Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

CONTENTS:

 H^\pm (Charged Higgs) Mass Limits Mass limits for $H^{\pm\pm}$ (doubly-charged Higgs boson) — Limits for $H^{\pm\pm}$ with $T_3=\pm 1$ — Limits for $H^{\pm\pm}$ with $T_3=0$

H[±] (Charged Higgs) MASS LIMITS

Unless otherwise stated, the limits below assume B($H^+ \to \tau^+ \nu$)+B($H^+ \to c \bar{s}$)=1, and hold for all values of B($H^+ \to \tau^+ \nu_\tau$), and assume H^+ weak isospin of T_3 =+1/2. In the following, $\tan \beta$ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like technipions. For a discussion of techniparticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review **D54** 1 (1996)) Edition of this Review.

Searches in e^+e^- collisions at and above the Z pole have conclusively ruled out the existence of a charged Higgs in the region $m_{H^+}\lesssim 45$ GeV, and are meanwhile superseded by the searches in higher energy e^+e^- collisions at LEP. Results that are by now obsolete are therefore not included in this compilation, and can be found in a previous Edition (The European Physical Journal **C15** 1 (2000)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the $e^+e^- \rightarrow H^+H^-$ process. Limits from $b \rightarrow s \gamma$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 80	95	¹ LEP	13	LEP	e ⁺ e ⁻ → H ⁺ H ⁻ ,E _{cm} ≤ 209GeV
					$H^+H^-, E_{\rm cm} \leq$
76.0	0.5	2 ADDIENDI	10	ODAL	209GeV
> 76.3	95	² ABBIENDI	12	OPAL	$e^+e^- \rightarrow H^+H^-, E_{cm} \le$
					77
> 74.4	95	ABDALLAH	041	DLPH	$E_{\rm cm} \le 209 {\rm GeV}$
> 76.5	95	ACHARD	03E	L3	$E_{\rm cm} \leq 209 {\rm GeV}$
> 79.3	95	HEISTER	02P	ALEP	$E_{\rm cm} \leq 209 {\rm GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		8	,,	-,
		³ AAD ⁴ AAD	13AC ATL 13V ATL	S $t \rightarrow bH^+$ S $t \rightarrow bH^+$, lepton non-
			-	universality
		⁵ AAD	12BH ATL	$S t \rightarrow bH^+$
		⁶ CHATRCHYAN	I 12AA CMS	$5 t \rightarrow bH^+$
		⁷ AALTONEN	11P CDF	$t \rightarrow bH^+, H^+ \rightarrow W^+A^0$
>316	95	⁸ DESCHAMPS	10 RVU	
		⁹ AALTONEN	09AJ CDF	
		¹⁰ ABAZOV	09AC D0	$t \rightarrow bH^+$
		¹¹ ABAZOV	09AG D0	$t \rightarrow bH^+$
		¹² ABAZOV	09AI D0	$t \rightarrow bH^+$
		¹³ ABAZOV	09P D0	$H^+ \rightarrow t \overline{b}$
>240	95	¹⁴ FLACHER	09 RVL	JE Type II, flavor physics data
		¹⁵ ABULENCIA	06E CDF	
> 92.0	95	ABBIENDI	04 OPA	$L \;\;\; B(au u) = 1$
> 76.7	95	¹⁶ ABDALLAH	04ı DLP	H Type I
		¹⁷ ABBIENDI	03 OPA	L $ au ightarrow \mu \overline{ u} u$, e $\overline{ u} u$
		¹⁸ ABAZOV	02B D0	$ au ightarrow au b H^+$, $H ightarrow au u$
		¹⁹ BORZUMATI	02 RVU	JE
		²⁰ ABBIENDI	01Q OPA	$AL B \rightarrow au u_{ au} X$
		²¹ BARATE	01E ALE	,
>315	99	²² GAMBINO		JE $b o s \gamma$
		²³ AFFOLDER	00ı CDF	•
> 59.5	95	ABBIENDI	99E OPA	CIII —
		²⁴ ABBOTT	99E D0	$t \rightarrow bH^+$
		²⁵ ACKERSTAFF		• •
		²⁶ ACCIARRI	97F L3	$B o au u_{ au}$
		²⁷ AMMAR	97B CLE	
		²⁸ COARASA		$JE \;\; B \to \; \tau \nu_{\tau} X$
		²⁹ GUCHAIT	97 RVL	•
		³⁰ MANGANO	97 RVU	JE $B_{u(c)} ightarrow au u_{ au}$
		³¹ STAHL	97 RVL	JE $ au ightarrow \mu u u$
>244	95	32 ALAM	95 CLE	,
		³³ BUSKULIC	95 ALE	P $b o au u_{ au} X$

 $^{^1}$ The limit refers to the Type II scenario. The limit for B($H^+ \to \tau \nu)=1$ is 94 GeV (95% CL), and for B($H^+ \to cs)=1$ the region below 80.5 as well as the region 83–88 GeV is excluded (95% CL). LEP 13 also search for the decay mode $H^+ \to A^0\,W^*$ with $A^0 \to b\,\overline{b}$, which is not negligible in Type I models. The limit in Type I models is 72.5 GeV (95% CL) if $m_{A^0} > 12$ GeV.

² ABBIENDI 12 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b \overline{b}$.

³ AAD 13AC search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to c\overline{s}$ (flavor unidentified) in 4.7 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to bH^+$) between 0.05 and 0.01 (95%CL) are given for $m_{H^+}=90$ –150 GeV and B($H^+\to c\overline{s}$)=1.

- ⁴ AAD 13V search for $t\,\overline{t}$ production followed by $t\to b\,H^+$, $H^+\to \tau^+\nu$ through violation of lepton universality with 4.6 fb⁻¹ of $p\,p$ collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to b\,H^+$) between 0.032 and 0.044 (95% CL) are given for $m_{H^+}=90$ –140 GeV and B($H^+\to \tau^+\nu$) = 1. By combining with AAD 12BH, the limits improve to 0.008 to 0.034 for $m_{H^+}=90$ –160 GeV. See their Fig. 7 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ⁵ AAD 12BH search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to \tau^+\nu$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to bH^+$) between 0.01 and 0.05 (95% CL) are given for $m_{H^+}=90$ –160 GeV and B($H^+\to \tau^+\nu$) = 1. See their Fig. 8 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ⁶ CHATRCHYAN 12AA search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to \tau^+\nu$ with 2 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to bH^+$) between 0.019 and 0.041 (95% CL) are given for $m_{H^+}=80$ –160 GeV and B($H^+\to \tau^+\nu$)=1.
- ⁷ AALTONEN 11P search in 2.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV for the decay chain $t\to bH^+$, $H^+\to W^+A^0$, $A^0\to \tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t\to bH^+$) for 90 $< m_{H^+} < 160$ GeV.
- ⁸ DESCHAMPS 10 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \to s \gamma$, B, B_s mixings, and $Z \to b \, \overline{b}$. The limit holds irrespective of $\tan \beta$.
- ⁹ AALTONEN 09AJ search for $t \to bH^+$, $H^+ \to c\overline{s}$ in $t\overline{t}$ events in 2.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Upper limits on B($t \to bH^+$) between 0.08 and 0.32 (95% CL) are given for $m_{H^+}=60$ –150 GeV and B($H^+ \to c\overline{s}$) = 1.
- ¹⁰ ABAZOV 09AC search for $t \to bH^+$, $H^+ \to \tau^+ \nu$ in $t\overline{t}$ events in 0.9 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Upper limits on B($t \to bH^+$) between 0.19 and 0.25 (95% CL) are given for $m_{H^+}=80$ –155 GeV and B($H^+ \to \tau^+ \nu$) = 1. See their Fig. 4 for an excluded region in a MSSM scenario.
- ¹¹ ABAZOV 09AG measure $t\,\overline{t}$ cross sections in final states with ℓ + jets (ℓ = e, μ), $\ell\ell$, and $\tau\ell$ in 1 fb⁻¹ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV, which constrains possible $t\to bH^+$ branching fractions. Upper limits (95% CL) on B($t\to bH^+$) between 0.15 and 0.40 (0.48 and 0.57) are given for B($H^+\to \tau^+\nu$) = 1 (B($H^+\to c\,\overline{s}$) = 1) for $m_{H^+}=80$ –155 GeV.
- 12 ABAZOV 09AI search for $t\to bH^+$ in $t\overline{t}$ events in 1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Final states with ℓ + jets ($\ell=e,\,\mu$), $\ell\ell$, and $\tau\ell$ are examined. Upper limits on B($t\to bH^+$) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B($H^+\to \tau^+\nu$) = 1 (B($H^+\to c\overline{s}$) = 1) for $m_{H^+}=80$ –155 GeV. For B($H^+\to \tau^+\nu$) = 1 also a simultaneous extraction of B($t\to bH^+$) and the $t\overline{t}$ cross section is performed, yielding a limit on B($t\to bH^+$) between 0.12 and 0.26 for $m_{H^+}=80$ –155 GeV. See their Figs. 5–8 for excluded regions in several MSSM scenarios.
- 13 ABAZOV 09P search for H^+ production by $q\,\overline{q}'$ annihilation followed by $H^+\to t\,\overline{b}$ decay in 0.9 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Cross section limits in several two-doublet models are given for $m_{H^+}=180$ –300 GeV. A region with 20 $\lesssim \tan\beta \lesssim$ 70 is excluded (95% CL) for 180 GeV $\lesssim m_{H^+} \lesssim 184$ GeV in type-I models.
- ¹⁴ FLACHER 09 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \to s \gamma$, and $Z \to b \bar{b}$. The limit holds irrespective of $\tan \beta$.
- ¹⁵ ABULENCIA 06E search for associated H^0 W production in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A fit is made for $t\overline{t}$ production processes in dilepton, lepton + jets, and lepton + τ final states, with the decays $t \to W^+ b$ and $t \to H^+ b$ followed by $H^+ \to \tau^+ \nu$, $c\overline{s}$, $t^*\overline{b}$, or $W^+ H^0$. Within the MSSM the search is sensitive to the region $\tan \beta < 1$ or

- > 30 in the mass range $m_{H^+}=$ 80–160 GeV. See Fig. 2 for the excluded region in a certain MSSM scenario.
- ¹⁶ ABDALLAH 04I search for $e^+e^- \rightarrow H^+H^-$ with H^\pm decaying to $\tau\nu$, cs, or W^*A^0 in Type-I two-Higgs-doublet models.
- 17 ABBIENDI 03 give a limit $m_{H^+}>1.28{
 m tan}\beta$ GeV (95%CL) in Type II two-doublet models.
- 18 ABAZOV 02B search for a charged Higgs boson in top decays with $H^+\to \tau^+\nu$ at $E_{\rm cm}{=}1.8$ TeV. For $m_{H^+}{=}75$ GeV, the region $\tan\beta>32.0$ is excluded at 95%CL. The excluded mass region extends to over 140 GeV for $\tan\beta$ values above 100.
- ¹⁹ BORZUMATI 02 point out that the decay modes such as $b\overline{b}W$, A^0W , and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP II and Tevatron.
- 20 ABBIENDI 01Q give a limit tan $\beta/m_{H^+} < 0.53~{\rm GeV}^{-1}$ (95%CL) in Type II two-doublet models.
- ²¹ BARATE 01E give a limit $\tan\beta/m_{H^+} < 0.40~{\rm GeV}^{-1}$ (90% CL) in Type II two-doublet models. An independent measurement of $B\to \tau\nu_{\tau}$ X gives $\tan\beta/m_{H^+} < 0.49~{\rm GeV}^{-1}$ (90% CL).
- ²² GAMBINO 01 use the world average data in the summer of 2001 B($b \rightarrow s\gamma$)= (3.23 \pm 0.42) \times 10⁻⁴. The limit applies for Type-II two-doublet models.
- ²³ AFFOLDER 00I search for a charged Higgs boson in top decays with $H^+ \to \tau^+ \nu$ in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The excluded mass region extends to over 120 GeV for $\tan\beta$ values above 100 and B $(\tau\nu)=1$. If B $(t\to bH^+)\gtrsim$ 0.6, m_{H^+} up to 160 GeV is excluded. Updates ABE 97L.
- ABBOTT 99E search for a charged Higgs boson in top decays in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV, by comparing the observed $t\overline{t}$ cross section (extracted from the data assuming the dominant decay $t\to bW^+$) with theoretical expectation. The search is sensitive to regions of the domains $\tan\beta\lesssim 1$, $50< m_{H^+}({\rm GeV})\lesssim 120$ and $\tan\beta\gtrsim 40$, $50< m_{H^+}({\rm GeV})\lesssim 160$. See Fig. 3 for the details of the excluded region.
- ²⁵ ACKERSTAFF 99D measure the Michel parameters ρ , ξ , η , and $\xi\delta$ in leptonic τ decays from $Z \to -\tau\tau$. Assuming e- μ universality, the limit $m_{H^+} > 0.97 \tan\beta$ GeV (95%CL) is obtained for two-doublet models in which only one doublet couples to leptons.
- 26 ACCIARRI 97F give a limit $m_{H^+}>2.6~{\rm tan}\beta$ GeV (90% CL) from their limit on the exclusive $B\to~\tau\nu_{\tau}$ branching ratio.
- 27 AMMAR 97B measure the Michel parameter ρ from $\tau \to e \nu \nu$ decays and assumes e/μ universality to extract the Michel η parameter from $\tau \to \mu \nu \nu$ decays. The measurement is translated to a lower limit on $m_{\mbox{$H^+$}}^+$ in a two-doublet model $m_{\mbox{$H^+$}}^+ > 0.97 \tan\beta$ GeV (90% CL).
- ²⁸ COARASA 97 reanalyzed the constraint on the $(m_{H^\pm}, \tan\beta)$ plane derived from the inclusive $B \to \tau \nu_{\tau} X$ branching ratio in GROSSMAN 95B and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects.
- ²⁹ GUCHAIT 97 studies the constraints on m_{H^+} set by Tevatron data on $\ell \tau$ final states in $t \bar{t} \to (W \, b) (H \, b), \, W \to \ell \nu, \, H \to \tau \nu_{\tau}$. See Fig. 2 for the excluded region.
- ³⁰ MANGANO 97 reconsiders the limit in ACCIARRI 97F including the effect of the potentially large $B_c \to \tau \nu_{\tau}$ background to $B_u \to \tau \nu_{\tau}$ decays. Stronger limits are obtained.
- 31 STAHL 97 fit au lifetime, leptonic branching ratios, and the Michel parameters and derive limit $m_{H^+} > 1.5 an\!eta$ GeV (90% CL) for a two-doublet model. See also STAHL 94.
- 32 ALAM 95 measure the inclusive $b \to s \gamma$ branching ratio at $\Upsilon(4S)$ and give B($b \to s \gamma$)< 4.2×10^{-4} (95% CL), which translates to the limit $m_{H^+} > [244 + 63/(\tan\beta)^{1.3}]$ GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this bound
- ³³ BUSKULIC 95 give a limit $m_{H^+} > 1.9 \tan\beta$ GeV (90% CL) for Type-II models from $b \to \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94.

- MASS LIMITS for $H^{\pm\pm}$ (doubly-charged Higgs boson) -

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin T_3 is thus restricted to two possibilities depending on lepton chiralities: $T_3(H^{\pm\pm})=\pm 1$, with the coupling $g_{\ell\ell}$ to $\ell_L^-\ell_L^{\prime-}$ and $\ell_R^+\ell_R^{\prime+}$ ("left-handed") and $T_3(H^{\pm\pm})=0$, with the coupling to $\ell_R^-\ell_R^{\prime-}$ and $\ell_L^+\ell_L^{\prime+}$ ("right-handed"). These Higgs bosons appear in some left-right symmetric models based on the gauge group $\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \times \mathrm{U}(1)$. These two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

LIMITS for $H^{\pm\pm}$ with $T_3=\pm1$

	With 13 —	==			
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>398	95	$^{ m 1}$ AAD	12CQ /	ATLS	$\mu\mu$
>375	95	$^{ m 1}$ AAD	12CQ /	ATLS	$e\mu$
>409	95	¹ AAD	12CQ /	ATLS	e e
>169	95	² CHATRCHYAN	12AU (CMS	au au
>300	95	² CHATRCHYAN	12AU (CMS	μau
>293	95	² CHATRCHYAN			e au
>395	95	² CHATRCHYAN	12AU (CMS	$\mu\mu$
>391	95	² CHATRCHYAN			e μ
>382	95	² CHATRCHYAN	12AU (CMS	e e
> 98.1	95	_	03 [DLPH	au au
> 99.0	95	⁴ ABBIENDI	020	OPAL	au au
• • • We do not u	se the followin	g data for averages	, fits, li	imits, e	etc. • • •
>330	95	⁵ AAD	13Y A	ATLS	$\mu\mu$

>330	95	AAD	13Y AILS	$\mu\mu$
>237	95	⁵ AAD	13Y ATLS	μau
>355	95	⁶ AAD	12AY ATLS	$\mu\mu$
>128	95	⁷ ABAZOV	12A D0	au au
>144	95	⁷ ABAZOV	12A D0	μau
>245	95	⁸ AALTONEN	11AF CDF	$\mu\mu$
>210	95	⁸ AALTONEN	11AF CDF	e μ
>225	95	⁸ AALTONEN	11AF CDF	e e
>114	95	⁹ AALTONEN	08AA CDF	e au
>112	95	⁹ AALTONEN	08AA CDF	μau
>168	95	¹⁰ ABAZOV	08V D0	$\mu\mu$
		¹¹ AKTAS	06A H1	single $H^{\pm\pm}$
>133	95	¹² ACOSTA	05L CDF	stable
>118.4	95	¹³ ABAZOV	04E D0	$\mu\mu$
		¹⁴ ABBIENDI	03Q OPAL	$E_{\rm cm} \leq$ 209 GeV, single
				$H^{\pm\pm}$
		¹⁵ GORDEEV	97 SPEC	muonium conversion
		¹⁶ ASAKA	95 THEO	
> 45.6	95	¹⁷ ACTON	92M OPAL	
> 30.4	95	¹⁸ ACTON	92M OPAL	
none 6.5-36.6	95	¹⁹ SWARTZ	90 MRK2	

- ¹AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- 2 CHATRCHYAN 12AU search for $H^{++}H^{--}$ production with 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 6 for limits including associated $H^{++}H^{-}$ production or assuming different
- 3 ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++}
 ightharpoonup$ $\tau^+\tau^+$, or decaying outside the detector.
- ⁴ ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm}\to\ell^{\pm}\ell^{\pm}$ (ℓ,ℓ' $=e,\mu,\tau$). The limit holds for $\ell=\ell'=\tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.
- ⁵ AAD 13Y search for $H^{++}H^{--}$ production in a generic search of events with three charged leptons in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁶ AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. ⁷ ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1$
- ⁸ AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV.
- $9 \stackrel{\text{1.50 TeV}}{\text{AALTONEN 08AA search for } H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{\text{cm}} = 1.96$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ¹⁰ ABAZOV 08V search for $H^{++}H^{--}$ production in $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit is for B($H
 ightarrow \mu \mu$) = 1. The limit is updated in ABAZOV 12A.
- 11 AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\,\mu}=$ 0.3 (electromagnetic strength), a limit $m_{H^{++}}~>$ 141 GeV (95% CL) is derived. For the case where H^{++} couples to e au only
- the limit is 112 GeV. 12 ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\ell \ell'} < 10^{-8}$ so that the Higgs decays outside the detector.
- ¹³ ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm}\to \mu^\pm\mu^\pm$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ¹⁴ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^\mp e^\mp H^{\pm\pm}$, and via t-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming ${
 m B}(H^{\pm\pm}
 ightarrow ~\ell^{\pm}\ell^{\pm}) = 1$, a 95% CL limit on $h_{ee}~<$ 0.071 is set for $m_{H^{\pm\pm}}~<$ 160 GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}}~<$ 2 TeV (see
- 15 GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_{F} < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} >$ 210 GeV if the Yukawa couplings of H^{++} to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.
- 16 ASAKA 95 point out that H^{++} decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does not apply.
- ¹⁷ ACTON 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.
- 18 ACTON 92M from $\Delta\Gamma_Z$ <40 MeV.
- 19 SWARTZ 90 assume $\overset{\mathbf{Z}}{H}{}^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling $g(H\ell\ell) \gtrsim 7.4 \times 10^{-7}/[m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

DOCUMENT ID

LIMITS for $H^{\pm\pm}$ with $T_3=0$

	<u> </u>	1 445	10	ATL 6	
>306	95	1 AAD		ATLS	$\mu\mu$
>310	95	¹ AAD	12cq	ATLS	e μ
>322	95	¹ AAD	12 CQ	ATLS	e e
> 97.3	95	² ABDALLAH	03	DLPH	au au
> 97.3	95	³ ACHARD	03F	L3	au au
> 98.5	95	⁴ ABBIENDI	02C	OPAL	au au
ullet $ullet$ We do not use the	following	data for averages	fits,	limits, e	tc. • • •
>251	95	⁵ AAD	12AY	ATLS	$\mu \mu$
>113	95	⁶ ABAZOV	12A	D0	μau
>205	95	⁷ AALTONEN	11 AF	CDF	$\mu\mu$
>190	95		11 AF	CDF	$e\mu$
>205	95	⁷ AALTONEN	11 AF	CDF	e e
>145	95	⁸ ABAZOV	V80	D0	$\mu\mu$
		⁹ AKTAS	06A	H1	single $H^{\pm\pm}$
>109		¹⁰ ACOSTA	05L	CDF	stable
> 98.2		¹¹ ABAZOV	04E	D0	$\mu\mu$
		¹² ABBIENDI	03 Q	OPAL	$E_{\rm cm} \leq 209$ GeV, single
		13 CORREEV	07	CDEC	$H^{\pm\pm}$
		13 GORDEEV	97	SPEC	muonium conversion
> 45.6		¹⁴ ACTON	92M	OPAL	
> 25.5		¹⁵ ACTON	92M	OPAL	
none 7.3-34.3	95	¹⁶ SWARTZ	90	MRK2	

- 1 AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- 2 ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++}
 ightarrow$ $\tau^+\tau^+$, or decaying outside the detector.
- ³ ACHARD 03F search for $e^+e^- \rightarrow H^{++}H^{--}$ with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$. The limit holds for $\ell=\ell'=\tau$, and slightly different limits apply for other flavor combinations. The limit is valid for $g_{\ell \ell'} \gtrsim 10^{-7}$.
- ⁴ ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm}\to \ell^\pm\ell^\pm$ (ℓ,ℓ' $=e,\mu, au$). the limit holds for $\ell=\ell'= au$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.
- ⁵ AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. ⁶ ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1$
- 1.96 TeV.
- 7 AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}$
- ⁸ ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{\rm cm}=$ 1.96 TeV. The limit is for B($H\to~\mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- 9 AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\,\mu}=$ 0.3 (electromagnetic strength), a limit $m_{H^{++}}~>$ 141 GeV (95% CL) is derived. For the case where H^{++} couples to e au only the limit is 112 GeV.
- 10 ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\ell \, \ell'} \, < \, 10^{-8}$ so that the Higgs decays outside the detector.

- ¹¹ ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm}\to\mu^\pm\mu^\pm$. The limit is valid for $g_{\mu\mu}\gtrsim 10^{-7}$.
- ¹² ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^\mp e^\mp H^{\pm\pm}$, and via t-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming B($H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm$) = 1, a 95% CL limit on h_{ee} < 0.071 is set for $m_{H^{\pm\pm}}$ < 160 GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}}$ < 2 TeV (see Fig. 8).
- 13 GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\,\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\,\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} > 210$ GeV if the Yukawa couplings of H^{++} to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muonium-antimuonium conversion, see the muon Particle Listings.
- $^{15}\,\text{ACTON}$ 92M from $\Delta\Gamma_{\textit{7}}<\!40$ MeV.
- 16 SWARTZ 90 assume $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling $g(H\ell\ell) \gtrsim 7.4 \times 10^{-7}/[m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

H^{\pm} and $H^{\pm\pm}$ REFERENCES

AAD		EPJ C73 2465	G. Aad et al.	(ATLAS Collab.)
AAD	13V	JHEP 1303 076	G. Aad et al.	(ATLAS Collab.)
AAD	13Y	PR D87 052002	G. Aad et al.	(ATLAS Collab.)
LEP	13	EPJ C73 2463	LEP Collabs	(ALEPH, DELPHI, L3, OPAL, LEP)
AAD	12AY		G. Aad et al.	(ATLAS Collab.)
AAD		JHEP 1206 039	G. Aad et al.	(ATLAS Collab.)
AAD		EPJ C72 2244	G. Aad et al.	(ATLAS Collab.)
ABAZOV	12A	PRL 108 021801	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	12	EPJ C72 2076	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
		JHEP 1207 143	S. Chatrchyan et al.	(CMS Collab.)
		EPJ C72 2189	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN		PRL 107 181801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11P	PRL 107 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
DESCHAMPS	10	PR D82 073012	O. Deschamps et al.	(CLER, ORSAY, LAPP)
AALTONEN	09AJ	PRL 103 101803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV		PR D80 051107	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PR D80 071102	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	09AI	PL B682 278	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	09P	PRL 102 191802	V.M. Abazov et al.	(D0 Collab.)
FLACHER	09	EPJ C60 543	H. Flacher et al.	(CERN, DESY, HAMB)
AALTONEN	AA80		T. Aaltonen et al.	(CDF Collab.)
ABAZOV	V80	PRL 101 071803	V.M. Abazov et al.	(D0 Collab.)
ABULENCIA	06E	PRL 96 042003	A. Abulencia et al.	(CDF Collab.)
AKTAS	06A	PL B638 432	A. Aktas <i>et al.</i>	(H1 Collab.)
ACOSTA	05L	PRL 95 071801	D. Acosta et al.	(CDF Collab.)
ABAZOV	04E	PRL 93 141801	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	04	EPJ C32 453	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04I	EPJ C34 399	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABBIENDI	03	PL B551 35	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	03Q	PL B577 93	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	03_	PL B552 127	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACHARD	03E	PL B575 208	P. Achard et al.	(L3 Collab.)
ACHARD	03F	PL B576 18	P. Achard <i>et al.</i>	(L3 Collab.)
ABAZOV	02B	PRL 88 151803	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	02C	PL B526 221	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BORZUMATI	02	PL B549 170	F.M. Borzumati, A.	
HEISTER	02P	PL B543 1	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BARATE	01E	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH Collab.)

GAMBINO	01	NP B611 338	P. Gambino, M. Misiak	
AFFOLDER	001	PR D62 012004	T. Affolder et al.	(CDF Collab.)
PDG	00	EPJ C15 1	D.E. Groom et al.	(PDG Collab.)
ABBIENDI	99E	EPJ C7 407	G. Abbiendi et al.	(ÒPAL Collab.)
ABBOTT	99E	PRL 82 4975	B. Abbott et al.	` (D0 Collab.)
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff et al.	(OPAL Collab.)
ABE	97L	PRL 79 357	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	97F	PL B396 327	M. Acciarri et al.	(L3 Collab.)
AMMAR	97B	PRL 78 4686	R. Ammar et al.	(CLÈO Collab.)
COARASA	97	PL B406 337	J.A. Coarasa, R.A. Jimenez, J. Sola	
GORDEEV	97	PAN 60 1164	V.A. Gordeev et al.	(PNPI)
		Translated from		
GUCHAIT	97	PR D55 7263	M. Guchait, D.P. Roy	(TATA)
MANGANO	97	PL B410 299	M. Mangano, S. Slabospitsky	
STAHL	97	ZPHY C74 73	A. Stahl, H. Voss	(BONN)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
ALAM	95	PRL 74 2885	M.S. Alam et al.	(CLEO Collab.)
ASAKA	95	PL B345 36	T. Asaka, K.I. Hikasa	(TOHOK)
BUSKULIC	95	PL B343 444	D. Buskulic et al.	(ALEPH Collab.)
GROSSMAN	95B	PL B357 630	Y. Grossman, H. Haber, Y. Nir	
GROSSMAN	94	PL B332 373	Y. Grossman, Z. Ligeti	
STAHL	94	PL B324 121	A. Stahl	(BONN)
ACTON	92M	PL B295 347	P.D. Acton et al.	(OPAL Collab.)
SWARTZ	90	PRL 64 2877	M.L. Swartz et al.	(Mark II Collab.)
				•