QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\text{MS}}$ scheme. This can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.16^{+0.49}_{-0.26}~{
m MeV}$$
 Charge $= \frac{2}{3}~{
m e}~{\it I}_z = +\frac{1}{2}$ $m_u/m_d = 0.47^{+0.06}_{-0.07}$

Charge
$$= \frac{2}{3} e \quad I_z = +\frac{1}{2}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_s=93^{+11}_{-5}~{
m MeV}~{
m Charge}=-rac{1}{3}~e~{
m Strangeness}=-1$$
 $m_s~/~((m_u+m_d)/2)=27.3^{+0.7}_{-1.3}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.27 \pm 0.02 \; {
m GeV} \qquad {
m Charge} = {2\over 3} \; e \quad {
m Charm} = +1 \ m_c/m_s = 11.72 \pm 0.25 \ m_b/m_c = 4.577 \pm 0.008 \ m_b-m_c = 3.45 \pm 0.05 \; {
m GeV}$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_b = 4.18^{+0.03}_{-0.02} \text{ GeV}$$
 Charge $= -\frac{1}{3} e$ Bottom $= -1$

t

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \; e \qquad \qquad \mathsf{Top} = +1$$

Created: 6/1/2020 08:28

Mass (direct measurements) $m=172.76\pm0.30~{\rm GeV}^{[a,b]}~({\rm S}=1.2)$ Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}~{\rm GeV}^{[a]}$ Mass (Pole from cross-section measurements) $m=172.4\pm0.7~{\rm GeV}$ $m_t-m_{\overline{t}}=-0.16\pm0.19~{\rm GeV}$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~{\rm GeV}~({\rm S}=1.4)$ $\Gamma(W\,b)/\Gamma(W\,q(q=b,\,s,\,d))=0.957\pm0.034~({\rm S}=1.5)$

t-quark EW Couplings

 $F_0 = 0.687 \pm 0.018$ $F_- = 0.320 \pm 0.013$ $F_+ = 0.002 \pm 0.011$ $F_{V+A} < 0.29$, CL = 95%

t DECAY MODES		Fraction (Γ_i/Γ)	Confid	lence level	(MeV/c)
Wq(q = b, s, d)					_
W b					_
$e u_e b$	(11.10±0.30) %				
μu_{μ} b	$(11.40\pm0.20)\%$				
$ au u_{ au}$ b	(11.1 ± 0.9) %				_ _
q q b	(66.5 ± 1.4) %				_
$\gamma q(q=u,c)$		[c] < 1.8	\times 10 ⁻⁴	95%	_
$\Delta T = 1$ weak neutral current ($T1$) modes					
Zq(q=u,c)	T1	[d] < 5	\times 10 ⁻⁴	95%	_
Hu	T1	< 1.2	$\times 10^{-3}$	95%	_
Нс	T1	< 1.1	$\times 10^{-3}$	95%	_
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$	T1	< 1.6	\times 10 ⁻³	95%	_

b' (4th Generation) Quark, Searches for

Mass m>190 GeV, CL = 95% $(p\overline{p}, \text{ quasi-stable }b')$ Mass m>1130 GeV, CL = 95% $(B(b'\to Z\,b)=1)$ Mass m>1350 GeV, CL = 95% $(B(b'\to W\,t)=1)$ Mass m>46.0 GeV, CL = 95% $(e^+e^-, \text{ all decays})$

t' (4th Generation) Quark, Searches for

m(t'(2/3)) > 1280 GeV, CL = 95% (B($t' \rightarrow Zt$) = 1) m(t'(2/3)) > 1295 GeV, CL = 95% (B($t' \rightarrow Wb$) = 1) m(t'(2/3)) > 1310 GeV, CL = 95% (singlet t') m(t'(5/3)) > 1350 GeV, CL = 95%

Created: 6/1/2020 08:28

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 6/1/2020 08:28