Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L[±]) MASS LIMITS

These experiments assumed that a fourth generation L^\pm decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^\pm decays to a light ν_ℓ via mixing.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, i.e. $\ell^* \to \ell \gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL%	DOCUMENT ID	DOCUMENT ID TECN		COMMENT	
>100.8	95	ACHARD	01 B	L3	Decay to νW	
>101.9	95	ACHARD	01 B	L3	$m_L - m_{I0} > 15 \text{ GeV}$	
 • • We do not use the following data for averages, fits, limits, etc. 						
> 81.5	95	ACKERSTAFF	98 C	OPAL	Assumed $m_{L^{\pm}} - m_{L^{0}} > 8.4$ GeV	
> 80.2	95	ACKERSTAFF	98 C	OPAL	$m_{L^0}^{\rm GeV} > m_{L^\pm}^{\rm and} L^\pm \rightarrow \nu W$	
< 48 or $>$ 61	95	$^{ m 1}$ ACCIARRI	96G	L3	2 2	
> 63.9	95	ALEXANDER	96 P	OPAL	Decay to massless $ u$'s	
> 63.5	95	BUSKULIC	96 S	ALEP	$m_L - m_{I0} > 7 \text{ GeV}$	
> 65	95	BUSKULIC	96s	ALEP	Decay to massless ν 's	
none 10-225		² AHMED	94	CNTR	H1 Collab. at HERA	
none 12.6-29.6	95	KIM	91 B	AMY	Massless $ u$ assumed	
> 44.3	95	AKRAWY	90 G	OPAL		
none 0.5-10	95	³ RILES	90	MRK2	For $(m_{10} - m_{10}) > 0.25 - 0.4 \text{GeV}$	
> 8		⁴ STOKER	89		For $(m_{I^+} - m_{I^0}) = 0.4 \text{ GeV}$	
> 12		⁴ STOKER	89		For $m_{10}^{L} = 0.9 \text{ GeV}$	
none 18.4-27.6	95	⁵ ABE	88	VNS	L	
> 25.5	95	⁶ ADACHI	88 B	TOPZ		
none 1.5-22.0	95	BEHREND	88C	CELL		
> 41	90	⁷ ALBAJAR	87 B	UA1		
> 22.5	95	⁸ ADEVA	85	MRKJ		
> 18.0	95	⁹ BARTEL	83	JADE		
none 4–14.5	95	¹⁰ BERGER	81 B	PLUT		
> 15.5	95	¹¹ BRANDELIK	81	TASS		
> 13.		¹² AZIMOV	80			
> 16.	95	¹³ BARBER	80 B	CNTR		
> 0.490		¹⁴ ROTHE	69	RVUE		

 $^{^1}$ ACCIARRI 96G assumes LEP result that the associated neutral heavy lepton mass > 40 GeV.

Created: 8/21/2014 12:56

² The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^- \to e\gamma$, $L^- \to \nu W^-$, $L^- \to eZ$; and $L^0 \to \nu \gamma$, $L^0 \to e^- W^+$, $L^- \to \nu Z$, where the W decays to $\ell \nu_\ell$, or to jets, and Z decays to $\ell^+ \ell^-$ or jets.

³ RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^-} - m_{L^0}$ was allowed to be quite small, where L^0 denotes the neutrino

into which the sequential charged lepton decays. With a slightly reduced m_{L^\pm} range, the mass difference extends to about 4 GeV.

- ⁴STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^+) mass for the generalized case in which the corresponding neutral heavy lepton (L^0) in the SU(2) doublet is not of negligible mass.
- ⁵ ABE 88 search for L^+ and $L^- \to {\rm hadrons}$ looking for acoplanar jets. The bound is valid for $m_{\nu} < 10$ GeV.
- 6 ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. ${\sf E_{cm}}^{ee}=$ 52 GeV.
- ⁷ Assumes associated neutrino is approximately massless.
- ⁸ ADEVA 85 analyze one-isolated-muon data and sensitive to au <10 nanosec. Assume B(lepton) = 0.30. $E_{\rm cm}$ = 40–47 GeV.
- ⁹BARTEL 83 limit is from PETRA e^+e^- experiment with average $E_{\rm cm}=34.2$ GeV.
- 10 BERGER 81B is DESY DORIS and PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹¹ BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹² AZIMOV 80 estimated probabilities for M+N type events in $e^+e^- \rightarrow L^+L^-$ deducing semi-hadronic decay multiplicities of L from e^+e^- annihilation data at $E_{\rm cm}=(2/3)m_L$. Obtained above limit comparing these with e^+e^- data (BRANDELIK 80).
- 13 BARBER 80B looked for $e^+e^-
 ightarrow ~L^+L^-$, $L
 ightarrow ~
 u_L^+$ X with MARK-J at DESY-PETRA.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN
>102.6	95	ACHARD	01 B	L3
• • • We do not use the	e following o	data for average	s, fits,	limits, etc. • • •
> 28.2	95 1	⁵ ADACHI	90 C	TOPZ
none 18.5-42.8	95	AKRAWY	900	OPAL
> 26.5	95	DECAMP	90F	ALEP
none m_{μ} –36.3	95	SODERSTRO	M90	MRK2

 $^{^{15}}$ ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisfying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •						
>574	95	CHATRCHYAI	V 13AE	CMS		Leptons singlet model
>102.0	95	ABBIENDI	03L	OPAL		pair produced in e^+e^-
> 0.1		¹⁶ ANSORGE	73 B	HBC	_	Long-lived
none 0.55-4.5		¹⁷ BUSHNIN	73	CNTR	_	Long-lived
none 0.2-0.92		¹⁸ BARNA	68	CNTR	_	Long-lived
none 0.97-1.03		¹⁸ BARNA	68	CNTR	_	Long-lived

¹⁶ ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung.

Created: 8/21/2014 12:56

 $^{^{14}\,\}mathrm{ROTHE}$ 69 examines previous data on μ pair production and π and K decays.

 $^{^{17}}$ BUSHNIN 73 is SERPUKHOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.

¹⁸BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS

<u>VALUE (GeV)</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • none 1–9 GeV 90 19 CLARK 81 SPEC ++

Doubly-Charged Lepton Production Cross Section $(\mu N \text{ Scattering})$

<u>VALUE (cm²)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • $<6. \times 10^{-38}$ 0 20 CLARK 81 SPEC ++

 20 CLARK 81 is FNAL experiment with 209 GeV muon. Looked for μ^+ nucleon $\to \overline{\,\mu}^0_P\, {\rm X},$ $\overline{\mu}^0_P \to \ \mu^+ \ \mu^- \overline{\,\nu}_\mu$ and $\mu^+ \ n \to \ \mu^{++}_P\, {\rm X}, \ \mu^{++}_P \to \ 2\mu^+ \nu_\mu.$ Above limits are for $\sigma \times {\rm BR}$ taken from their mass-dependence plot figure 2.

REFERENCES FOR Heavy Charged Lepton Searches

CLIATE CLIN (A N	4040	UIED 100= 100		(6) 46 6 11 1)
	-	JHEP 1307 122		(CMS Collab.)
ABBIENDI	03L	PL B572 8	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ACHARD	01B	PL B517 75	P. Achard et al.	(L3 Collab.)
ACKERSTAFF	98C	EPJ C1 45	K. Ackerstaff et al.	(OPAL Collab.)
ACCIARRI	96G	PL B377 304	M. Acciarri <i>et al.</i>	(L3 Collab.)
ALEXANDER	96P	PL B385 433	G. Alexander et al.	(OPAL Collab.)
BUSKULIC	96S	PL B384 439	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
AHMED	94	PL B340 205	T. Ahmed <i>et al.</i>	(H1 Collab.)
KIM	91B	IJMP A6 2583	G.N. Kim <i>et al.</i>	(AMY Collab.)
ADACHI	90C	PL B244 352	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKRAWY	90G	PL B240 250	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
AKRAWY	90O	PL B252 290	M.Z. Akrawy et al.	(OPAL Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
RILES	90	PR D42 1	K. Riles et al.	(Mark II Collab.)
SODERSTROM	1 90	PRL 64 2980	E. Soderstrom et al.	(Mark II Collab.)
STOKER	89	PR D39 1811	D.P. Stoker et al.	(Mark II Collab.)
ABE	88	PRL 61 915	K. Abe <i>et al.</i>	(VENUS Collab.)
ADACHI	88B	PR D37 1339	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
BEHREND	88C	ZPHY C41 7	H.J. Behrend et al.	(CELLO Collab.)
ALBAJAR	87B	PL B185 241	C. Albajar <i>et al.</i>	` (UA1 Collab.)
ADEVA	85	PL 152B 439	B. Adeva <i>et al.</i>	(Mark-J Collab.)
Also		PRPL 109 131	B. Adeva <i>et al.</i>	(Mark-J Collab.)
BARTEL	83	PL 123B 353	W. Bartel et al.	(JADE Collab.)
BERGER	81B	PL 99B 489	C. Berger <i>et al.</i>	(PLUTO Collab.)
BRANDELIK	81	PL 99B 163	R. Brandelik <i>et al.</i>	(TASSO Collab.)
CLARK	81	PRL 46 299	A.R. Clark et al.	(UCB, LBL, FNAL+)
Also		PR D25 2762	W.H. Smith <i>et al.</i>	(LBL, FNAL, PRIN)
AZIMOV	80	JETPL 32 664	Y.I. Azimov, V.A. Khoze	(PNPI)
712111101	00		ZETFP 32 677.	(1.11.1)
BARBER	80B	PRL 45 1904	D.P. Barber et al.	(Mark-J Collab.)
BRANDELIK	80	PL 92B 199	R. Brandelik <i>et al.</i>	(TASSO Collab.)
ANSORGE	73B	PR D7 26	R.E. Ansorge et al.	` (CAVE)
BUSHNIN	73	NP B58 476	Y.B. Bushnin et al.	(SERP)
Also		PL 42B 136	S.V. Golovkin et al.	(SERP)
ROTHE	69	NP B10 241	K.W. Rothe, A.M. Wolsky	(PENN)
BARNA	68	PR 173 1391	A. Barna <i>et al.</i>	(SLAC, STAN)
				(, , , , , ,

- OTHER RELATED PAPERS ———

Created: 8/21/2014 12:56

PERL 81 SLAC-PUB-2752 M.L. Perl (SLAC) Physics in Collision Conference.

 $^{^{19}}$ CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_P which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Production Cross Section."