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MUON DECAY PARAMETERS

Revised September 2001 by W. Fetscher and H.-J. Gerber (ETH
Zürich).

Introduction: All measurements in direct muon decay,

µ− → e− +2 neutrals, and its inverse, νµ + e− → µ− +neutral,

are successfully described by the “V -A interaction”, which

is a particular case of a local, derivative-free, lepton-number-

conserving, four fermion interaction [1]. As shown below, within

this framework, the Standard Model assumptions, such as the

V -A form and the nature of the neutrals (νµ and ν̄e), and hence

the doublet assignments (νe e−)L and (νµ µ−)L, have been

determined from experiments [2,3]. All considerations on muon

decay are valid for the leptonic tau decays τ → ` + ντ + ν̄e with

the replacements mµ → mτ , me → m`.

Parameters: The differential decay probability to obtain

an e± with (reduced) energy between x and x + dx, emitted in

the direction x̂3 at an angle between ϑ and ϑ + dϑ with respect

to the muon polarization vector P µ, and with its spin parallel

to the arbitrary direction ζ̂, neglecting radiative corrections, is

given by

d2Γ

dx d cos ϑ
=

mµ

4π3
W 4

eµ G2
F

√
x2 − x2

0

× (FIS(x) ± Pµ cos ϑ FAS(x))

×
[
1 + ζ̂ · P e(x, ϑ)

]
. (1)

Here, Weµ = max(Ee) = (m2
µ + m2

e)/2mµ is the maximum e±

energy, x = Ee/Weµ is the reduced energy, x0 = me/Weµ =

9.67 × 10−3, and Pµ = |P µ| is the degree of muon polarization.

ζ̂ is the direction in which a perfect polarization-sensitive

electron detector is most sensitive. The isotropic part of the

spectrum, FIS(x), the anisotropic part FAS(x) and the electron

polarization, P e(x, ϑ), may be parametrized by the Michel

parameters [1,4] ρ, η, ξ, δ, etc. These are bilinear combinations

of the coupling constants gγ
εµ, which occur in the matrix element

(given below).

If the masses of the neutrinos as well as x2
0 are neglected,

the energy and angular distribution of the electron in the rest
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frame of a muon (µ±) measured by a polarization insensitive

detector, is given by

d2Γ

dx d cosϑ
∼ x2 ·

{
3(1 − x) +

2ρ

3
(4x − 3) + 3η x0(1 − x)/x

± Pµ · ξ · cos ϑ

[
1 − x +

2δ

3
(4x − 3)

]}
. (2)

Here, ϑ is the angle between the electron momentum and the

muon spin, and x ≡ 2Ee/mµ. For the Standard Model coupling,

we obtain ρ = ξδ = 3/4, ξ = 1, η = 0 and the differential decay

rate is

d2Γ

dx d cos ϑ
=

G2
F m5

µ

192π3
[3 − 2x ± Pµ cos ϑ(2x − 1)] x2 . (3)

The coefficient in front of the square bracket is the total decay

rate.

If only the neutrino masses are neglected, and if the e±

polarization is detected, then the functions in Eq. (1) become

FIS(x) = x(1 − x) + 2
9

ρ(4x2 − 3x − x2
0) + η · x0(1 − x)

FAS(x) = 1
3
ξ

√
x2 − x2

0

×
[
1 − x + 2

3
δ
(
4x − 3 +

(√
1 − x2

0 − 1
))]

P e(x, ϑ) = PT1 · x̂1 + PT2 · x̂2 + PL · x̂3 . (4)

Here x̂1, x̂2, and x̂3 are orthogonal unit vectors defined as

follows:

x̂3 is along the e momentum pe

x̂3 × P µ

|x̂2 × P µ| = x̂2 is transverse to pe and perpendicular

to the “decay plane”

x̂2 × x̂3 = x̂1 is transverse to the pe and in the

“decay plane.”
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The components of P e then are given by

PT1(x, ϑ) = Pµ sin ϑ · FT1(x)/ (FIS(x) ± Pµ cos ϑ · FAS(x))

PT2(x, ϑ) = Pµ sin ϑ · FT2(x)/ (FIS(x) ± Pµ cos ϑ · FAS(x))

PL(x, ϑ) =
(
±FIP(x) + Pµ cos ϑ

× FAP(x)
)
/ (FIS(x) ± Pµ cos ϑ · FAS(x)) ,

where

FT1(x) = 1
12

{
−2

[
ξ′′ + 12(ρ − 3

4
)
]
(1 − x)x0

−3η(x2 − x2
0) + η′′(−3x2 + 4x − x2

0)
}

FT2(x) = 1
3

√
x2 − x2

0

{
3
α′

A
(1 − x) + 2

β′

A

√
1 − x2

0

}
FIP(x) = 1

54

√
x2 − x2

0

{
9ξ′

(
−2x + 2 +

√
1 − x2

0

)

+ 4ξ(δ − 3
4
)(4x − 4 +

√
1 − x2

0)
}

FAP(x) = 1
6

{
ξ′′(2x2 − x − x2

0) + 4(ρ − 3
4
)
(
4x2 − 3x − x2

0

)
+2η′′(1 − x)x0

}
. (5)

For the experimental values of the parameters ρ, ξ, ξ′, ξ′′, δ,

η, η′′, α/A, β/A, α′/A, β′/A, which are not all independent,

see the Data Listings below. Experiments in the past have also

been analyzed using the parameters a, b, c, a′, b′, c′, α/A, β/A,

α′/A, β′/A (and η = (α − 2β)/2A), as defined by Kinoshita

and Sirlin [5]. They serve as a model-independent summary of

all possible measurements on the decay electron (see Listings

below). The relations between the two sets of parameters are

ρ − 3
4

= 3
4
(−a + 2c)/A ,

η = (α − 2β)/A ,

η ′′ = (3α + 2β)/A ,

δ − 3
4

= 9
4

· (a′ − 2c′)/A
1 − [a + 3a′ + 4(b + b′) + 6c − 14c′]/A

,

1 − ξ
δ

ρ
= 4

[(b + b′) + 2(c − c′)]/A
1 − (a − 2c)/A

,
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1 − ξ′ = [(a + a′) + 4(b + b′) + 6(c + c′)]/A ,

1 − ξ ′′ = (−2a + 20c)/A ,

where

A = a + 4b + 6c . (6)

The differential decay probability to obtain a left-handed

νe with (reduced) energy between y and y + dy, neglecting

radiative corrections as well as the masses of the electron and

of the neutrinos, is given by [6]

dΓ

dy
=

m5
µ G2

F

16π3
· Qνe

L · y2
{

(1 − y) − ωL · (y − 3
4
)
}

. (7)

Here, y = 2 Eνe/mµ. Qνe
L and ωL are parameters. ωL is the

neutrino analog of the spectral shape parameter ρ of Michel.

Since in the Standard Model, Qνe
L = 1, ωL = 0, the measure-

ment of dΓ/dy has allowed a null-test of the Standard Model

(see Listings below).

Matrix element: All results in direct muon decay (energy

spectra of the electron and of the neutrinos, polarizations, and

angular distributions) and in inverse muon decay (the reaction

cross section) at energies well below mW c2 may be parametrized

in terms of amplitudes gγ
εµ and the Fermi coupling constant GF ,

using the matrix element

4GF√
2

∑
γ=S,V,T
ε,µ=R,L

gγ
εµ〈ēε|Γγ |(νe)n〉〈ν̄µ)m|Γγ |µµ〉. (8)

We use the notation of Fetscher et al. [2], who in turn use the

sign conventions and definitions of Scheck [7]. Here, γ = S, V, T

indicates a scalar, vector, or tensor interaction; and ε, µ = R, L

indicate a right- or left-handed chirality of the electron or muon.

The chiralities n and m of the νe and ν̄µ are then determined

by the values of γ, ε, and µ. The particles are represented by

fields of definite chirality [8].

As shown by Langacker and London [9], explicit lepton-num-

ber nonconservation still leads to a matrix element equivalent to

Eq. (8). They conclude that it is not possible, even in principle,

to test lepton-number conservation in (leptonic) muon decay if

the final neutrinos are massless and are not observed.
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The ten complex amplitudes gγ
εµ (gT

RR and gT
LL are identi-

cally zero) and GF constitute 19 independent (real) parameters

to be determined by experiment. The Standard Model interac-

tion corresponds to one single amplitude gV
LL being unity and

all the others being zero.

The (direct) muon decay experiments are compatible with

an arbitrary mix of the scalar and vector amplitudes gS
LL and

gV
LL – in the extreme even with purely scalar gS

LL = 2, gV
LL = 0.

The decision in favour of the Standard Model comes from the

quantitative observation of inverse muon decay, which would be

forbidden for pure gS
LL [2].

Experimental determination of V –A: In order to de-

termine the amplitudes gγ
εµ uniquely from experiment, the

following set of equations, where the left-hand sides represent

experimental results, has to be solved.

a = 16(|gV
RL|2 + |gV

LR|2) + |gS
RL + 6gT

RL|2 + |gS
LR + 6gT

LR|2

a′ = 16(|gV
RL|2 − |gV

LR|2) + |gS
RL + 6gT

RL|2 − |gS
LR + 6gT

LR|2

α = 8Re
{

gV
RL(gS∗

LR + 6gT∗
LR) + gV

LR(gS∗
RL + 6gT∗

RL)
}

α′ = 8Im
{
gV
LR(gS∗

RL + 6gT∗
RL) − gV

RL(gS∗
LR + 6gT∗

LR)
}

b = 4(|gV
RR|2 + |gV

LL|2) + |gS
RR|2 + |gS

LL|2

b′ = 4(|gV
RR|2 − |gV

LL|2) + |gS
RR|2 − |gS

LL|2

β = −4Re
{
gV
RRgS∗

LL + gV
LLgS∗

RR

}
β′ = 4Im

{
gV
RRgS∗

LL − gV
LLgS∗

RR

}
c = 1

2

{
|gS

RL − 2gT
RL|2 + |gS

LR − 2gT
LR|2

}
c′ = 1

2

{
|gS

RL − 2gT
RL|2 − |gS

LR − 2gT
LR|2

}
and

Qνe
L = 1 −

{
1
4
|gS

LR|2 + 1
4
|gS

LL|2 + |gV
RR|2 + |gV

RL|2 + 3|gT
LR|2

}

ωL = 3
4

{|gS
RR|2 + 4|gV

LR|2 + |gS
RL + 2gT

RL|2}
|gS

RL|2 + |gS
RR|2 + 4|gV

LL|2 + 4|gV
LR|2 + 12|gT

RL|2}
.
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It has been noted earlier by C. Jarlskog [10], that certain exper-

iments observing the decay electron are especially informative

if they yield the V -A values. The complete solution is now

found as follows. Fetscher et al. [2] introduced four probabilities

Qεµ(ε, µ = R, L) for the decay of a µ-handed muon into an

ε-handed electron and showed that there exist upper bounds

on QRR, QLR, and QRL, and a lower bound on QLL. These

probabilities are given in terms of the gγ
εµ’s by

Qεµ = 1
4
|gS

εµ|2 + |gV
εµ|2 + 3(1 − δεµ)|gT

εµ|2 , (9)

where δεµ = 1 for ε = µ, and δεµ = 0 for ε 6= µ. They are

related to the parameters a, b, c, a′, b′, and c′ by

QRR = 2(b + b′)/A ,

QLR = [(a − a′) + 6(c − c′)]/2A ,

QRL = [(a + a′) + 6(c + c′)]/2A ,

QLL = 2(b − b′)/A , (10)

with A = 16. In the Standard Model, QLL = 1 and the others

are zero.

Since the upper bounds on QRR, QLR, and QRL are found

to be small, and since the helicity of the νµ in pion decay is

known from experiment [11,12] to very high precision to be

−1 [13], the cross section S of inverse muon decay, normalized

to the V -A value, yields [2]

|gS
LL|2 ≤ 4(1 − S) (11)

and

|gV
LL|2 = S . (12)

Thus the Standard Model assumption of a pure V -A leptonic

charged weak interaction of e and µ is derived (within errors)

from experiments at energies far below mass of the W±:

Eq. (12) gives a lower limit for V -A, and Eqs. (9) and (11)

give upper limits for the other four-fermion interactions. The

existence of such upper limits may also be seen from QRR +

QRL = (1 − ξ′)/2 and QRR + QLR = 1
2
(1 + ξ/3 − 16 ξδ/9).
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Table 1 gives the current experimental limits on the magnitudes

of the gγ
εµ’s.

Limits on the “charge retention” coordinates, as used in the

older literature (e.g., Ref. 16), are given by Burkard et al. [17].

Table 1. Coupling constants gγ
εµ. Ninety-percent confidence

level experimental limits. The limits on |gS
LL| and |gV

LL| are

from Ref. 14, and the others are from Ref. 15. The experimental

uncertainty on the muon polarization in pion decay is included.

Note that, by definition, |gS
εµ| ≤ 2, |gV

εµ| ≤ 1 and |gT
εµ| ≤ 1/

√
3.

|gS
RR| < 0.066 |gV

RR| < 0.033 |gT
RR| ≡ 0

|gS
LR| < 0.125 |gV

LR| < 0.060 |gT
LR| < 0.036

|gS
RL| < 0.424 |gV

RL| < 0.110 |gT
RL| < 0.122

|gS
LL| < 0.550 |gV

LL| > 0.960 |gT
LL| ≡ 0
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