Table 49.2D: Total hadronic cross section. For data descriptions the HPR_1R_2 model of highest COMPETE– rank¹ is used. As in RPP-2012 it is modified to save the universality of the rising part in new form that explicitly includes dependence of the s_M and H on the initial state mass parameters and the new scale parameter M.

$$\sigma^{a^{\mp}b} = H \log^2 \left(s/s_M^{ab} \right) + P^{ab} + R_1^{ab} \left(s/s_M^{ab} \right)^{-\eta_1} \pm R_2^{ab} \left(s/s_M^{ab} \right)^{-\eta_2}$$
$$\rho^{a^{\mp}b} = \frac{1}{\sigma^{a^{\mp}b}} \left[\pi H \log \left(s/s_M^{ab} \right) - R_1^{ab} \left(s/s_M^{ab} \right)^{-\eta_1} \tan \left(\frac{\eta_1 \pi}{2} \right) \pm R_2^{ab} \left(s/s_M^{ab} \right)^{-\eta_2} \cot \left(\frac{\eta_2 \pi}{2} \right) \right]$$

where upper signs in formulas are for particles and lower signs for antiparticles. Adjustable parameters are as follows:

 $H = \pi \frac{(\hbar c)^2}{M^2}$ in mb, where notation H^2 is after Heisenberg(1952,1975);

 P^{ab} in mb, are Pomeranchuk's(1958) constant terms;

ŀ

 R_i^{ab} in mb are the intensities of the effective secondary Regge pole contributions named after Regge-Gribov(1961); $s, s_M^{ab} = (m_a + m_b + M)^2$ are in GeV²;

 $m_a, m_b, (m_{\gamma^*} = m_{\rho_{(770)}})$ are the masses of initial state particles, and M – the mass parameter defining the rate of universal rise of the cross sections are all in GeV.

Parameters M, η_1 and η_2 are universal for all collisions considered. In addition to total cross sections σ , the measured ratios of the real-to-imaginary parts of the forward scattering amplitudes $\rho = \text{Re}(T)/\text{Im}(T)$ are included in the fits by using s to u crossing symmetry and differential dispersion relations.

Exact factorization hypothesis was used for both $H \log^2(s/s_M^{ab})$ and P^{ab} to extend the universal rise of the total hadronic cross sections to the γ $(p,d) \rightarrow hadrons$ and $\gamma\gamma \rightarrow hadrons$ collisions. This results in one additional adjustable parameter δ with substitutions:

$$\begin{split} \pi H \log^2 \left(s/s_M^{\gamma(p,d)} \right) + P^{\gamma(p,d)} \Rightarrow \delta \left[\pi(1,\lambda) H \log^2 \left(s/s_M^{\gamma(p,d)} \right) + P^{p(p,d)} \right] \\ \pi H \log^2 \left(s/s_M^{\gamma\gamma} \right) + P^{\gamma\gamma} \Rightarrow \delta^2 \left[\pi H \log^2 \left(s/s_M^{\gamma\gamma} \right) + P^{pp} \right]. \end{split}$$

Three fits were made to the 2013-updated data above $\sqrt{s_{min}} = 5$, 6, 7 GeV for all collisions, listed in the "Beam/Target" column of the table . Fit results are shown only for fit above 7 GeV with the best fit quality $FQ = \chi^2/NDF$ and uniformity of data descriptions by groups (last column). The total number of adjusted parameters is **35**.

HPR_1R_2	$M = 2.076 \pm 0.016 [\text{GeV}]$		$H = 0.2838 \pm 0.0045 \text{ [mb]}$ $n_2 = 0.5626 \pm 0.0002$		$\mathrm{FQ}_{\mathrm{Int}}=0.86$
at $\sqrt{s} \ge 7 { m GeV}$	$\delta = (3.112 \pm 0.027) \times 10^{-3}$		$\lambda = 1.456 \pm 0.058$		$\mathrm{FQ}_{\mathrm{Ext}}=0.87$
$P \; [{ m mb}]$	$R_1 \; [{ m mb}]$	$R_2 \; [{ m mb}]$	Beam/Target	Npt=836 npt	$\chi^2/{ m npt}$ by groups
$33.73{\pm}0.33$	$13.67{\pm}0.33$	$7.77{\pm}0.18$	$(ar{p})p \ / \ p$	219	1.09
$33.77{\pm}0.38$	$14.05{\pm}0.63$	$6.93{\pm}0.29$	$(ar{p})p \ / \ n$	48	0.39
$33.20{\pm}3.90$	-14.±47.	$-15.\pm52.$	Σ^- / n	8	0.41
$18.08{\pm}0.29$	$10.44{\pm}0.32$	$1.977{\pm}0.078$	π^{\mp} / p	137	0.91
$15.84{\pm}0.20$	$5.12{\pm}0.28$	$3.538{\pm}0.095$	$K^{\mp} \ / \ p$	85	0.76
$15.73{\pm}0.22$	$4.81{\pm}0.40$	$1.86{\pm}0.13$	K^{\mp} / n	48	0.56
	$0.0132{\pm}0.0023$		γ / p	34	0.56
	$(-6.0\pm3.3) imes10^{-5}$		γ / γ	31	0.68
	$0.0256{\pm}0.0044$		$\gamma \ / \ d$	3	0.31
$64.79{\pm}0.75$	$27.06 {\pm} 0.85$	$15.46{\pm}0.37$	$(ar{p})p \ / \ d$	75	0.97
$36.66{\pm}0.62$	$17.89{\pm}0.82$	$0.38{\pm}0.14$	$\pi^{\mp} \ / \ d$	81	0.71
$32.28{\pm}0.46$	$7.02{\pm}0.71$	$5.74{\pm}0.16$	$K^{\mp} \ / \ d$	67	0.67

All fits are stable: in all cases the FQ < 1.0, Hessian matrices are positive definite. Quoted parameter uncertainties are obtained by direct MC-propagation of the uncertainties in each input experimental data point assuming independent normal distributions. Computer-readable data files are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, IHEP, Protvino, September 2013)

¹Physical motivations for the model and related references see in mini-review. All plots give details for Figures 49.8 and 49.9 of the mini-review.

²For collisions with deuteron target $H_d = \lambda H$ where dimensionless parameter λ is introduced to test the universality of the Heisenberg rise for particle–nuclear and nuclear–nuclear collisions