

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m = 5620.2 \pm 1.6$ MeV $m_{\Lambda_b} - m_{B^0} = 339.2 \pm 1.4$ MeV Mean life $\tau = (1.383^{+0.049}_{-0.048}) \times 10^{-12}$ s $c\tau = 415 \ \mu m$

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates in *Z* decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP *b*-baryon production fraction B($b \rightarrow b$ -baryon) and are evaluated for our value B($b \rightarrow b$ -baryon) = (9.2 ± 1.8)%.

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

∧ ⁰ _b DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$J/\psi(1S)$ $\Lambda imes$ B $(b o \Lambda^0_b)$		$(4.7\pm2.3) \times 10^{-1}$	-5	1741
$\Lambda_c^+ \pi^-$		$(8.8\pm3.2)\times10^{-1}$	-3	2343
$\Lambda_{c}^{+} a_{1}(1260)^{-}$		seen		2153
$\Lambda_{c}^{+}\ell^{-}\overline{ u}_{\ell}$ anything	[<i>a</i>]	(10.6±3.1) %		-
$\Lambda_c^+ \ell^- \overline{ u}_\ell$		$(5.0^{+1.9}_{-1.4})\%$		2345
$\Lambda_{c}^{+}\pi^{+}\pi^{-}\ell^{-}\overline{ u}_{\ell}$		$(5.6\pm3.1)\%$		2335
$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$		($6.3^{+4.0}_{-3.1}) \times 10^{-1}$	-3	2211
$\Lambda_c(2625)^+ \ell^- \overline{ u}_\ell$		$(1.1^{+0.6}_{-0.4})\%$		2196

HTTP://PDG.LBL.GOV

p h	[b] <	2.3	imes 10 ⁻⁵	90%	2730
$p\pi^-$	<	5.0	imes 10 ⁻⁵	90%	2730
р К	<	5.0	imes 10 ⁻⁵	90%	2709
$\Lambda\gamma$	<	1.3	imes 10 ⁻³	90%	2699

$I(J^P) = 1(\frac{1}{2}^+)$ I, J, P need confirmation.
Mass $\mathit{m}(arsigma_b^+) = 5807.8 \pm 2.7$ MeV
Mass $\mathit{m}(\varSigma_b^-) = 5815.2 \pm 2.0$ MeV

Σь

Σ_b decay modes	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 \pi$	dominant	128
Σ_b^*	$I(J^P) = 1(rac{3}{2}^+)$ I, J, P need confi	rmation.
$egin{array}{llllllllllllllllllllllllllllllllllll$	5829.0 ± 3.4 MeV 5836.4 ± 2.8 MeV 1.2 ± 2.0 MeV	
Σ_b^* DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi$	dominant	156
Ξ_{b}^{0}, Ξ_{b}^{-} Mass $m = 5792.4$	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ I, J, P need confi $4 \pm 3.0 \text{ MeV}$ $42^{\pm 0.28} \times 10^{-12} \text{ c}$	rmation.
$\mathbf{E}_{b} \text{ DECAY MODES}$	$(42 - 0.24) \times 10$ S Fraction (Γ_i/Γ)	p Scale factor (MeV/c)
$ \begin{array}{ccc} \Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X \times B(\overline{b} \to \Xi_b^- \to J/\psi \Xi^- \times B(b \to \Xi_b^-) \end{array} $	$ \begin{array}{c} \Xi_b) \\ \Xi_b) \\ \Xi_b) \end{array} (3.9 \pm 1.2) \times 10^{-4} \\ (1.3 \pm 0.9) \times 10^{-5} \end{array} $	1.4 —
Ω_b^-	$I(J^P) = 0(\frac{1}{2}^+)$	

$I(J^P) = 0(\frac{1}{2}^+)$
I, J, P need confirmation.

Mass $m = 6165 \pm 16$ MeV

HTTP://PDG.LBL.GOV Page 2

Ω_b^- DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \Omega^- imes B(b o \ \Omega_b)$	$(1.1\pm0.8) imes 10^{-5}$	1900

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b) Mean life $\tau = (1.319^{+0.039}_{-0.038}) \times 10^{-12}$ s

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction $B(b \rightarrow b$ -baryon) and are evaluated for our value B($b \rightarrow b$ -baryon) = (9.2 \pm 1.8)%.

The branching fractions B(b-baryon $\rightarrow~\Lambda\ell^-\overline{\nu}_\ell$ anything) and B(Λ^0_h \rightarrow

 $\Lambda_{c}^{+} \ell^{-} \overline{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with $B(b \rightarrow b$ -baryon) were used to determine $B(b \rightarrow b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

$(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$ Fraction (Γ_i/Γ) *p* (MeV/*c* $(5.7^+_{-2.3})\%$ $p\mu^-\overline{\nu}$ anything $p\ell \overline{\nu}_{\ell}$ anything $(5.5\pm1.6)\%$ panything $(69 \pm 26) \%$ $\Lambda \ell^- \overline{\nu}_\ell$ anything $(3.7\pm0.9)\%$ Λ / Λ anything $(38 \pm 10)\%$ $\Xi^{-}\ell^{-}\overline{\nu}_{\ell}$ anything $(6.4\pm2.1)\times10^{-3}$

b-baryon ADMIXTURE DECAY MODES

NOTES

[a] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.

[b] Here h^- means π^- or K^- .

HTTP://PDG.LBL.GOV