZPHY C31 359 ZPHY C30 371 PL 168B 420 PL B181 178 PL 166B 463 PR D34 3286 PR D34 3286 PL 168B 264 PR D34 1967 PR D37 237 erratum PL 160B 349 PL 160B 349 PL 160B 337 ZPHY C27 341 PL 138B 430 PL 146B 437 PL 146B 121 RMP 56 579	K. Abe et al. P. Baringer et al. W. Braunschweig et al. W. Braunschweig et al. R. Ansari et al. W. Bartel et al. H.J. Behrend et al. E. Fernandez et al. G.T.J. Arnison et al. W. Bartel et al. W. Bartel et al. H.J. Behrend et al. H.J. Behrend et al. M. Derrick et al. M. Derrick et al. M. Derrick et al. J.A. Grifols, S. Peris A. Jodidio et al. J.A. Appel et al. W. Bartel et al. C. Berger et al. C. Berger et al. P. Bagnaia et al. W. Bartel et al. W. Bartel et al. W. Bartel et al. U. Bartel et al. W. Bartel et al. W. Bartel et al. E. Eichten et al.	(VENUS Collab.) (HRS Collab.) (TASSO Collab.) (TASSO Collab.) (UA2 Collab.) (JADE Collab.) (EELLO Collab.) (MAC Collab.) (UA1 Collab.) (JADE Collab.) (CELLO Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (JADE Collab.) (ELLO Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (HRS Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.)
	-			
	-			
-	-			
ALTHOFF	83C	PL 126B 493	M. Althoff <i>et al.</i>	(TASSO Collab.)
RENARD	82	PL 116B 264	F.M. Renard	(CERN)