CHARMED BARYONS

$$(C = +1)$$

 $\Lambda_c^+ = udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc,$
 $\Xi_c^+ = usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc$

$$I(J^P) = 0(\frac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

 $\begin{array}{l} {\sf Mass} \,\, m = 2286.46 \, \pm \, 0.14 \,\, {\sf MeV} \\ {\sf Mean} \,\, {\sf life} \,\, \tau \, = \, (200 \, \pm \, 6) \times 10^{-15} \,\, {\sf s} \quad ({\sf S} = 1.6) \\ c\tau \, = \, 59.9 \,\, \mu {\sf m} \end{array}$

Decay asymmetry parameters

 Λ_c^+

 $\begin{array}{ll} \Lambda \pi^{+} & \alpha = -0.91 \pm 0.15 \\ \Sigma^{+} \pi^{0} & \alpha = -0.45 \pm 0.32 \\ \Lambda \ell^{+} \nu_{\ell} & \alpha = -0.86 \pm 0.04 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_{c}^{+} \rightarrow \Lambda \pi^{+}, \overline{\Lambda}_{c}^{-} \rightarrow \overline{\Lambda} \pi^{-} = -0.07 \pm 0.31 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}, \overline{\Lambda}_{c}^{-} \rightarrow \overline{\Lambda} e^{-} \overline{\nu}_{e} = 0.00 \pm 0.04 \end{array}$

Λ_c^+ DECAY MODES	Fr	raction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
Hadronic modes	with a	p: S = -1 fir	nal states	
$ ho \overline{K}^0$		(3.21 ± 0.30) %	6	873
$p K^- \pi^+$		(6.84 + 0.32) = 0.40	%	823
$p\overline{K}^*(892)^0$	[a]	(2.13± 0.30) %	6	685
$\Delta(1232)^{++}K^{-}$		(1.18± 0.27) %	6	710
$\Lambda(1520)\pi^+$	[<i>a</i>]	(2.4 \pm 0.6) $\%$	6	627
$pK^-\pi^+$ nonresonant		(3.8 \pm 0.4) $\%$	/o	823
$p\overline{K}^0\pi^0$		(4.5 \pm 0.6) $\%$	6	823
$p\overline{K}^0\eta$		(1.7 \pm 0.4) $\%$	/o	568
$p\overline{K}^0\pi^+\pi^-$		(3.5 \pm 0.4) $\%$	6	754
$pK^{-}\pi^{+}\pi^{0}$		(4.6 \pm 0.8) $\%$	6	759
$ ho{ m K}^{st}(892)^{-}\pi^{+}$	[<i>a</i>]	(1.5 \pm 0.5) $\%$	6	580
$ ho(\kappa^-\pi^+)_{ m nonresonant}\pi^0$		(5.0 \pm 0.9) $\%$	6	759
$\Delta(1232)\overline{K}^*(892)$		seen		419
$\rho K^- \pi^+ \pi^+ \pi^-$		(1.5 \pm 1.0) >	< 10 ⁻³	671
$ ho\kappa^-\pi^+\pi^0\pi^0$		(1.1 \pm 0.5) $\%$	6	678

Hadronic modes with a p: S = 0 final states

$p\pi^+\pi^-$		(4.7 \pm 2.5) $\times10^{-3}$	927
<i>p</i> f ₀ (980)	[a]	(3.8 \pm 2.5) $\times10^{-3}$	614
$p\pi^+\pi^+\pi^-\pi^-$		(2.5 \pm 1.6) $ imes$ 10 $^{-3}$	852
р К ⁺ К ⁻		(1.1 \pm 0.4) $ imes$ 10 $^{-3}$	616
$p\phi$	[a]	(1.12 \pm 0.23) $ imes$ 10 $^{-3}$	590
$ ho {\it K}^+ {\it K}^-$ non- ϕ		(4.8 \pm 1.9) $ imes$ 10 $^{-4}$	616

Hadronic modes with a hyperon: S = -1 final states

$\Lambda \pi^+$	$(1.46 \pm 0.13)\%$		864
$\Lambda \pi^+ \pi^0$	(5.0 \pm 1.3) %		844
Λho^+	< 6 %	CL=95%	636
$\Lambda \pi^+ \pi^+ \pi^-$	(3.59± 0.28) %		807
$\Sigma(1385)^{+}\pi^{+}\pi^{-}$, $\Sigma^{*+} ightarrow$	(1.0 \pm 0.5) %		688
$\Sigma^{\Lambda\pi^+}_{(1385)^-\pi^+\pi^+}$, $\Sigma^{*-} ightarrow$ $\Lambda\pi^-$	(7.5 \pm 1.4) $\times10^{-3}$		688
$\Lambda \pi^+ \rho^0$	(1.4 \pm 0.6) %		524
$\Sigma(1385)^+ ho^0$, $\Sigma^{*+} ightarrow~\Lambda\pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda\pi^+\pi^+\pi^-$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda\pi^+\pi^+\pi^-\pi^0$ total	(2.5 \pm 0.9) %		757
$\Lambda \pi^+ \eta$	[a] (2.4 \pm 0.5) %		691
$\Sigma(1385)^+ \eta$	$[a]$ ($1.16\pm~0.35)$ %		570
$\Lambda \pi^+ \omega$	[a] (1.6 \pm 0.6) %		517
$\Lambda\pi^+\pi^+\pi^-\pi^0$, no η or ω	< 9 $\times 10^{-3}$	CL=90%	757
$\Lambda K^+ \overline{K}{}^0$	(6.4 \pm 1.3) $ imes$ 10 $^{-3}$	S=1.6	443
$arepsilon(1690)^0 {\it K}^+$, $ arepsilon^{*0} ightarrow \Lambda \overline{K}{}^0$	(1.8 \pm 0.6) $ imes$ 10 $^{-3}$		286
$\Sigma^0 \pi^+$	(1.43± 0.14) %		825
$\Sigma^+ \pi^0$	$(1.37\pm~0.30)~\%$		827
$\Sigma^+\eta$	(7.5 \pm 2.5) $ imes$ 10 $^{-3}$		713
$\Sigma^+ \pi^+ \pi^-$	(4.9 \pm 0.5) %		804
$\Sigma^+ ho^0$	< 1.8 %	CL=95%	575
$\Sigma^{-}\pi^{+}\pi^{+}$	(2.3 \pm 0.4) %		799
$\Sigma^0 \pi^+ \pi^0$	(2.5 \pm 0.9) %		803
$\Sigma^0 \pi^+ \pi^+ \pi^-$	$(1.13\pm\ 0.31)~\%$		763
$\Sigma^+ \pi^+ \pi^- \pi^0$	_		767
$\Sigma^+ \omega$	$[a]$ (3.7 \pm 1.0) %		569
$\Sigma^+ K^+ K^-$	(3.8 \pm 0.6) $ imes$ 10 $^{-3}$		349
$\Sigma^+\phi$	[a] (4.3 \pm 0.7) $ imes$ 10 $^{-3}$		295
$arepsilon(1690)^{0}{\it K}^{+}$, $arepsilon^{*0} ightarrow$	($1.11\pm~0.29) imes10^{-3}$		286
$\Sigma^+ K^-$			
$\Sigma^+ K^+ K^-$ nonresonant	$< 9 \times 10^{-4}$	CL=90%	349
$\Xi^{\circ}K^{+}$	$(5.3 \pm 1.3) \times 10^{-3}$		653
$\Xi^- K^+ \pi^+$	$(7.0 \pm 0.8) \times 10^{-3}$	S=1.1	565
$=(1530)^{\circ}K^{+}$	[a] (3.5 \pm 1.0) \times 10 ⁻³		473

HTTP://PDG.LBL.GOV Page 2 Created: 10/6/2015 12:18

Hadronic modes with a hyperon: S = 0 final states

ΛK^+		(6.9	\pm 1.4	$) \times 10^{-4}$		781
$\Lambda K^+ \pi^+ \pi^-$	<	< 6		imes 10 ⁻⁴	CL=90%	637
$\Sigma^0 K^+$		(5.7	\pm 1.0	$) \times 10^{-4}$		735
$\Sigma^0 K^+ \pi^+ \pi^-$	<	< 2.9		$\times 10^{-4}$	CL=90%	574
$\Sigma^+ K^+ \pi^-$		(2.3	\pm 0.7	$) \times 10^{-3}$		670
$\Sigma^{+} K^{*}(892)^{0}$	[a]	(3.8	\pm 1.2	$) \times 10^{-3}$		470
$\Sigma^- K^+ \pi^+$	<	< 1.3		$\times 10^{-3}$	CL=90%	664
Doubly Cabi	bbo-	suppre	essed r	nodes		
$ ho K^+ \pi^-$	<	< 3.1		imes 10 ⁻⁴	CL=90%	823
Semi	lepto	onic m	odes			
$\Lambda \ell^+ u_\ell$	[<i>b</i>]	(2.8	± 0.4) %		871
$\Lambda e^+ \nu_e$		(2.9	\pm 0.5) %		871
$\Lambda\mu^+ u_\mu$		(2.7	\pm 0.6) %		867
Inc	lusiv	e mod	les			
e^+ anything		(4.5	\pm 1.7) %		_
pe^+ anything		(1.8	\pm 0.9) %		_
p anything		(50	± 16) %		_
p anything (no Λ)		(12	± 19) %		_
n anything		(50	± 16) %		_
n anything (no Λ)		(29	± 17) %		-
Λ anything		(35	± 11) %	S=1.4	_
$arsigma^{\pm}$ anything	[c]	(10	\pm 5) %		_
3prongs		(24	± 8) %		-
$\Delta C = 1$ weak neutral current (C1) modes, or						
Lepton Family number	(<i>LF</i>), or I	Lepton	number ((L), or	
Baryon numb	Baryon number (B) violating modes					

<i>p e</i> ⁺ <i>e</i> ⁻	C1	< 5.5	imes 10 ⁻⁶	CL=90%	951
$p \mu^+ \mu^-$	C1	< 4.4	imes 10 ⁻⁵	CL=90%	937
$p e^+ \mu^-$	LF	< 9.9	imes 10 ⁻⁶	CL=90%	947
$p e^- \mu^+$	LF	< 1.9	imes 10 ⁻⁵	CL=90%	947
$\overline{p}2e^+$	L,B	< 2.7	imes 10 ⁻⁶	CL=90%	951
$\overline{\rho}2\mu^+$	L,B	< 9.4	imes 10 ⁻⁶	CL=90%	937
$\overline{\rho} e^+ \mu^+$	L,B	< 1.6	imes 10 ⁻⁵	CL=90%	947
$\Sigma^- \mu^+ \mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812

HTTP://PDG.LBL.GOV Page 3

Λ_c(2595)⁺

$$I(J^P) = 0(\frac{1}{2}^{-})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P = 1/2^+$ for the $\Sigma_c(2455)$.

Mass $m = 2592.25 \pm 0.28$ MeV $m - m_{\Lambda_c^+} = 305.79 \pm 0.24$ MeV Full width $\Gamma = 2.6 \pm 0.6$ MeV

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

$\Lambda_{c}(2595)^{+}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda_{c}^{+}\pi^{+}\pi^{-}}$	[d]pprox 67 %	117
$\Sigma_{c}(2455)^{++}\pi^{-}$	24 \pm 7 %	†
$\Sigma_c(2455)^0 \pi^+$	24 \pm 7 %	†
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	117
$\Lambda_c^+ \pi^0$	[e] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

Λ_c(2625)⁺

$$I(J^P) = 0(\frac{3}{2})$$

 J^P has not been measured; $\frac{3}{2}^-$ is the quark-model prediction.

Mass $m = 2628.11 \pm 0.19$ MeV (S = 1.1) $m - m_{\Lambda_c^+} = 341.65 \pm 0.13$ MeV (S = 1.1) Full width $\Gamma < 0.97$ MeV, CL = 90%

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	$[d] \approx 67\%$		184
$\Sigma_{c}(2455)^{++}\pi^{-}$	<5	90%	102
$\Sigma_{c}(2455)^{0}\pi^{+}$	<5	90%	102
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large		184
$\Lambda_c^+ \pi^0$	[e] not seen		293
$\Lambda_c^+ \gamma$	not seen		319

HTTP://PDG.LBL.GOV

Created: 10/6/2015 12:18

$\Lambda_{c}(2880)^{+}$

$$I(J^P) = 0(\frac{5}{2}^+)$$

There is some good evidence that indeed $J^P=5/2^+$

 $\begin{array}{l} {\sf Mass} \,\, m = 2881.53 \, \pm \, 0.35 \,\, {\sf MeV} \\ m - \,\, m_{{\cal A}_c^+} = 595.1 \, \pm \, 0.4 \,\, {\sf MeV} \\ {\sf Full \ width} \,\, \Gamma = 5.8 \, \pm \, 1.1 \,\, {\sf MeV} \end{array}$

$\Lambda_c(2880)^+$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_{c}(2455)^{0,++}\pi^{\pm}$	seen	376
$\Sigma_{c}(2520)^{0,++}\pi^{\pm}$	seen	317
р D ⁰	seen	316

Λ_c(2940)⁺

$$I(J^P) = 0(?^?)$$

Mass $m = 2939.3^{+1.4}_{-1.5}$ MeV Full width $\Gamma = 17^{+8}_{-6}$ MeV

$\Lambda_c(2940)^+$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
p D ⁰	seen	420
$\Sigma_{c}(2455)^{0,++}\pi^{\pm}$	seen	-

Σ_c(2455)

$$I(J^P) = 1(\frac{1}{2}^+)$$

$$\begin{split} & \Sigma_c (2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ & \Sigma_c (2455)^+ \text{ mass } m = 2452.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c (2455)^0 \text{ mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ & \Sigma_c (2455)^0 \text{ mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Lambda_c^+} = 167.510 \pm 0.017 \text{ MeV} \\ & m_{\Sigma_c^0} - m_{\Lambda_c^+} = 167.290 \pm 0.017 \text{ MeV} \\ & m_{\Sigma_c^0} - m_{\Lambda_c^+} = 167.290 \pm 0.013 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Sigma_c^0} = 0.220 \pm 0.013 \text{ MeV} \\ & m_{\Sigma_c^+} - m_{\Sigma_c^0} = -0.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c (2455)^{++} \text{full width } \Gamma = 1.89^{+0.09}_{-0.18} \text{ MeV} \quad (S = 1.1) \\ & \Sigma_c (2455)^+ \text{ full width } \Gamma = 1.83^{+0.11}_{-0.19} \text{ MeV} \quad (S = 1.2) \end{split}$$

 $\Lambda_{_{\pmb{C}}}^+\,\pi$ is the only strong decay allowed to a $\varSigma_{_{\pmb{C}}}$ having this mass.

Σ_c (2455) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi$	pprox 100 %	94
Σ_{c} (2520) J^{P} has not been m	$I(J^P)=1(rac{3}{2}^+)$ neasured; $rac{3}{2}^+$ is the quark-model	prediction.
$\begin{split} & \Sigma_c(2520)^{++} \text{m} \\ & \Sigma_c(2520)^{+} \text{m} \\ & \Sigma_c(2520)^{0} \text{m} \\ & m_{\Sigma_c(2520)^{++}} \\ & m_{\Sigma_c(2520)^{+}} \\ & m_{\Sigma_c(2520)^{++}} \\ & \Sigma_c(2520)^{++} \\ & \Sigma_c(2520)^{+} \\ & \Sigma_c(2520)^{0} \\ & & \Sigma_c(2520)^{0} \\ \end{split}$	ass $m = 2518.41^{+0.21}_{-0.19}$ MeV (S ass $m = 2517.5 \pm 2.3$ MeV $-m_{\Lambda_c^+} = 231.95^{+0.17}_{-0.12}$ MeV $-m_{\Lambda_c^+} = 231.0 \pm 2.3$ MeV $-m_{\Lambda_c^+} = 232.02^{+0.15}_{-0.14}$ MeV (S $-m_{\Sigma_c(2520)^0} = 0.01 \pm 0.15$ M Full width $\Gamma = 14.78^{+0.30}_{-0.40}$ MeV full width $\Gamma < 17$ MeV, CL = 9 full width $\Gamma = 15.3^{+0.4}_{-0.5}$ MeV	S = 1.1) (S = 1.1) (S = 1.3) S = 1.3) MeV

 $\Lambda_{_{\pmb{C}}}^+\,\pi$ is the only strong decay allowed to a $\varSigma_{_{\pmb{C}}}$ having this mass.

$Σ_c$ (2520) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi$	pprox 100 %	179
Σ _c (2800)	$I(J^{P}) = 1(?^{?})$	
$\Sigma_c(2800)^{++}$ r $\Sigma_c(2800)^+$ ma $\Sigma_c(2800)^0$ ma $m_{\Sigma_c(2800)^{++}}$ $m_{\Sigma_c(2800)^+}$ $m_{\Sigma_c(2800)^0}$ $\Sigma_c(2800)^+$ ful $\Sigma_c(2800)^0$ full	mass $m = 2801^{+4}_{-6}$ MeV ass $m = 2792^{+14}_{-5}$ MeV (S = 1.3) ss $m = 2806^{+5}_{-7}$ MeV (S = 1.3) $-m_{\Lambda_c^+} = 514^{+4}_{-6}$ MeV $-m_{\Lambda_c^+} = 505^{+14}_{-5}$ MeV $-m_{\Lambda_c^+} = 519^{+5}_{-7}$ MeV (S = 1.3) full width $\Gamma = 75^{+22}_{-17}$ MeV Il width $\Gamma = 62^{+60}_{-40}$ MeV $+ m_{\Lambda_c^+} = 72^{+22}_{-15}$ MeV)

Σ_c (2800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi$	seen	443
Ξ_c^+	$I(J^P) = \frac{1}{2}(\frac{1}{2})^+$	-)
J^P has not been measure	d; $\frac{1}{2}^+$ is the quark-m	nodel prediction.
Mass $m=2467.93^{+0}_{-0}$ Mean life $ au=(442\pm c au=132~\mu{ m m}$	$^{0.28}_{0.40}$ MeV 26) $ imes$ 10 $^{-15}$ s (S $^{+10}$	= 1.3)
Ξ_c^+ DECAY MODES	Fraction (Γ_i/Γ)	p Confidence level (MeV/c)
Cabibbo-favored ($S = -$	-2) decays — relative	$z = 2\pi^+$ we to $\Xi^- 2\pi^+$
$p_2 K_c^0$	0.087 ± 0.021	767 C C C C C C C C C C C C C C C C C C
$\Lambda \overline{K}^0 \pi^+$	_	852
$\Sigma(1385)^+ \overline{K}{}^0$	$[a]$ 1.0 ± 0.5	746
$\Lambda K^{-}2\pi^{+}$	0.323±0.033	787
$\Lambda \overline{K}^*(892)^0 \pi^+$	[<i>a</i>] <0.16	90% 608
$\Sigma(1385)^+K^-\pi^+$	[<i>a</i>] <0.23	90% 678
$\Sigma^+ K^- \pi^+$	$0.94 \hspace{0.1in} \pm 0.10$	811
$\Sigma^{+} K^{*}(892)^{0}$	$[a]$ 0.81 ± 0.15	658
$\sum_{n=0}^{\infty} K^{-} 2\pi^{+}$	0.27 ± 0.12	735
$= \pi^{+}$	0.55 ± 0.16	877
$= 2\pi^{+}$ =(1530) ⁰ π^{+}		00% 750
$=(1350)^{-1}$	[a] < 0.10 23 +07	90% 750
$=0^{\pi}\pi^{-2}\pi^{+}$	17 ± 0.1	818
$=0^{+}$	2.1 ± 0.0 2.2 ± 0.7	020
$\frac{-c}{\rho} \frac{\nu_e}{\kappa^+ \pi^+}$	2.3 - 0.8	004 300
Cabibbo-suppressed	decays — relative to	$b \equiv 2\pi^+$

	5	
	0.21 ± 0.04	944
[a]	$0.116 \!\pm\! 0.030$	828
	0.48 ±0.20	922
	[a]	$\begin{array}{ccc} 0.21 & \pm 0.04 \\ [a] & 0.116 \pm 0.030 \\ & 0.48 & \pm 0.20 \end{array}$

$\Sigma^{-}2\pi^{+}$	$0.18 \hspace{0.1in} \pm 0.09$		918
$\Sigma^+ K^+ K^-$	$0.15 \hspace{0.1 cm} \pm 0.06$		580
$\Sigma^+\phi$	[a] < 0.11	90%	549
$arepsilon(1690)^{0}{\it K}^{+}$, $arepsilon^{0} ightarrow$	<0.05	90%	501
$\Sigma^+ K^-$			

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

 $\begin{array}{l} \text{Mass } m = 2470.85 \substack{+0.28 \\ -0.40} \text{ MeV} \\ m_{\Xi_c^0} - m_{\Xi_c^+} = 2.93 \pm 0.24 \text{ MeV} \\ \text{Mean life } \tau = (112 \substack{+13 \\ -10}) \times 10^{-15} \text{ s} \\ c\tau = 33.6 \ \mu\text{m} \end{array}$

Decay asymmetry parameters

 Ξ_c^0

 $\Xi^- \pi^+ \qquad \alpha = -0.6 \pm 0.4$

No absolute branching fractions have been measured. Several measurements of ratios of fractions may be found in the Listings that follow.

=_{c}^{0} DECAY MODES Fraction (Γ_{i}/Γ) p (MeV/c)

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-\pi^+$.

Cabibbo-favored (S = -2) decays — relative to $\Xi^-\pi^+$			
$pK^-K^-\pi^+$	0.34 ±0.04	676	
р К К *(892) ⁰	$0.21\ \pm 0.05$	413	
$pK^-K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04	676	
ΛK_{S}^{0}	0.210 ± 0.028	906	
$\Lambda \tilde{K} \pi^+$	$1.07\ \pm 0.14$	856	
$\Lambda \overline{K}{}^{0} \pi^{+} \pi^{-}$	seen	787	
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen	703	
$\Xi^{-}\pi^{+}$	DEFINED AS 1	875	
$\Xi^-\pi^+\pi^+\pi^-$	3.3 ±1.4	816	
$\Omega^- K^+$	0.297 ± 0.024	522	
$\Xi^- e^+ \nu_e$	3.1 ± 1.1	882	
$\Xi^-\ell^+$ anything	1.0 ± 0.5	-	

Cabibbo-suppressed decays — relative to $\Xi^-\pi^+$

$\Xi^{-}K^{+}$	0.028 ± 0.006	790
$\Lambda K^+ K^-$ (no ϕ)	0.029 ± 0.007	648
$\Lambda\phi$	0.034 ± 0.007	621

$$I(J^P) = rac{1}{2}(rac{1}{2}^+)$$
 as not been measured: $^{1+}$ is the quark mo

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass $m = 2575.7 \pm 3.0$ MeV $m_{\Xi_c^{\prime +}} - m_{\Xi_c^+} = 107.8 \pm 3.0$ MeV

 $\Xi_c^{\prime+}$

Ξ<u>′</u>0

The $\Xi_c'^+ - \Xi_c^+$ mass difference is too small for any strong decay to occur.

$\Xi_c^{\prime+}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Xi_c^+ \gamma$	seen	106

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m = 2577.9 \pm 2.9$$
 MeV
 $m_{\Xi_c^{\prime 0}} - m_{\Xi_c^0} = 107.0 \pm 2.9$ MeV

The $\Xi_c^{\prime 0} - \Xi_c^0$ mass difference is too small for any strong decay to occur.

$\Xi_c^{\prime 0}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\equiv^0_c \gamma$	seen	105
Ξ _c (2645)	$I(J^{P}) = \frac{1}{2}(\frac{3}{2}^{+})$)
J' has not been measu $\Xi_c(2645)^+ \text{ mass } m$ $\Xi_c(2645)^0 \text{ mass } m$ $m_{\Xi_c(2645)^+} - m_{\Xi}$ $m_{\Xi_c(2645)^0} - m_{\Xi}$ $m_{\Xi_c(2645)^+} - m_{\Xi}$ $\Xi_c(2645)^+ \text{ full widtl}$ $\Xi_c(2645)^0 \text{ full widtl}$	red; $\frac{9}{2}$ ' is the quark-matrix = 2645.9 ± 0.5 MeV = 2645.9 ± 0.5 MeV $\Xi_c^0 = 175.0 \pm 0.6$ MeV $\Xi_c^+ = 178.0 \pm 0.6$ MeV $\Xi_c(2645)^0 = 0.0 \pm 0.5$ M th $\Gamma = 2.6 \pm 0.4$ MeV th $\Gamma < 5.5$ MeV, CL =	(S = 1.1) (S = 1.1) (S = 1.1) leV 90%

 $\varXi_c \, \pi$ is the only strong decay allowed to a \varXi_c resonance having this mass.

Ξ _c (2645) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_c^0}\pi^+$	seen	102
$\Xi_c^+ \pi^-$	seen	107
<i>Ξ</i> _c (2790)	$I(J^P) = rac{1}{2}(rac{1}{2}^-)$	
J^P has not been me	easured; $\frac{1}{2}^{-}$ is the quark-model	prediction.
$egin{array}{l} \Xi_c(2790)^+ { m mass}\ \Xi_c(2790)^0 { m mass}\ m_{\Xi_c(2790)^+} - m\ m_{\Xi_c(2790)^0} - m\ \Xi_c(2790)^0 - m\ \Xi_c(2790)^+ { m widt}\ \Xi_c(2790)^0 { m width} \end{array}$	$s = 2789.1 \pm 3.2 \text{ MeV}$ = 2791.9 ± 3.3 MeV $p_{\Xi_{c}^{0}} = 318.2 \pm 3.2 \text{ MeV}$ $p_{\Xi_{c}^{+}} = 324.0 \pm 3.3 \text{ MeV}$ h < 15 MeV, CL = 90% n < 12 MeV, CL = 90%	
Ξ_c (2790) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c'\pi$	seen	159
Ξ _c (2815)	$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$	
J^P has not been me	easured; $\frac{3}{2}^{-}$ is the quark-model	prediction.
$\Xi_{c}(2815)^{+} \text{ mass}$ $\Xi_{c}(2815)^{0} \text{ mass}$ $m_{\Xi_{c}(2815)^{+}} - m_{\Xi_{c}(2815)^{0}} - m_{\Xi_{c}(2815)^{+}} - m_{\Xi_{c}(2815)^{+}} - m_{\Xi_{c}(2815)^{+}} + m_{\Xi_{c}(2815)^{+}} + m_{\Xi_{c}(2815)^{0}} + m_{\Xi_{c}(2$	$m = 2816.6 \pm 0.9 \text{ MeV}$ $m = 2819.6 \pm 1.2 \text{ MeV}$ $m_{\Xi_c^+} = 348.7 \pm 0.9 \text{ MeV}$ $m_{\Xi_c^0} = 348.8 \pm 1.2 \text{ MeV}$ $m_{\Xi_c(2815)^0} = -3.0 \pm 1.3 \text{ MeV}$ width $\Gamma < 3.5 \text{ MeV}$, CL = 90%	V 0 0
The $arepsilon_{\mathcal{C}}\pi\pi$ modes are c	onsistent with being entirely via $\Xi_c($	2645) <i>π</i> .
Ξ _c (2815) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_{c}^{+}\pi^{+}\pi^{-}$	seen	196

Ξ_c(2980)

$$I(J^P) = \frac{1}{2}(?^?)$$

 $\frac{\Xi_c (2980)^+}{\Xi_c (2980)^0} m = 2970.7 \pm 2.2 \text{ MeV} \quad (S = 1.5)$ $\frac{\Xi_c (2980)^0}{\Xi_c (2980)^+} m = 2968.0 \pm 2.6 \text{ MeV} \quad (S = 1.2)$ $\frac{\Xi_c (2980)^+}{\Xi_c (2980)^+} \text{ width } \Gamma = 17.9 \pm 3.5 \text{ MeV}$ $\Xi_c(2980)^0$ width $\Gamma = 20 \pm 7$ MeV (S = 1.3)

Ξ_c (2980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+\overline{K}\pi$	seen	231
$\Sigma_c(2455)\overline{K}$	seen	134
$\Lambda_c^+\overline{K}$	not seen	414
$\Xi_c 2\pi$	seen	385
$\Xi_c(2645)\pi$	seen	277

Ξ_c(3055)

$$I(J^{P}) = ?(?^{?})$$

Mass $m = 3055.1 \pm 1.7$ MeV (S = 1.5) Full width $\Gamma = 11 \pm 4$ MeV

 $\Xi_{c}(3080)$

$$I(J^P) = \frac{1}{2}(?^?)$$

 $\Xi_c(3080)^+$ m = 3076.94 ± 0.28 MeV $\Xi_c(3080)^0$ m = 3079.9 ± 1.4 MeV (S = 1.3) $\Xi_c(3080)^+$ width $\Gamma = 4.3 \pm 1.5$ MeV $\Xi_c(3080)^0$ width $\Gamma = 5.6 \pm 2.2$ MeV (S = 1.3)

$\underline{=}_{c}(3080)$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda_c^+ \overline{K} \pi}$	seen	415
$\Sigma_c(2455)\overline{K}$	seen	342
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+\overline{K}$	not seen	536
$\Lambda_c^+ \overline{K} \pi^+ \pi^-$	not seen	143

 $I(J^P) = 0(\frac{1}{2}^+)$ Ω_c^0 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction. Mass $m = 2695.2 \pm 1.7$ MeV (S = 1.3) Mean life $\tau = (69 \pm 12) \times 10^{-15}$ s $c\tau = 21 \ \mu m$ Page 11

No absolute branching fractions have been measured.

Ω_c^0 DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma^+ K^- K^- \pi^+$	seen	689
$\Xi^0 \kappa^- \pi^+$	seen	901
$\Xi^- K^- \pi^+ \pi^+$	seen	830
$\Omega^- e^+ \nu_e$	seen	829
$\Omega^{-}\pi^{+}$	seen	821
$\Omega^{-}\pi^{+}\pi^{0}$	seen	797
$\Omega^{-}\pi^{-}\pi^{+}\pi^{+}$	seen	753

$\Omega_{c}(2770)^{0}$	$I(J^P) = 0(\frac{3}{2}^+)$
J^P has	not been measured; $\frac{3}{2}^+$ is the quark-model prediction.
Mas	$m = 2765.9 \pm 2.0 { m MeV} ({ m S} = 1.2)$

$$m_{\Omega_c(2770)^0} = m_{\Omega_c^0} = 70.7^{+0.8}_{-0.9} \text{ MeV}$$

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

$\Omega_c(2770)^0$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Omega_c^0 \gamma$	presumably 100%	70

NOTES

- [a] This branching fraction includes all the decay modes of the final-state resonance.
- [b] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Assuming isospin conservation, so that the other third is $\Lambda_c^+ \pi^0 \pi^0$.
- [e] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .