QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\text{MS}}$ at a scale $\mu \approx 2$ GeV. The *c*- and *b*-quark masses are the "running" masses in the \overline{MS} scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_u = 2.3^{+0.7}_{-0.5} \text{ MeV}$ Charge $= \frac{2}{3} e$ $I_z = +\frac{1}{2}$ $m_u/m_d = 0.38$ --0.58

U

d

5

С

b

$$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$$

$$m_{d} = 4.8^{+0.5}_{-0.3} \text{ MeV} \qquad \text{Charge} = -\frac{1}{3} \ e \quad I_{z} = -\frac{1}{2}$$

$$m_{s}/m_{d} = 17-22$$

$$\overline{m} = (m_{s} + m_{s})/2 = 25^{+0.7}_{-0.7} \text{ MeV}$$

 $\overline{m} = (m_u + m_d)/2 = 3.5^{+0.1}_{-0.2} \text{ MeV}$

$$I(J^P) = 0(\tfrac{1}{2}^+)$$

 $m_s = 95 \pm 5$ MeV Charge $= -\frac{1}{3} e$ Strangeness = -1 $m_s / ((m_u + m_d)/2) = 27.5 \pm 1.0$

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_c = 1.275 \pm 0.025 \text{ GeV}$ Charge $= \frac{2}{3} e$ Charm = +1 $m_c/m_s = 11.73 \pm 0.25$ $m_b - m_c = 3.45 \pm 0.05 \text{ GeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= -\frac{1}{3} e$ Bottom $= -1$

 $m_{b}(\overline{\text{MS}}) = 4.18 \pm 0.03 \text{ GeV}$ $m_b(1S) = 4.66 \pm 0.03 \text{ GeV}$

HTTP://PDG.LBL.GOV

 $I(J^P) = 0(\frac{1}{2}^+)$ Charge $= \frac{2}{3} e$ Top = +1

Mass (direct measurements) $m = 173.21 \pm 0.51 \pm 0.71$ GeV ^[a,b] Mass ($\overline{\text{MS}}$ from cross-section measurements) $m = 160^{+5}_{-4}$ GeV ^[a] Mass (Pole from cross-section measurements) $m = 174.6 \pm 1.9$ GeV $m_t - m_{\overline{t}} = -0.2 \pm 0.5$ GeV (S = 1.1) Full width $\Gamma = 1.41^{+0.19}_{-0.15}$ GeV (S = 1.4) $\Gamma(Wb)/\Gamma(Wq(q = b, s, d)) = 0.957 \pm 0.034$ (S = 1.5)

t-quark EW Couplings

 $F_0 = 0.690 \pm 0.030$ $F_- = 0.314 \pm 0.025$ $F_+ = 0.008 \pm 0.016$ $F_{V+A} < 0.29, CL = 95\%$

t DECAY MODES	Fraction (Г	;/Γ)	Confidence level	<i>р</i> (MeV/c)
$t \rightarrow Wq(q = b, s, d)$				_
$t \rightarrow W b$				-
$t ightarrow ~\ell u_\ell$ anything	[c,d] (9.4±2.4	4) %		_
$t \rightarrow \gamma q(q=u,c)$	[e] < 5.9	$\times 10^{-3}$	3 95%	_
$\Delta T = 1$ weak	neutral current	: (<i>T1</i>) r	nodes	
$t \rightarrow Zq(q=u,c)$ T1	[f] < 5	imes 10 ⁻⁴	4 95%	_
$t \rightarrow Hq$	< 5.6	$\times 10^{-3}$	3 95%	_
$t \rightarrow \ell^+ \overline{q} \overline{q}' (q=d,s,b; q'=u,c)$	< 1.6	$\times 10^{-3}$	3 95%	_

b' (4th Generation) Quark, Searches for

190 GeV, $CL=95\%$	$(p\overline{p}, quasi-stable b')$
755 GeV, $CL = 95\%$	(<i>pp</i> , neutral-current decays)
675 GeV, $CL = 95\%$	(<i>pp</i> , charged-current decays)
46.0 GeV, $CL = 95\%$	$(e^+e^-$, all decays)
	190 GeV, CL = 95% 755 GeV, CL = 95% 675 GeV, CL = 95% 46.0 GeV, CL = 95%

HTTP://PDG.LBL.GOV

(neutral-current decays)

(charged-current decays)

t' (4th Generation) Quark, Searches for

m(t'(2/3)) > 782 GeV, CL = 95%m(t'(2/3)) > 700 GeV, CL = 95%m(t'(5/3)) > 800 GeV, CL = 95%

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s} = 7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- $[c] \ell$ means e or μ decay mode, not the sum over them.
- [d] Assumes lepton universality and W-decay acceptance.
- [e] This limit is for $\Gamma(t \rightarrow \gamma q)/\Gamma(t \rightarrow W b)$.
- [f] This limit is for $\Gamma(t \rightarrow Zq)/\Gamma(t \rightarrow Wb)$.