

Magnetic Monopole Searches

Isolated supermassive monopole candidate events have not been confirmed. The most sensitive experiments obtain negative results.

Best cosmic-ray supermassive monopole flux limit:

 $< 1.0 imes 10^{-15} \text{ cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$ for $1.1 imes 10^{-4} < eta < 0.1$

Supersymmetric Particle Searches

Limits are based on the Minimal Supersymmetric Standard Model.

Assumptions include: 1) $\tilde{\chi}_1^0$ (or $\tilde{\gamma}$) is lightest supersymmetric particle; 2) *R*-parity is conserved; 3) With the exception of \tilde{t} and \tilde{b} , all scalar quarks are assumed to be degenerate in mass and $m_{\tilde{q}_R} = m_{\tilde{q}_L}$. 4) Limits for sleptons refer to the $\tilde{\ell}_R$ states.

See the Particle Listings for a Note giving details of supersymmetry.

$$\begin{split} \widetilde{\chi}_{i}^{0} &- \text{neutralinos (mixtures of } \widetilde{\gamma}, \widetilde{Z}^{0}, \text{ and } \widetilde{H}_{i}^{0}) \\ \text{Mass } m_{\widetilde{\chi}_{1}^{0}} > 46 \text{ GeV, CL} = 95\% \quad [\text{all } \tan\beta, \text{ all } \Delta m_{0}, \text{ all } m_{0}] \\ \text{Mass } m_{\widetilde{\chi}_{2}^{0}} > 62.4 \text{ GeV, CL} = 95\% \\ & [1 < \tan\beta < 40, \text{ all } m_{0}, \text{ all } m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}}] \\ \text{Mass } m_{\widetilde{\chi}_{3}^{0}} > 99.9 \text{ GeV, CL} = 95\% \\ & [1 < \tan\beta < 40, \text{ all } m_{0}, \text{ all } m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}}] \\ \widetilde{\chi}_{i}^{\pm} &- \text{charginos (mixtures of } \widetilde{W}^{\pm} \text{ and } \widetilde{H}_{i}^{\pm}) \\ \text{Mass } m_{\widetilde{\chi}_{1}^{\pm}} > 94 \text{ GeV, CL} = 95\% \\ & [\tan\beta < 40, m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}} > 3 \text{ GeV, all } m_{0}] \end{split}$$

HTTP://PDG.LBL.GOV

Created: 6/8/2007 17:08

 \widetilde{e} — scalar electron (selectron) Mass m > 73 GeV, CL = 95% [all $m_{\widetilde{e}_R} - m_{\widetilde{\chi}_1^0}$]

$$\begin{split} \widetilde{\mu} & --\text{ scalar muon (smuon)} \\ \text{Mass } m > \ 94 \text{ GeV, CL} = 95\% \\ & [1 \leq \tan\beta \leq 40, \ m_{\widetilde{\mu}_R} - m_{\widetilde{\chi}^0_1} \ > 10 \text{ GeV}] \end{split}$$

 $\widetilde{\tau}$ — scalar tau (stau)

$$\begin{array}{l} \text{Mass } m > \ 81.9 \ \text{GeV, } \text{CL} = 95\% \\ [m_{\widetilde{\tau}_R} - m_{\widetilde{\chi}_1^0} \ > 15 \ \text{GeV, all} \ \theta_{\tau}] \end{array}$$

 \tilde{q} — scalar quark (squark)

These limits include the effects of cascade decays, evaluated assuming a fixed value of the parameters μ and $\tan\beta$. The limits are weakly sensitive to these parameters over much of parameter space. Limits assume GUT relations between gaugino masses and the gauge coupling.

Mass m > 250 GeV, CL = 95% [tan $\beta = 2$, $\mu < 0$, A = 0]

 \tilde{b} — scalar bottom (sbottom)

Mass m > 89 GeV, CL = 95% $[m_{\widetilde{b}_1} - m_{\widetilde{\chi}^0_1} > 8$ GeV, all θ_b]

 \tilde{t} — scalar top (stop)

 $\begin{array}{ll} \mathsf{Mass} \,\, m > \,\, 95.7 \,\, \mathsf{GeV}, \,\, \mathsf{CL} = 95\% \\ [\widetilde{t} \rightarrow \,\, c \, \widetilde{\chi}_1^0, \,\, \mathsf{all} \,\, \theta_t, \,\, m_{\widetilde{t}} - \, m_{\widetilde{\chi}_1^0} > 10 \,\, \mathsf{GeV}] \end{array}$

 \widetilde{g} — gluino

The limits summarised here refer to the high-mass region ($m_{\tilde{g}} \gtrsim 5 \text{ GeV}$), and include the effects of cascade decays, evaluated assuming a fixed value of the parameters μ and tan β . The limits are weakly sensitive to these parameters over much of parameter space. Limits assume GUT relations between gaugino masses and the gauge coupling,

Technicolor

Searches for a color-octet techni- ρ constrain its mass to be greater than 260 to 480 GeV, depending on allowed decay channels. Similar bounds exist on the color-octet techni- ω .

HTTP://PDG.LBL.GOV

Quark and Lepton Compositeness, Searches for

Scale Limits Λ for Contact Interactions (the lowest dimensional interactions with four fermions)

If the Lagrangian has the form

$$\pm \frac{g^2}{2\Lambda^2} \,\overline{\psi}_L \gamma_\mu \psi_L \overline{\psi}_L \gamma^\mu \psi_L$$

(with $g^2/4\pi$ set equal to 1), then we define $\Lambda \equiv \Lambda_{LL}^{\pm}$. For the full definitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full *Review* and the original literature.

$\Lambda^+_{LL}(eeee)$	>~ 8.3 TeV, CL $=~$ 95%
$\Lambda_{LL}^{-}(eeee)$	>~ 10.3 TeV, CL = 95%
$\Lambda^+_{LL}(ee\mu\mu)$	>~ 8.5 TeV, CL $=~$ 95%
$\Lambda^{LL}(ee\mu\mu)$	>~ 7.3 TeV, CL $=~$ 95%
$\Lambda^+_{LL}(ee au au)$	>~ 5.4 TeV, CL $=~$ 95%
$\Lambda^{LL}(ee au au)$	>~ 7.2 TeV, CL $=~$ 95%
$\Lambda^+_{LL}(\ell\ell\ell\ell)$	>~ 9.0 TeV, CL $=~$ 95%
$\Lambda^{LL}(\ell\ell\ell\ell)$	>~ 9.0 TeV, CL $=$ 95%
$\Lambda^+_{LL}(eeuu)$	>~ 23.3 TeV, CL = 95%
$\Lambda_{LL}^{-}(eeuu)$	>~12.5 TeV, CL $=95%$
$\Lambda_{LL}^+(eedd)$	>~11.1 TeV, CL $=~95%$
$\Lambda_{LL}^{-}(eedd)$	>~26.4 TeV, $CL=95%$
$\Lambda_{LL}^+(eecc)$	>~1.0 TeV, CL $=~95%$
$\Lambda_{LL}^{-}(eecc)$	>~2.1 TeV, CL $= 95%$
$\Lambda^+_{LL}(eebb)$	>~5.6 TeV, CL $=~95%$
$\Lambda_{LL}^{-}(eebb)$	>~ 4.9 TeV, CL $=~$ 95%
$\Lambda^+_{LL}(\mu\mu q q)$	>~2.9 TeV, CL $=~95%$
$\Lambda_{LL}^-(\mu\mu q q)$	>~ 4.2 TeV, CL $=~$ 95%
$\Lambda(\ell\nu\ell\nu)$	>~3.10 TeV, CL = 90% $>~2.81$ TeV, CL = 95%
$\Lambda(e\nu q q)$	
$\Lambda_{LL}^+(q q q q)$	>~2.7 TeV, CL $=~95%$
$\Lambda_{LL}^{-}(q q q q)$	>~ 2.4 TeV, CL $=~$ 95%
$\Lambda_{LL}^+(\nu\nu q q)$	>~ 5.0 TeV, CL $=~$ 95%
$\Lambda_{LL}^{-}(\nu\nu q q)$	>~5.4 TeV, CL $=95%$

HTTP://PDG.LBL.GOV

Created: 6/8/2007 17:08

Excited Leptons

The limits from $\ell^{*+}\ell^{*-}$ do not depend on λ (where λ is the $\ell\ell^{*}$ transition coupling). The λ -dependent limits assume chiral coupling. $e^{*\pm}$ — excited electron Mass m > 103.2 GeV, CL = 95% (from e^*e^*) Mass m > 255 GeV, CL = 95% (from ee^*) Mass m > 310 GeV, CL = 95% (if $\lambda_{\gamma} = 1$) $\mu^{*\pm}$ — excited muon Mass m > 103.2 GeV, CL = 95% (from $\mu^* \mu^*$) Mass m > 190 GeV, CL = 95% (from $\mu\mu^*$) $\tau^{*\pm}$ — excited tau Mass m > 103.2 GeV, CL = 95% (from $\tau^* \tau^*$) Mass m > 185 GeV, CL = 95% (from $\tau \tau^*$) ν^* — excited neutrino Mass m > 102.6 GeV, CL = 95% (from $\nu^* \nu^*$) Mass m > 190 GeV, CL = 95% (from $\nu\nu^*$) q^* — excited quark Mass m > 45.6 GeV, CL = 95% (from $q^* q^*$) Mass m (from q^*X) Color Sextet and Octet Particles Color Sextet Quarks (q_6) Mass m > 84 GeV, CL = 95%(Stable q_6) Color Octet Charged Leptons (ℓ_8) Mass m > 86 GeV, CL = 95%(Stable ℓ_8) Color Octet Neutrinos (ν_8)

HTTP://PDG.LBL.GOV

Mass m > 110 GeV, CL = 90% ($\nu_8 \rightarrow \nu g$)

Extra Dimensions

Please refer to the Extra Dimensions section of the full *Review* for a discussion of the model-dependence of these bounds, and further constraints.

Constraints on the fundamental gravity scale

 $M_H > 1.1 \text{ TeV}, \text{CL} = 95\%$ (dim-8 operators; $p\overline{p} \rightarrow e^+e^-, \gamma\gamma$) $M_D > 1.1 \text{ TeV}, \text{CL} = 95\%$ ($e^+e^- \rightarrow G\gamma$; 2-flat dimensions) $M_D > 3-1000 \text{ TeV}$ (astrophys. and cosmology; 2-flat dimensions; limits depend on technique and assumptions)

Constraints on the radius of the extra dimensions, for the case of two-flat dimensions of equal radii

- r < 90-660 nm (astrophysics; limits depend on technique and assumptions)
- r < 0.22 mm, CL = 95% (direct tests of Newton's law; cited in Extra Dimensions review)