Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review. A REVIEW GOES HERE – Check our WWW List of Reviews

CONTENTS:

Scale Limits for Contact Interactions: $\Lambda(eeee)$ Scale Limits for Contact Interactions: $\Lambda(ee\mu\mu)$ Scale Limits for Contact Interactions: $\Lambda(ee\tau\tau)$ Scale Limits for Contact Interactions: $\Lambda(\ell \ell \ell \ell)$ Scale Limits for Contact Interactions: $\Lambda(eeqq)$ Scale Limits for Contact Interactions: $\Lambda(\mu \mu q q)$ Scale Limits for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$ Scale Limits for Contact Interactions: $\Lambda(e \nu q q)$ Scale Limits for Contact Interactions: $\Lambda(q q q q)$ Scale Limits for Contact Interactions: $\Lambda(\nu \nu q q)$ Mass Limits for Excited $e(e^*)$ - Limits for Excited $e(e^*)$ from Pair Production - Limits for Excited $e(e^*)$ from Single Production - Limits for Excited e (e^{*}) from $e^+e^- \rightarrow \gamma\gamma$ - Indirect Limits for Excited $e(e^*)$ Mass Limits for Excited μ (μ^*) - Limits for Excited μ (μ^*) from Pair Production - Limits for Excited μ (μ^*) from Single Production - Indirect Limits for Excited μ (μ^*) Mass Limits for Excited τ (τ^*) – Limits for Excited τ (τ^*) from Pair Production - Limits for Excited τ (τ^*) from Single Production Mass Limits for Excited Neutrino (ν^*) - Limits for Excited ν (ν^*) from Pair Production - Limits for Excited ν (ν^*) from Single Production Mass Limits for Excited $q(q^*)$ - Limits for Excited $q(q^*)$ from Pair Production - Limits for Excited $q(q^*)$ from Single Production Mass Limits for Color Sextet Quarks (q_6) Mass Limits for Color Octet Charged Leptons (ℓ_8) Mass Limits for Color Octet Neutrinos (ν_8) Mass Limits for W_8 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: $\Lambda(eee)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference. $\Lambda_{LL}^{+}(\text{TeV})$ $\Lambda_{LL}^{-}(\text{TeV})$ $\frac{CL\%}{95}$ $\frac{DOCUMENT ID}{1 \text{ BOURILKOV 01}}$ $\frac{TECN}{\text{RVUE}}$ $\frac{COMMENT}{E_{cm}} = 192-208 \text{ GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>5.3	>6.8	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$
>4.7	>6.1	95	³ ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$
>4.4	>5.4	95	ABREU	00S	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
1 A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.						

²SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements. ³ABBIENDI 04G limits are from $e^+e^- \rightarrow e^+e^-$ cross section at $\sqrt{s} = 130-207$ GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>6.6	>9.5	95	⁴ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$		
> 8.5	>3.8	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$		
• • • We	do not use	the follow	wing data for ave	rages,	fits, lim	its, etc. ● ● ●		
>7.3	>7.6	95	ABDALLAH	06C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$		
>8.1	>7.3	95	⁵ ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$		
>6.6	>6.3	95	ABREU	00S	DLPH	$E_{cm} = 183 - 189 \text{ GeV}$		
⁴ SCHA ⁵ ABBIE	⁴ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements. ⁵ ABBIENDI 04G limits are from $e^+e^- \rightarrow \mu\mu$ cross section at $\sqrt{s} = 130-207$ GeV.							

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	>5.8	95	⁶ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
>7.9	>4.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$
>4.9	>7.2	95	⁷ ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$
• • • We	do not use	the follo	wing data for ave	rages,	fits, lim	its, etc. • • •
>5.2	>5.4	95	ABREU	00S	DLPH	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
⁶ SCHA ⁷ ABBIE	EL 07A lim ENDI 04G li	its are fro mits are f	om ${\it R}_c$, ${\it Q}^{depl}_{FB}$, an from $e^+e^- o c$	d had $\tau \tau$ cro	ronic cro oss sectio	oss section measurements. on at $\sqrt{s}=130 extsf{-}207~ extsf{GeV}.$

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	$\Lambda^{LL}({\rm TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	> 10.3	95	⁸ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>9.1	>8.2	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 { m GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

>7.7	>9.5	95	⁹ ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$
			¹⁰ ВАВІСН	03	RVUE	
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
⁸ SCH ⁹ ABE 10 BAE mod	AEL 07A li BIENDI 04G BICH 03 ob el independ	mits are limits a tain a b lent ana	from R_c , Q_{FB}^{depl} , and the from $e^+e^- ightarrow$ ound $-0.175~{ m TeV}^{-1}$ by sis allowing all of	nd had $\ell^+ \ell^-$	lronic cro cross se L/A ² L < ALR, A _R	coss section measurements. Section at $\sqrt{s} = 130-207$ GeV. C 0.095 TeV ⁻² (95%CL) in R_L , Λ_{RR} to coexist.

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 8.4	>10.2	95	¹¹ ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	¹² SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95	¹¹ SCHAEL	07A	ALEP	(eebb)
>23.3	>12.5	95	¹³ CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	¹³ CHEUNG	01 B	RVUE	(eedd)
• • • We	do not use	the fo	llowing data for av	erage	s, fits, lir	mits, etc. • • •
> 4.2	>4.0	95	¹⁴ AARON	11C	H1	(eeqq)
> 3.8	>3.8	95	¹⁵ ABDALLAH	11	DLPH	(eetc)
>12.9	>7.2	95	¹⁶ SCHAEL	07 A	ALEP	(eeqq)
> 3.7	>5.9	95	¹⁷ ABULENCIA	06L	CDF	(eeqq)
¹¹ ABDA	LLAH 09 a	and SC	HAEL 07A limits a	re fror	n R_b , A^b	b FB
¹² SCHA	EL 07A lim	its are	from R_c , Q_{FB}^{depl} , a	nd ha	dronic c	ross section measurements.
¹³ CHEU	NG 01B is	an upd	late of BARGER 98	BE.		
$14 \Delta ARC$	N 11C limi	ts are f	from O^2 spectrum	measi	uremente	s of $e^{\pm} n \rightarrow e^{\pm} X$

¹⁴ AARON 11C limits are from Q^2 spectrum measurements of $e^{\pm}p \rightarrow e^{\pm}X$. ¹⁵ ABDALLAH 11 limit is from $e^+e^- \rightarrow t\overline{c}$ cross section. $\Lambda_{LL} = \Lambda_{LR} = \Lambda_{RL} = \Lambda_{RR}$ is assumed. ¹⁶ SCHAEL 07A limit assumes quark flavor universality of the contact interactions.

¹⁷ABULENCIA 06L limits are from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu qq)$

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>4.5	>4.9	95	¹⁸ AAD	11E	ATLS	$(\mu \mu q q)$ (isosinglet)
• • • We	do not use	the follo	wing data for ave	rages,	fits, limi	ts, etc. ● ● ●
>2.9	>4.2	95	¹⁹ ABE	97⊤	CDF	$(\mu \mu q q)$ (isosinglet)
¹⁸ AAD 1 ¹⁹ ABE 9	L1E limits a 17⊤ limits a	re from μ re from μ	$\mu^+\mu^-$ mass distri $\mu^+\mu^-$ mass distrib	bution oution	in pp c in p p →	ollisions at $E_{\rm cm}=$ 7 TeV. $\mu^+\mu^-$ X at $E_{\rm cm}=$ 1.8 TeV.

SCALE LIMITS for	Contact	Interactions:	Λ(ℓνℓι	<i>י</i>)	
VALUE (TeV)	CL%	DOCUMENT I	D	TECN	COMMENT
>3.10	90	²⁰ JODIDIO	86	SPEC	$\Lambda^{\pm}_{LR}(u_{\mu} u_{e}\mu e)$

HTTP://PDG.LBL.GOV

а

- • We do not use the following data for averages, fits, limits, etc. • •
- $\begin{array}{rcl} >3.8 & & 2^{1} \text{ DIAZCRUZ} & 94 & \text{RVUE } \Lambda_{LL}^{+}(\tau \nu_{\tau} e \nu_{e}) \\ >8.1 & & 2^{1} \text{ DIAZCRUZ} & 94 & \text{RVUE } \Lambda_{LL}^{-}(\tau \nu_{\tau} e \nu_{e}) \\ >4.1 & & 2^{2} \text{ DIAZCRUZ} & 94 & \text{RVUE } \Lambda_{LL}^{+}(\tau \nu_{\tau} \mu \nu_{\mu}) \\ >6.5 & & 2^{2} \text{ DIAZCRUZ} & 94 & \text{RVUE } \Lambda_{LL}^{-}(\tau \nu_{\tau} \mu \nu_{\mu}) \end{array}$

²⁰ JODIDIO 86 limit is from $\mu^+ \to \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $[\eta_{LL} \ (\overline{\nu}_{\mu}_L \gamma^{\alpha} \mu_L) \ (\overline{e}_L \gamma_{\alpha} \nu_{eL}) + \eta_{LR} \ (\overline{\nu}_{\mu}_L \gamma^{\alpha} \nu_{eL} \ (\overline{e}_R \gamma_{\alpha} \mu_R)]$ with $g^2/4\pi = 1$ and $(\eta_{LL}, \eta_{LR}) = (0, \pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL}, \eta_{LR}) = (\pm 1, 0)$. For more general constraints with right-handed neutrinos and chirality nonconserving

- contact interactions, see their text. ²¹ DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow e\nu\nu)$ and assume flavor-dependent contact in-
- teractions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.
- ²² DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow \mu\nu\nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau\nu_{\tau}\mu\nu_{\mu}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e \nu q q)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN
>2.81	95	²³ AFFOLDER	01	CDF
23 AFFOLDER 001 bot	und is for	a scalar interaction	ו ק ק	ı ⊽ eı.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Limits are for Λ_{LL}^{\pm} with color-singlet isoscalar exchanges among u_L 's and d_L 's only, unless otherwise noted. See EICHTEN 84 for details.

VALUE (Te	V) <u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>5.6	95	²⁴ KHACHATRY.	11F	CMS	$p p ightarrow$ dijet angl.; Λ^+_{LL}
• • • W	e do not use the followi	ng data for average	es, fits	s, limits,	etc. • • •
>3.4	95	²⁵ AAD	11	ATLS	$pp ightarrow dijet; \Lambda^+_{LL}$
>4.0	95	²⁶ KHACHATRY.	10A	CMS	pp ; dijet centrality; Λ_{LL}^+
>2.96	95	²⁷ ABAZOV	09 AE	D0	$p \overline{p} ightarrow dijet, angl. \Lambda^+_{LL}$

 24 KHACHATRYAN 11F limit is from dijet angular distribution in pp collisions at $E_{\rm cm}=$ 7 TeV. They also obtain $\Lambda^-_{LL}>$ 6.7 TeV.

²⁵ AAD 11 limit is from dijet angular distribution and dijet centrality ratio in pp collisions at $E_{cm} = 7$ TeV.

²⁶ The quoted limit is from dijet centrality ratio measurement in pp collisions at $\sqrt{s}=7$ TeV. ²⁷ ABAZOV 09AE also obtain $\Lambda_{II}^- > 2.96$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu \nu q q)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	$\Lambda^{-}_{LL}(\text{TeV})$	CL%	DOCUMENT ID	TECN	COMMENT
>5.0	>5.4	95	²⁸ MCFARLAND 98	CCFR	νN scattering
HTTP:/	/PDG.LE	BL.GOV	Page 4	C	reated: 6/18/2012 15:10

²⁸ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

MASS LIMITS for Excited e (e*)

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating ($\eta_L = \eta_R$). However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited $e(e^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>103.29529ABBIENDI02GOPAL $e^+e^- \rightarrow e^*e^*$ Homodoublet type• • • We do not use the following data for averages, fits, limits, etc. • • •>102.89530ACHARD03BL3 $e^+e^- \rightarrow e^*e^*$ Homodoublet type29From e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. f = f' is assumed.30From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = f' is assumed.30From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = f' is assumed.30From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = f' is assumed.ACHARD 03B also obtain limit for f = -f': $m_{a^*} > 96.6$ GeV.

Limits for Excited $e(e^*)$ from Single Production

These limits are from $e^+e^- \rightarrow e^*e$, $W \rightarrow e^*\nu$, or $ep \rightarrow e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \rightarrow e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1070	95	³¹ CHATRCHYAN	11x	CMS	$pp \rightarrow ee^*X$
• • • We do not use the	followin	g data for averages	, fits,	limits, e	tc. ● ● ●
> 272	95	³² AARON	08A	H1	$e p \rightarrow e^* X$
		³³ ABAZOV	08н	D0	$p \overline{p} ightarrow e^* e$
> 209	95	³⁴ ACOSTA	05 B	CDF	$p \overline{p} \rightarrow e^* X$
> 206	95	³⁵ ACHARD	03 B	L3	$e^+e^- ightarrow ee^*$
> 208	95	³⁶ ABBIENDI	0 2G	OPAL	$e^+e^- ightarrow \ e e^*$
> 228	95	³⁷ CHEKANOV	02 D	ZEUS	$e p \rightarrow e^* X$

- ³¹ CHATRCHYAN 11X search for single e^* production in pp collisions with the decay $e^* \rightarrow e\gamma$. $f = f' = \Lambda/m_{e^*}$ is assumed. See their Fig. 2 for the exclusion plot in the mass-coupling plane.
- ³² AARON 08A search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . The quoted limit assumes $f = f' = \Lambda/m_{e^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.
- ³³ABAZOV 08H search for single e^* production in $p\overline{p}$ collisions with the decays $e^* \rightarrow e\gamma$. The e^* production is assumed to be described by an effective four-fermion interaction. See their Fig. 5 for the exclusion plot in the mass-coupling plane.
- ³⁴ ACOSTA 05B search for single e^* production in $p\overline{p}$ collisions with the decays $e^* \rightarrow e\gamma$. $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig.3 for the exclusion limit in the mass-coupling plane.
- ³⁵ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ³⁶ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. $f = f' = \Lambda/m_{e^*}$ is assumed for e^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- ³⁷ CHEKANOV 02D search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 5a for the exclusion plot in the mass-coupling plane.

Limits for Excited e (e^*) from $e^+e^- \rightarrow \gamma \gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_{\gamma}=1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L=\eta_R=1$. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review **D45** S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>356	95 38	ABDALLAH	04N	DLPH	\sqrt{s} = 161–208 GeV
\bullet \bullet \bullet We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
>310	95	ACHARD	0 2D	L3	\sqrt{s} = 192–209 GeV
20					

³⁸ ABDALLAH 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{a^*} > 295$ GeV at 95% CL.

Indirect Limits for Excited $e(e^*)$

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	owing data for aver	ages,	fits, limi	ts, etc. ● ● ●
	³⁹ DORENBOS	89	CHRM	$\overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e, \nu_{\mu} e \rightarrow \nu_{\mu} e$
	⁴⁰ GRIFOLS	86	THEO	$\nu_{\mu} e \rightarrow \nu_{\mu} e$
	⁴¹ RENARD	82	THEO	g-2 of electron

- ³⁹DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{\text{cut}}^2 / m_{e^*}^2 < 2.6 (95\% \text{ CL})$, where Λ_{cut} is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\text{cut}} = 1 \text{ TeV}$ and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620 \text{ GeV}$. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{\text{cut}}$ in composite models.
- ⁴⁰ GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.
- ⁴¹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ^*)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \rightarrow \mu\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT			
>103.2	95 4	² ABBIENDI	0 2G	OPAL	$e^+e^- \rightarrow$	$\mu^* \mu^*$	Homodoub	let type
• • • We do	not use th	ne following data	for av	/erages,	fits, limits,	etc. •	• •	
>102.8	95 4	³ ACHARD	03 B	L3	$e^+e^- \rightarrow$	$\mu^* \mu^*$	Homodoub	let type
42 From e^+	e^- collisio	ons at $\sqrt{s}=183$ -	-209 (GeV. <i>f</i> =	= f' is assui	med.		
43 From e^+	e^- collisio	ons at $\sqrt{s}=189$	-209	GeV. f	= f' is assu	umed.	ACHARD 0	3B also
obtain lin	nit for $f =$	$-f': m_{\mu^*} > 96.$	6 Ge	V.				

Limits for Excited μ (μ^*) from Single Production

These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>1090	95	⁴⁴ CHATRCHYAN	11X	CMS	$p p \rightarrow \mu \mu^* X$
• • • We do not use the	followin	g data for averages	, fits,	limits, e	tc. • • •
	95	⁴⁵ ABAZOV	06e	D0	$p \overline{p} \rightarrow \mu \mu^*$
> 221	95	⁴⁶ ABULENCIA, A	06 B	CDF	$p \overline{p} ightarrow \ \mu \mu^*$, $\mu^* ightarrow \ \mu \gamma$
> 180	95	⁴⁷ ACHARD	03 B	L3	$e^+e^- \rightarrow \mu\mu^*$
> 190	95	⁴⁸ ABBIENDI	0 2G	OPAL	$e^+e^- ightarrow \mu\mu^*$

- ⁴⁴ CHATRCHYAN 11x search for single μ^* production in *pp* collisions with the decay $\mu^* \rightarrow \mu\gamma$. $f = f' = \Lambda/m_{\mu^*}$ is assumed. See their Fig. 2 for the exclusion plot in the mass-coupling plane.
- ⁴⁵ ABAZOV 06E assume $\mu\mu^*$ production via four-fermion contact interaction $(4\pi/\Lambda^2)(\overline{q}_L\gamma^{\mu}q_L)(\overline{\mu}_L^*\gamma_{\mu}\mu)$. The obtained limit is $m_{\mu^*} > 618$ GeV ($m_{\mu^*} > 688$ GeV) for $\Lambda = 1$ TeV ($\Lambda = m_{\mu^*}$).
- $^{46}f = f' = \Lambda/m_{\mu^*}$ is assumed for the μ^* coupling. See their Fig.4 for the exclusion limit in the mass-coupling plane. ABULENCIA,A 06B also obtain m_{μ^*} limit in the contact interaction model with $\Lambda = m_{\mu^*}$, $m_{\mu^*} > 696$ GeV.
- ⁴⁷ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. $f = f' = \Lambda/m_{\mu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane
- is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane. ⁴⁸ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s} = 183$ –209 GeV. $f = f' = \Lambda/m_{\mu^*}$

is assumed for μ^{\ast} coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.

Indirect Limits for Excited μ (μ^*)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT IE)	TECN	COMMENT	
• • • We do not use the follow	/ing data for averag	ges, fits,	limits,	etc. ● ● ●	
	⁴⁹ RENARD	82	THEO	g-2 of muon	

⁴⁹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \rightarrow \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

 $\begin{array}{c|c} \hline \label{eq:linear} \underline{VALUE}\left(\text{GeV}\right) & \underline{CL\%} & \underline{DOCUMENT\ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \textbf{>103.2} & 95 & 50 & \text{ABBIENDI} & 02\text{G} & \text{OPAL} & e^+e^- \rightarrow \tau^*\tau^* & \text{Homodoublet type} \\ \hline \textbf{\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. \bullet \bullet$ \bullet$ \\ \hline \textbf{>102.8} & 95 & 51 & \text{ACHARD} & 03\text{B} & \text{L3} & e^+e^- \rightarrow \tau^*\tau^* & \text{Homodoublet type} \\ \hline \textbf{$^{50} From } e^+e^- & \text{collisions at } \sqrt{s} = 183-209 & \text{GeV. } f = f' & \text{is assumed.} \\ \hline \textbf{$^{51} From } e^+e^- & \text{collisions at } \sqrt{s} = 189-209 & \text{GeV. } f = f' & \text{is assumed.} \\ \hline \textbf{$^{51} From } e^+e^- & \text{collisions at } \sqrt{s} = 189-209 & \text{GeV. } f = f' & \text{is assumed.} \\ \hline \textbf{$^{51} From } e^+e^- & \text{collisions at } \sqrt{s} = 189-209 & \text{GeV.} \\ \hline \textbf{$^{51} From } e^+e^- & \text{collisions at } \sqrt{s} = 189-209 & \text{GeV.} \\ \hline \textbf{$f=f'$ is assumed.} & \text{ACHARD } 03\text{B} & \text{also obtain limit for } f = -f' & m_{\tau^*} > 96.6 & \text{GeV.} \\ \hline \end{array}$

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \rightarrow \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau \gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>185	95 52	ABBIENDI	02 G	OPAL	$e^+e^- \rightarrow \tau \tau^*$
• • • We do not use the	following d	ata for averages	, fits,	limits, e	tc. ● ● ●
>180	95 53	ACHARD	03 B	L3	$e^+e^- \rightarrow \tau \tau^*$
⁵² ABBIENDI 02G result	is from e^+	e ⁻ collisions at	$\sqrt{s} =$	= 183–20	09 GeV. $f = f' = \Lambda/m_{ au^*}$
is assumed for $ au^*$ cou plane.	pling. See t	their Fig. 4c for t	he ex	clusion l	imit in the mass-coupling
⁵³ ACHARD 03B result i	s from e^+	e [—] collisions at	$\sqrt{s} =$	189–20	9 GeV. $f=f'=\Lambda/m_{ au^*}$

is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \rightarrow \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>102.6	95	⁵⁴ ACHARD	03 B	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
• • • We do	not use	the following data	for av	/erages,	fits, limits, etc. • • •

⁵⁵ ABBIENDI 04N OPAL

⁵⁴ From $e^+ e^-$ collisions at $\sqrt{s} = 189-209$ GeV. f = -f' is assumed. ACHARD 03B also obtain limit for f = f': $m_{\nu_e^*} > 101.7$ GeV, $m_{\nu_\mu^*} > 101.8$ GeV, and $m_{\nu_\tau^*} > 92.9$ GeV.

___ See their Fig. 4 for the exclusion plot in the mass-coupling plane.

⁵⁵ From e^+e^- collisions at $\sqrt{s} = 192-209$ GeV, ABBIENDI 04N obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*) B^2(\nu^* \rightarrow \nu\gamma)$. See their Fig.2. The limit ranges from 20 to 45fb for $m_{\nu^*} > 45$ GeV.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \rightarrow \nu\nu^*$, $Z \rightarrow \nu\nu^*$, or $ep \rightarrow \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>213	95	56	AARON	08	H1	$e p \rightarrow \nu^* X$
• • • We do	not use	the	e following data	for av	/erages,	fits, limits, etc. • • •
>190	95	57	ACHARD	03 B	L3	$e^+e^- \rightarrow \nu \nu^*$
none 50-150	95	58	ADLOFF	02	H1	$e p \rightarrow \nu^* X$
>158	95	59	CHEKANOV	0 2D	ZEUS	$e p \rightarrow \nu^* X$
>171	95	60	ACCIARRI	01 D	L3	$e^+e^- \rightarrow \nu \nu^*$

- ⁵⁶ AARON 08 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.
- ⁵⁷ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. The quoted limit is for ν_e^* . $f = -f' = \Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ⁵⁸ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.
- ⁵⁹ CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f = f' = \Lambda/m_{\nu^*}$: $m_{\nu^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.
- ⁶⁰ ACCIARRI 01D search for $\nu\nu^*$ production in e^+e^- collisions at $\sqrt{s} = 192-202$ GeV with decays $\nu^* \rightarrow \nu\gamma$, $\nu^* \rightarrow eW$. $f=-f'=\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 4 for limits in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+e^- \rightarrow q^*\overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	CL%	DOCUMENT ID T	ECN COMMENT
>338	95	⁶¹ AALTONEN 10H C	$CDF q^* \rightarrow t W^-$
• • • We do not us	e the follow	ing data for averages, fits, I	limits, etc. • • •
		⁶² BARATE 980 A	LEP $Z \rightarrow q^* q^*$
> 45.6	95	⁶³ ADRIANI 93M L	.3 <i>u</i> or <i>d</i> type, $Z \rightarrow q^* q^*$
> 41.7	95	⁶⁴ BARDADIN 92 R	$VUE u$ -type, $\Gamma(Z)$
> 44.7	95	⁶⁴ BARDADIN 92 R	$VUE d$ -type, $\Gamma(Z)$
> 40.6	95	⁶⁵ DECAMP 92 A	LEP u -type, $\Gamma(Z)$
> 44.2	95	⁶⁵ DECAMP 92 A	LEP d -type, $\Gamma(Z)$
> 45	95	⁶⁶ DECAMP 92 A	LEP u or d type, $Z \rightarrow q^* q^*$
> 45	95	⁶⁵ ABREU 91F D)LPH <i>u</i> -type, Г(<i>Z</i>)
> 45	95	⁶⁵ ABREU 91F D)LPH <i>d</i> -type, $\Gamma(Z)$
			_

⁶¹ AALTONEN 10H obtain limits on the $q^* q^*$ production cross section in $p\overline{p}$ collisions. See their Fig. 3.

⁶² BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

⁶³ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

⁶⁴ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

⁶⁵ These limits are independent of decay modes.

⁶⁶Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \rightarrow q^*\overline{q}$, $p\overline{p} \rightarrow q^*X$, or $pp \rightarrow q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>2490	95	⁶⁷ CHATRCHYAN	111Y	CMS	$pp ightarrow q^* X$, $q^* ightarrow qg$		
$\bullet \bullet \bullet$ We do not	use the	following data for av	verage	es, fits, l	imits, etc. ● ● ●		
		⁶⁸ ABAZOV	11F	D0	$p\overline{p} \rightarrow q^*X, q^* \rightarrow qZ, qW$		
none 300–1260	95	⁶⁹ AAD	10	ATLS	$pp ightarrow q^* X$, $q^* ightarrow qg$		
none 500–1580	95	⁶⁹ KHACHATRY	10	CMS	$pp ightarrow q^* X$, $q^* ightarrow qg$		
> 510	95	⁷⁰ ABAZOV	06F	D0	$p \overline{p} ightarrow q^* X$, $q^* ightarrow q Z$		
> 775	95	⁷¹ ABAZOV	04C	D0	$p \overline{p} ightarrow q^* X$, $q^* ightarrow q g$		
⁶⁷ CHATRCHYA	N 11Y a	ssume degenerate q	* witl	$f_s = N$	$\sqrt{m_{a^*}}$.		
⁶⁸ ABAZOV 11F See their Fig.	search f 3 and F	or vectorlike quarks o ig. 4 for the limits o	decayion $\sigma \cdot$	ing to <i>W</i> B.	$^{\prime}$ +jet and Z +jet in $p\overline{p}$ collisions.		
⁶⁹ AAD 10, KH	ACHAT	RYAN 10 search fo	r hea	vy resor	nance decaying to 2 jets in <i>pp</i>		
collisions at $_{ m V}$	$\sqrt{s} = 7$ T	$eV. f_s = f = f' =$	1 is a	ssumed.			
⁷⁰ ABAZOV 06F assume q^* production via qg fusion and via contact interactions. The quoted limit is for $\Lambda = m_{q^*}$.							

⁷¹ABAZOV 04C assume $f_s = f = f' = \Lambda/m_{a^*}$.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	⁷² ABE	89 D	CDF	$p \overline{p} \rightarrow q_6 \overline{q}_6$

⁷² ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

$\kappa = m_{\ell_8}/m_{\ell_8}$					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>86	95	73 ABE	89 D	CDF	Stable $\ell_8: p\overline{p} \rightarrow \ell_8 \overline{\ell}_8$
\bullet \bullet \bullet We do not use	the follo	wing data for avera	ges, fi	ts, limits	s, etc. ● ● ●
		⁷⁴ АВТ	93	H1	$e_{R}: e_{P} \rightarrow e_{R}X$

⁷³ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

⁷⁴ ABT 93 search for e_8 production via *e*-gluon fusion in *e p* collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} - Λ plane for $m_{e_8} = 35-220$ GeV.

MASS LIMITS for Color Octet Neutrinos (ν_8)

$\lambda = m_{\ell_8}/\Lambda$					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>110	90	⁷⁵ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8\overline{\nu}_8$
• • • We do not us	e the fol	lowing data for ave	rages	, fits, lim	nits, etc. • • •
none 3.8–29.8 none 9–21.9	95 95	⁷⁶ KIM ⁷⁷ BARTEL	90 87в	AMY JADE	$ \nu_8: e^+e^- \rightarrow \text{acoplanar jets} $ $ \nu_8: e^+e^- \rightarrow \text{acoplanar jets} $
⁷⁵ BARGER 89 use Two-body decay	ed ABE	89B limit for event νg is assumed.	s with	n large r	nissing transverse momentum.
⁷⁶ KIM 90 is at E _c	m = 50-	-60.8 GeV. The san	ne ass	umption	s as in BARTEL 87B are used.
77 BARTEL 87B is	at F	= 46 3-46 78 GeV	/ The	limit a	ssumes the v_{0} pair production

¹⁷ BARTEL 87B is at $E_{\rm cm} = 46.3-46.78$ GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)_L×U(1)_Y quantum numbers.

MASS LIMITS for W_8 (Color Octet W Boson)

VALUE (GeV)	DOCUMENT ID		TECN	COMME	NT		
• • • We do not use the following data for averages, fits, limits, etc. • • •							
	⁷⁸ ALBAJAR	89	UA1	$p\overline{p} \rightarrow$	W ₈ X,	$W_8 \rightarrow$	WĘ
78 ALBAJAR 89 give $\sigma(W_8 ightarrow$	$W + jet)/\sigma(W)$	< 0.0	19 (90%	6 CL) fo	r <i>m</i> W8	> 220	GeV

REFERENCES FOR Searches for Quark and Lepton Compositeness

AAD AAD AARON ABAZOV ABDALLAH CHATRCHYAN CHATRCHYAN KHACHATRY AAD AALTONEN	11 11E 11C 11F 11 11X 11Y 11F 10 10H	PL B694 327 PR D84 011101 PL B705 52 PRL 106 081801 EPJ C71 1555 PL B704 143 PL B704 123 PRL 106 201804 PRL 105 161801 PRL 105 1091801	 G. Aad et al. G. Aad et al. F. D. Aaron et al. V.M. Abazov et al. J. Abdallah et al. S. Chatrchyan et al. S. Chatrchyan et al. V. Khachatryan et al. G. Aad et al. T. Aaltonen et al. 	(ATLAS Collab.) (ATLAS Collab.) (H1 Collab.) (D0 Collab.) (DELPHI Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (CDF Collab.)
KHACHATRY	10	PRL 105 211801	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY ABAZOV ABDALLAH AARON AARON ABAZOV SCHAEL ABAZOV ABAZOV ABDALLAH ABULENCIA ABULENCIA,A ACOSTA ABAZOV ABBIENDI ABBIENDI	10A 09AE 09 08 08A 08A 08A 07A 06E 06F 06C 06B 05B 04C 04N	PRL 105 262001 PRL 103 191803 EPJ C60 1 PL B663 382 PL B666 131 PR D77 091102R EPJ C49 411 PR D73 111102R PR D74 011104R EPJ C45 589 PRL 96 211801 PRL 97 191802 PRL 94 101802 PR D69 111101R EPJ C33 173 PL B602 167	 V. Khachatryan et al. V.M. Abazov et al. J. Abdallah et al. F.D. Aaron et al. F.D. Aaron et al. V.M. Abazov et al. S. Schael et al. V.M. Abazov et al. V.M. Abazov et al. J. Abdallah et al. A. Abulencia et al. D. Acosta et al. V.M. Abazov et al. G. Abbiendi et al. 	(CMS Collab.) (D0 Collab.) (DELPHI Collab.) (H1 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (DELPHI Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (DOPAL Collab.)
ABDALLAH ACHARD BABICH ABBIENDI ACHARD	04N 03B 03 02G 02D	EPJ C37 405 PL B568 23 EPJ C29 103 PL B544 57 PL B531 28	 J. Abdallah <i>et al.</i> P. Achard <i>et al.</i> A.A. Babich <i>et al.</i> G. Abbiendi <i>et al.</i> P. Achard <i>et al.</i> 	(DELPHI Collab.) (L3 Collab.) (OPAL Collab.) (L3 Collab.)

HTTP://PDG.LBL.GOV

Page 12

Created: 6/18/2012 15:10

Citation: J. Beringer et al. (Particle Data Group), PR $\mathbf{D86}$, 010001 (2012) (URL: http://pdg.lbl.gov)

ADLOFF CHEKANOV ACCIARRI AFFOLDER BOURILKOV CHEUNG	02 02D 01D 01I 01 01B	PL B525 9 PL B549 32 PL B502 37 PRL 87 231803 PR D64 071701 PL B517 167	 C. Adloff <i>et al.</i> S. Chekanov <i>et al.</i> M. Acciarri <i>et al.</i> T. Affolder <i>et al.</i> D. Bourilkov K. Cheung 	(H1 Collab.) (ZEUS Collab.) (L3 Collab.) (CDF Collab.)
ABREU ACCIARRI AFFOLDER	00S 00P 00I	PL B485 45 PL B489 81 PR D62 012004	P. Abreu <i>et al.</i> M. Acciarri <i>et al.</i> T. Affolder <i>et al.</i>	(DELPHI Collab.) (L3 Collab.) (CDF Collab.)
BARATE BARGER	98U 98E	EPJ C4 571 PR D57 391	R. Barate <i>et al.</i> V. Barger <i>et al.</i>	(ALEPH Collab.)
MCFARLAND ABE DIAZCRUZ ABT ADRIANI BARDADIN DECAMP PDG ABREU KIM ABE ABE ABE ABE	98 97T 94 93 93M 92 92 92 91F 90 89B 89D 89J	EPJ C1 509 PRL 79 2198 PR D49 R2149 NP B396 3 PRPL 236 1 ZPHY C55 163 PRPL 216 253 PR D45 S1 NP B367 511 PL B240 243 PRL 62 1825 PRL 63 1447 ZPHY C45 175	 K.S. McFarland <i>et al.</i> F. Abe <i>et al.</i> J.L. Diaz Cruz, O.A. Sampayo I. Abt <i>et al.</i> O. Adriani <i>et al.</i> M. Bardadin-Otwinowska D. Decamp <i>et al.</i> K. Hikasa <i>et al.</i> P. Abreu <i>et al.</i> G.N. Kim <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> 	(CCFR/NuTeV Collab.) (CDF Collab.) (CINV) (H1 Collab.) (L3 Collab.) (CLER) (ALEPH Collab.) (KEK, LBL, BOST+) (DELPHI Collab.) (AMY Collab.) (CDF Collab.) (CDF Collab.) (VENUS Collab.)
ALBAJAR BARGER DORENBOS BARTEL GRIFOLS JODIDIO Also EICHTEN RENARD	89 89 87B 86 86 86 84 82	ZPHY C44 15 PL B220 464 ZPHY C41 567 ZPHY C36 15 PL 168B 264 PR D34 1967 PR D37 237 (erratum) RMP 56 579 PL 116B 264	 C. Albajar <i>et al.</i> V. Barger <i>et al.</i> J. Dorenbosch <i>et al.</i> W. Bartel <i>et al.</i> J.A. Grifols, S. Peris A. Jodidio <i>et al.</i> A. Jodidio <i>et al.</i> E. Eichten <i>et al.</i> F.M. Renard 	(UA1 Collab.) (WISC, KEK) (CHARM Collab.) (JADE Collab.) (BARC) (LBL, NWES, TRIU) (LBL, NWES, TRIU) (FNAL, LBL, OSU) (CERN)

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$