р

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For *N* decays, *p* and *n* indicate proton and neutron partial lifetimes.

	Partial mean	life	idamaa laval	p
p DECAT MODES	(10 ⁵⁵ years)	Cont	idence level	(IVIEV/c)
A	Antilepton + mesor	า		
$N \rightarrow e^+ \pi$	> 2000 (<i>n</i>),	> 8200 (p)	90%	459
$N \rightarrow \mu^+ \pi$	> 1000 (<i>n</i>),	> 6600 (p)	90%	453
$N \rightarrow \nu \pi$	> 1100 (<i>n</i>),	> 390 (p)	90%	459
$ ho ightarrow ~e^+ \eta$	> 4200		90%	309
$ ho ightarrow \ \mu^+ \eta$	> 1300		90%	297
$n \rightarrow \nu \eta$	> 158		90%	310
$N \rightarrow e^+ \rho$	> 217 (n), >	> 710 (p)	90%	149
$N \rightarrow \mu^+ \rho$	> 228 (n), >	> 160 (p)	90%	113
HTTP://PDG.LBL.GOV	Page 1	Created:	10/1/2016	5 20:05

$N \rightarrow$	νρ	> 19~(n), > 162~(p)	90%	149
p ightarrow	$e^+\omega$	> 320	90%	143
p ightarrow	$\mu^+\omega$	> 780	90%	105
$n \rightarrow$	$ u \omega$	> 108	90%	144
$N \rightarrow$	$e^+ K$	> 17 (n), > 1000 (p)	90%	339
$N \rightarrow$	μ^+ K	$> 26 \ (n), > 1600 \ (p)$	90%	329
$N \rightarrow$	νK	> 86 (n), > 5900 (p)	90%	339
n –	$\rightarrow \nu K_{S}^{0}$	> 260	90%	338
$p \rightarrow$	$e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow$	$\nu K^{*}(892)$	> 78 (n), > 51 (p)	90%	45
	()	A		
	+ + -	Antilepton + mesons		
$p \rightarrow$	$e^+\pi^+\pi^+$	> 82	90%	448
$p \rightarrow$	$e^{+}\pi^{0}\pi^{0}$	> 147	90%	449
$n \rightarrow$	$e^{+}\pi^{-}\pi^{0}$	> 52	90%	449
$p \rightarrow$	$\mu^+\pi^+\pi^-$	> 133	90%	425
$p \rightarrow$	$\mu^+ \pi^0 \pi^0$	> 101	90%	427
$n \rightarrow$	$\mu^{+}\pi^{-}\pi^{0}$	> 74	90%	427
$n \rightarrow$	$e^+ K^0 \pi^-$	> 18	90%	319
		Lepton + meson		
$n \rightarrow$	$e^{-}\pi^{+}$	> 65	90%	459
$n \rightarrow$	$\mu^-\pi^+$	> 49	90%	453
$n \rightarrow$	$e^- \rho^+$	> 62	90%	150
$n \rightarrow$	$\mu^- \rho^+$	> 7	90%	115
$n \rightarrow$	e^-K^+	> 32	90%	340
$n \rightarrow$	$\mu^- K^+$	> 57	90%	330
		Lautan I maaana		
	+ _+	Lepton + mesons	0.00/	440
$p \rightarrow$	$e^{\pi + \pi + 0}$	> 30	90%	448
$n \rightarrow$	$e^{\pi + \pi^{2}}$	> 29	90%	449
$p \rightarrow$	$\mu \pi \pi \pi - + 0$	> 17	90%	425
$n \rightarrow$	$\mu \pi \pi^{+} \pi^{-}$	> 34	90%	427
$p \rightarrow$	$e \pi' \kappa'$	> 75	90%	320
$p \rightarrow$	μ π ' K '	> 245	90%	279
		Antilepton + photon(s)		
$p \rightarrow$	$e^+\gamma$	> 670	90%	469
$p \rightarrow$	$\mu^+\gamma$	> 478	90%	463
$n \rightarrow$	$\nu\gamma$	> 550	90%	470
$p \rightarrow$	$e^+\gamma\gamma$	> 100	90%	469
$n \rightarrow$	$ u \gamma \gamma$	> 219	90%	470
		Antilenton 🕂 single massless		
n . `	e+ X	- 200	0.00/	_
$\rho \rightarrow \rho$	$c \wedge u + \chi$	> 190	90%	—
ho ightarrow	μ Λ	> 410	90%	_
нтті	P://PDG.LBL.GOV	Page 2 Created	d: 10/1/2016	20:05

Three (or more) leptons					
p ightarrow	$e^+ e^+ e^-$	> 793	90%	469	
p ightarrow	$e^+ \mu^+ \mu^-$	> 359	90%	457	
p ightarrow	$e^+ \nu \nu$	> 170	90%	469	
$n \rightarrow$	$e^+e^-\nu$	> 257	90%	470	
$n \rightarrow$	$\mu^+ e^- \nu$	> 83	90%	464	
$n \rightarrow$	$\mu^+ \mu^- \nu$	> 79	90%	458	
$p \rightarrow$	$\mu^+e^+e^-$	> 529	90%	463	
$p \rightarrow$	$\mu^+ \mu^+ \mu^-$	> 675	90%	439	
$p \rightarrow$	$\mu^+ \nu \nu$	> 220	90%	463	
$p \rightarrow$	$e^-\mu^+\mu^+$	> 6	90%	457	
$n \rightarrow$	3ν	$> 5 \times 10^{-4}$	90%	470	
Inclusive modes					

$N \rightarrow$	e ⁺ anything	> 0.6 (n, p)	90%	—
$N \rightarrow$	μ^+ anything	> 12 (n, p)	90%	-
$N \rightarrow$	$e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$p p \rightarrow$	$\pi^+\pi^+$	> 72.2	90%	_
$pn \rightarrow$	$\pi^+\pi^0$	> 170	90%	_
$nn \rightarrow$	$\pi^+\pi^-$	> 0.7	90%	_
$nn \rightarrow$	$\pi^0 \pi^0$	> 404	90%	_
$p p \rightarrow$	$K^+ K^+$	> 170	90%	_
$pp \rightarrow$	e^+e^+	> 5.8	90%	_
$p p \rightarrow$	$e^+ \mu^+$	> 3.6	90%	_
$p p \rightarrow$	$\mu^+\mu^+$	> 1.7	90%	_
$pn \rightarrow$	$e^+\overline{ u}$	> 260	90%	_
$pn \rightarrow$	$\mu^+\overline{ u}$	> 200	90%	_
$pn \rightarrow$	$\tau^+ \overline{\nu}_{\tau}$	> 29	90%	_
$nn \rightarrow$	$\nu_e \overline{\nu}_e$	> 1.4	90%	_
$nn \rightarrow$	$ u_{\mu}\overline{ u}_{\mu}$	> 1.4	90%	_
$pn \rightarrow$	invisible	$> 2.1 \times 10^{-5}$	90%	_
$pp \rightarrow$	invisible	$> 5 \times 10^{-5}$	90%	_

p DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	p (MeV/c)
$ \begin{array}{cccc} \overline{p} \to e^{-} \gamma \\ \overline{p} \to \mu^{-} \gamma \\ \overline{p} \to e^{-} \pi^{0} \\ \overline{p} \to \mu^{-} \pi^{0} \\ \overline{p} \to e^{-} \eta \end{array} $	$> 7 \times 10^5$ $> 5 \times 10^4$ $> 4 \times 10^5$ $> 5 \times 10^4$ $> 2 \times 10^4$	90% 90% 90% 90%	469 463 459 453 309

HTTP://PDG.LBL.GOV Page 3 Created: 10/1/2016 20:05

$\overline{p} \rightarrow \mu$	$\mu^-\eta$	$> 8 \times 10^{3}$	90%	297
$\overline{p} \rightarrow \epsilon$	$e^- K_S^0$	> 900	90%	337
$\overline{p} \rightarrow \mu$	$\iota^- K_S^0$	$> 4 imes 10^3$	90%	326
$\overline{p} \rightarrow \epsilon$	$e^- K_L^0$	$> 9 imes 10^3$	90%	337
$\overline{p} \rightarrow \mu$	$\iota^- K_L^0$	$> 7 imes 10^3$	90%	326
$\overline{p} \rightarrow \epsilon$	$e^{-}\gamma\gamma$	$> 2 \times 10^4$	90%	469
$\overline{p} \rightarrow \mu$	$\iota^- \gamma \gamma$	$> 2 \times 10^4$	90%	463
$\overline{p} \rightarrow \epsilon$	$e^-\omega$	> 200	90%	143

n

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m = 1.0086649159 \pm 0.0000000005$ u Mass $m = 939.565413 \pm 0.000006$ MeV ^[a] $(m_n - m_{\overline{n}}) / m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933321 \pm 0.0000005$ MeV = 0.00138844919(45) uMean life $\tau = 880.2 \pm 1.0$ s (S = 1.9) $c\tau = 2.6387 \times 10^8 \text{ km}$ Magnetic moment $\mu = -1.9130427 \pm 0.0000005 \ \mu_N$ Electric dipole moment $d < 0.30 \times 10^{-25} e \text{ cm}$, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm^2 (S = 1.3) Magnetic radius $\sqrt{\left\langle r_M^2 \right\rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n\overline{n}$ -oscillation time > 2.7×10^8 s, CL = 90% (free *n*) Mean $n\overline{n}$ -oscillation time > 1.3×10^8 s, CL = 90% ^[g] (bound n) Mean nn'-oscillation time > 414 s, CL = 90% ^[h]

$pe^-\nu_e$ decay parameters ^[i]

$$\begin{split} \lambda &\equiv g_A \ / \ g_V = -1.2723 \pm 0.0023 \quad (S = 2.2) \\ A &= -0.1184 \pm 0.0010 \quad (S = 2.4) \\ B &= 0.9807 \pm 0.0030 \\ C &= -0.2377 \pm 0.0026 \\ a &= -0.103 \pm 0.004 \\ \phi_{AV} &= (180.017 \pm 0.026)^{\circ} \ ^{[j]} \\ D &= (-1.2 \pm 2.0) \times 10^{-4} \ ^{[k]} \\ R &= 0.004 \pm 0.013 \ ^{[k]} \end{split}$$

n DECAY MODES		Fraction $(\Gamma_i/$	Γ) Confide	ence level	<i>р</i> (MeV/c)
pe ⁻ $\overline{\nu}_e$		100	%		1
$pe^-\overline{\nu}_e\gamma$		[/] (3.09±0	.32) × 10 ⁻³		1
(Charge conserva	tion (Q) viola	ting mode		
pv _e v e	Q	< 8	$\times 10^{-27}$	68%	1
N(1440) 1/2 ⁺	1	$I(J^P) =$	$\frac{1}{2}(\frac{1}{2}^+)$		

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1410 to 1450 (\approx 1430) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	55-75 %	391
$N\eta$	<1 %	ť
$N\pi\pi$	25–50 %	338
$\Delta(1232)\pi$	20–30 %	135
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	13–27 %	135
Nσ	11–23 %	-
$p\gamma$, helicity ${=}1/2$	0.035-0.048 %	407
$n\gamma$, helicity=1/2	0.02-0.04 %	406

N(1520) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^{-})$$

 ${\sf Re}({\sf pole \ position}) = 1505 \ {\sf to} \ 1515 \ (pprox 1510) \ {\sf MeV}$ -2Im(pole position) = 105 to 120 (pprox 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 125 (pprox 115) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	55-65 %	453
Nη	< 1 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
$arDelta(1232)\pi$, $\mathit{S} ext{-wave}$	15–23 %	225
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	7–11 %	225
Nσ	< 2 %	-
$p\gamma$	0.31-0.52 %	467
$p\gamma$, helicity ${=}1/2$	0.01-0.02 %	467
$p\gamma$, helicity=3/2	0.30-0.50 %	467

HTTP://PDG.LBL.GOV

Created: 10/1/2016 20:05

$n\gamma$	0.30–0.53 %	466
$n\gamma$, helicity ${=}1/2$	0.04-0.10 %	466
$n\gamma$, helicity=3/2	0.25-0.45 %	466

N(1535)	1/2-
---------	------

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1490 \mbox{ to } 1530 \ (\approx 1510) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 90 \mbox{ to } 250 \ (\approx 170) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1525 \mbox{ to } 1545 \ (\approx 1535) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 125 \mbox{ to } 175 \ (\approx 150) \mbox{ MeV} \end{array}$

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	35-55 %	468
$N\eta$	32–52 %	186
$N\pi\pi$	3-14 %	426
$arDelta(1232)\pi$, D -wave	1-4 %	244
$N\sigma$	2–10 %	-
$N(1440)\pi$	5–12 %	†
$p\gamma$, helicity ${=}1/2$	0.15-0.30 %	481
$n\gamma$, helicity=1/2	0.01-0.25 %	480

N(1650) 1/2⁻

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1640 \mbox{ to } 1670 \ (\approx 1655) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 100 \mbox{ to } 170 \ (\approx 135) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1645 \mbox{ to } 1670 \ (\approx 1655) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 110 \mbox{ to } 170 \ (\approx 140) \mbox{ MeV} \end{array}$

Fraction (Γ _i /Γ)	p (MeV/c)
50-70 %	551
14-22 %	354
5–15 %	179
8–36 %	517
6–18 %	349
2–18 %	-
6–26 %	168
0.04–0.20 %	562
0.003-0.17 %	561
	Fraction (Γ_i/Γ) 50–70 % 14–22 % 5–15 % 8–36 % 6–18 % 2–18 % 6–26 % 0.04–0.20 % 0.003–0.17 %

N(1675) 5/2⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^-)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1655 \mbox{ to } 1665 \ (\approx 1660) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 125 \mbox{ to } 150 \ (\approx 135) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 1670 \mbox{ to } 1680 \ (\approx 1675) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 130 \mbox{ to } 165 \ (\approx 150) \ \mbox{MeV} \end{array}$

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	35-45 %	564
$N\eta$	< 1 %	376
$N\pi\pi$	25–45 %	532
$arDelta(1232)\pi$, D -wave	23–37 %	366
$N\sigma$	3–7 %	-
$p\gamma$	0-0.02 %	575
$p\gamma$, helicity ${=}1/2$	0-0.01 %	575
$p\gamma$, helicity ${=}3/2$	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity ${=}1/2$	0-0.05 %	574
$n\gamma$, helicity=3/2	0-0.10 %	574

N(1680) 5/2⁺

 $I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1665 \mbox{ to } 1680 \ (\approx 1675) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 110 \ \mbox{to } 135 \ (\approx 120) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 1680 \ \mbox{to } 1690 \ (\approx 1685) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 120 \ \mbox{to } 140 \ (\approx 130) \ \mbox{MeV} \end{array}$

N(1680) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	65–70 %	571
$N\eta$	<1 %	386
$N\pi\pi$	20–40 %	539
$\Delta(1232)\pi$	11–23 %	374
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	4–10 %	374
$arDelta(1232)\pi$, <i>F</i> -wave	7–13 %	374
Nσ	9–19 %	-
$p\gamma$	0.21-0.32 %	581
$p\gamma$, helicity ${=}1/2$	0.001–0.011 %	581
$p\gamma$, helicity $=3/2$	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity ${=}1/2$	0.004-0.029 %	581
$n\gamma$, helicity=3/2	0.01-0.024 %	581

HTTP://PDG.LBL.GOV

Created: 10/1/2016 20:05

N(1700) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1650 \mbox{ to } 1750 \ (\approx 1700) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 100 \mbox{ to } 300 \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1650 \mbox{ to } 1750 \ (\approx 1700) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 100 \mbox{ to } 250 \ (\approx 150) \mbox{ MeV} \end{array}$

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	7–17 %	581
$N\eta$	seen	402
$N\pi\pi$	60–90 %	550
$\Delta(1232)\pi$	55-85 %	386
$arDelta(1232)\pi$, $\mathit{S} ext{-wave}$	50-80 %	386
$arDelta(1232)\pi$, D -wave	4–14 %	386
$N(1440)\pi$	3–11 %	215
$N(1520)\pi$	<4 %	120
N $ ho$, S=3/2, S-wave	seen	†
Nσ	2–14 %	-
$p\gamma$	0.01-0.05 %	591
$p\gamma$, helicity ${=}1/2$	0.0-0.024 %	591
$p\gamma$, helicity $=3/2$	0.002-0.026 %	591
$n\gamma$	0.01–0.13 %	590
$n\gamma$, helicity ${=}1/2$	0.0-0.09 %	590
$n\gamma$, helicity=3/2	0.01-0.05 %	590

N(1710) 1/2⁺

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

Re(pole position) = 1670 to 1770 (\approx 1720) MeV -2Im(pole position) = 80 to 380 (\approx 230) MeV Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 50 to 250 (\approx 100) MeV

N(1710) DECAY MODES	Fraction (Γ _i /Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5-20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛΚ	5-25 %	269
ΣΚ	seen	138
$N\pi\pi$	seen	557
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	seen	394
$N(1535)\pi$	9–21 %	106

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

N $ ho$, S=1/2, P-wave	seen	†
$p\gamma$, helicity ${=}1/2$	0.002–0.08 %	598
$n\gamma$, helicity ${=}1/2$	0.0–0.02%	597

N(1720) 3/2⁺

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1660 \mbox{ to } 1690 \ (\approx 1675) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 150 \mbox{ to } 400 \ (\approx 250) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1700 \mbox{ to } 1750 \ (\approx 1720) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 150 \mbox{ to } 400 \ (\approx 250) \mbox{ MeV} \end{array}$

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	8–14 %	594
Nη	1-5 %	422
ΛΚ	4–5 %	283
$N\pi\pi$	50-90 %	564
$arDelta(1232)\pi$, <i>P</i> -wave	47–77 %	402
$arDelta(1232)\pi$, <i>F</i> -wave	<12 %	402
N ho	70–85 %	74
$N ho$, S ${=}1/2$, P-wave	seen	74
Nσ	2–14 %	-
$N(1440)\pi$	<2 %	235
$\mathit{N}(1520)\pi$, $\mathit{S} ext{-wave}$	1-5 %	145
$p\gamma$	0.05–0.25 %	604
$p\gamma$, helicity ${=}1/2$	0.05–0.15 %	604
$p\gamma$, helicity ${=}3/2$	0.002–0.16 %	604
$n\gamma$	0.0-0.016 %	603
$n\gamma$, helicity ${=}1/2$	0.0-0.01 %	603
<i>n</i> γ , helicity=3/2	0.0-0.015 %	603

N(1875) 3/2⁻

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1800 \mbox{ to } 1950 \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 150 \mbox{ to } 250 \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1820 \mbox{ to } 1920 \mbox{ (\approx 1875) MeV} \\ \mbox{Breit-Wigner full width} = 250 \pm 70 \mbox{ MeV} \end{array}$

N(1875) DECAY MODES	Fraction $(\Gamma_i/$	p (MeV/c)
Νπ	2–14 %	695
$N\eta$	<1 %	559
$N\omega$	15–25 %	371
HTTP://PDG.LBL.GOV	Page 9	Created: 10/1/2016 20:05

ΛΚ	seen	454
ΣΚ	seen	384
$N\pi\pi$		670
$\Delta(1232)\pi$	10–35 %	520
$arDelta(1232)\pi$, S -wave	7–21 %	520
$arDelta(1232)\pi$, D -wave	2–12 %	520
N $ ho$, S=3/2, S-wave	seen	379
$N\sigma$	30–60 %	-
$N(1440)\pi$	2-8 %	373
$N(1520)\pi$	<2 %	301
$p\gamma$	0.001-0.025 %	703
$p\gamma$, helicity ${=}1/2$	0.001–0.021 %	703
$p\gamma$, helicity $=3/2$	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity ${=}1/2$	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

N(1900) 3/2⁺

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1900 \mbox{ to } 1940 \ (\approx 1920) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 130 \mbox{ to } 300 \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1900 \pm 30 \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \pm 50 \mbox{ MeV} \end{array}$

N(1900) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	<10 %	710
$N\eta$	2–14 %	579
$N\omega$	7–13 %	401
ΛΚ	2–20 %	477
ΣΚ	3–7 %	410
$N\pi\pi$	40-80 %	686
$\Delta(1232)\pi$	30–70 %	539
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	9–25 %	539
$arDelta(1232)\pi$, <i>F</i> -wave	21-45 %	539
Nσ	1–7 %	-
$N(1520)\pi$	7–23 %	324
$N(1535)\pi$	4–10 %	306
$p\gamma$	0.001-0.025 %	718
$p\gamma$, helicity ${=}1/2$	0.001-0.021 %	718
$p\gamma$, helicity $=3/2$	<0.003 %	718
$n\gamma$	<0.040 %	718
$n\gamma$, helicity ${=}1/2$	<0.007 %	718
$n\gamma$, helicity=3/2	<0.033 %	718

HTTP://PDG.LBL.GOV

Created: 10/1/2016 20:05

N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2})$$

 $\begin{array}{l} \mbox{Re(pole position)} = 2050 \mbox{ to } 2100 \ (\approx 2075) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 400 \mbox{ to } 520 \ (\approx 450) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2100 \mbox{ to } 2200 \ (\approx 2190) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 300 \mbox{ to } 700 \ (\approx 500) \mbox{ MeV} \end{array}$

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-20 %	888
$N\eta$	seen	791
ΛΚ	0.2–0.8;%	712
$N\pi\pi$	22–80;%	870
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	19–31 %	740
N $ ho$, S=3/2, D-wave	seen	680
Νσ	3–9 %	-
$p\gamma$	0.014–0.077 %	894
$p\gamma$, helicity ${=}1/2$	0.013–0.062;%	894
$p\gamma$, helicity ${=}3/2$	0.001–0.014;%	894
$n\gamma$	<0.04 %	893
$n\gamma$, helicity ${=}1/2$	<0.01;%	893
$n\gamma$, helicity=3/2	<0.03 %	893

N(2220) 9/2⁺

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 2130 \mbox{ to } 2200 \ (\approx 2170) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 400 \mbox{ to } 560 \ (\approx 480) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2200 \mbox{ to } 2300 \ (\approx 2250) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 350 \mbox{ to } 500 \ (\approx 400) \mbox{ MeV} \end{array}$

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	15–25 %	924

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^-)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 2150 \mbox{ to } 2250 \ (\approx 2200) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 350 \mbox{ to } 550 \ (\approx 450) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2250 \mbox{ to } 2320 \ (\approx 2280) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 300 \mbox{ to } 600 \ (\approx 500) \mbox{ MeV} \end{array}$

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	941
N(2600) 11/2	$I(J^P) = \frac{1}{2}(\frac{11}{2}^-)$	
Breit-Wigner mas Breit-Wigner full	s = 2550 to 2750 ($pprox$ 2600) Me width = 500 to 800 ($pprox$ 650) M	eV IeV
N(2600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–10 %	1126

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n = q_p + q_e$. See also the charge of the neutron.
- [d] The μp and ep values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] The first limit is for $p \rightarrow$ anything or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p} \rightarrow e^-\gamma) > 7 \times 10^5$ yr.
- [g] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [h] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).

- [*i*] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V + g_A\gamma_5) + i(g_{WM}/m_{B_i}) \sigma_{\lambda\nu} q^{\nu}]B_i$, and ϕ_{AV} is defined by $g_A/g_V = |g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [j] Time-reversal invariance requires this to be 0° or 180° .
- [k] This coefficient is zero if time invariance is not violated.
- [/] This limit is for γ energies between 15 and 340 keV.