$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE MEAN LIFE

Each measurement of the *B* mean life is an average over an admixture of various bottom mesons and baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *B* mean life.

"OUR EVALUATION" is an average using rescaled values of the data listed below. This is a weighted average of the lifetimes of the five main b-hadron species (B^+ , B^0 , B^0_{sH} , B^0_{sL} , and Λ_b) that assumes the production fractions in Z decays (given at the end of this section) and equal production fractions of B^0_{sH} and B^0_{sL} mesons.

 $VALUE (10^{-12} \text{ s})$ DOCUMENT ID TECN COMMENT **EVTS** 1.5673 ± 0.0029 OUR EVALUATION (Produced by HFLAV) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABDALLAH 04E DLPH $e^+e^- \rightarrow Z$ $1.570 \pm 0.005 \pm 0.008$ +0.035² ABE 1.533 ± 0.015 CDF $p\overline{p}$ at 1.8 TeV ³ ACCIARRI L3 $e^+e^- \rightarrow Z$ $1.549 \ \pm 0.009 \ \pm 0.015$ 98 ⁴ ACKERSTAFF 97F OPAL $1.611 \pm 0.010 \pm 0.027$ ⁴ ABREU 96E DLPH $e^+e^- \rightarrow Z$ $1.582 \pm 0.011 \pm 0.027$ ⁵ ABREU 96E DLPH $e^+e^- \rightarrow$ $1.575 \pm 0.010 \pm 0.026$ ⁶ BUSKULIC $1.533 \pm 0.013 \pm 0.0229.8 k$ 96F **ALEP** $1.564 \pm 0.030 \pm 0.036$ ⁷ ABE,K **95**B SLD ⁸ ABREU $1.542 \pm 0.021 \pm 0.045$ 94L DLPH $e^+e^- \rightarrow Z$ $^{+\,0.24}_{-\,0.21}$ ⁹ ABREU DLPH $e^+e^- \rightarrow Z$ 1.50 ± 0.03 ¹⁰ ABE 1.46 ± 0.06 ± 0.065344 CDF Repl. by ABE 98B +0.14¹¹ ABREU 1.23 ± 0.15 188 93D DLPH Sup. by ABREU 94L -0.13¹² ABREU 1.49 ± 0.11 ± 0.12 253 DLPH Sup. by ABREU 94L +0.16¹³ ACTON OPAL $e^+e^- \rightarrow Z$ 1.51 ± 0.11 130 -0.14¹⁴ ACTON $e^+e^- \rightarrow Z$ 93L OPAL $1.523 \pm 0.034 \pm 0.0385372$ ¹⁴ ADRIANI Repl. by ACCIARRI 98 $1.535 \pm 0.035 \pm 0.0287357$ L3 ¹⁵ BUSKULIC 930 ALEP $e^+e^- \rightarrow Z$ $1.511 \pm 0.022 \pm 0.078$ ¹⁶ ABREU 92 1.28 ± 0.10 DLPH Sup. by ABREU 94L ¹⁷ ACTON 1.37 $\pm\,0.07$ ± 0.061354 92 OPAL Sup. by ACTON 93L ¹⁸ BUSKULIC ± 0.03 $\pm\,0.06$ **ALEP** Sup. by BUSKULIC 96F 1.49 +0.19¹⁹ BUSKULIC $e^+e^- \rightarrow Z$ 92G ALEP 1.35 ± 0.05 -0.17²⁰ ADEVA 91H L3 Sup. by ADRIANI 93K 1.32 ± 0.08 ± 0.091386 $+0.31 \\ -0.25$ 21 ALEXANDER 91G OPAL $e^+e^- \rightarrow Z$ 1.32 ± 0.15 37 ²² DECAMP 91c ALEP Sup. by BUSKULIC 92F 1.29 ± 0.06 ± 0.102973 ²³ HAGEMANN JADE $E_{cm}^{ee} = 35 \text{ GeV}$ 90 1.36

1.13	±0.15			24	LYONS	90	RVUE		
1.35	±0.10	±0.24			BRAUNSCH	89 B	TASS	$E_{\rm cm}^{\rm ee}=35$	GeV
0.98	± 0.12	± 0.13			ONG	89	MRK2	$E_{\rm cm}^{ee}=29$	GeV
1.17	$^{+0.27}_{-0.22}$	$^{+0.17}_{-0.16}$			KLEM	88	DLCO	E ^{ee} _{cm} = 29	GeV
	±0.20			25	ASH	87	MAC	$E_{\rm cm}^{ee}=29$	GeV
1.02	$+0.42 \\ -0.39$		301	26	BROM	87	HRS	$E_{\rm cm}^{ee}=29$	GeV

 $^{^{1}}$ Measurement performed using an inclusive reconstruction and B flavor identification technique.

² Measured using inclusive $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ vertex.

³ ACCIARRI 98 uses inclusively reconstructed secondary vertex and lepton impact parameter.

⁴ ACKERSTAFF 97F uses inclusively reconstructed secondary vertices.

⁵ Combines ABREU 96E secondary vertex result with ABREU 94L impact parameter result.

⁶ BUSKULIC 96F analyzed using 3D impact parameter.

⁷ABE,K 95B uses an inclusive topological technique.

⁸ ABREU 94L uses charged particle impact parameters. Their result from inclusively reconstructed secondary vertices is superseded by ABREU 96E.

⁹ From proper time distribution of $b \to J/\psi(1S)$ anything.

¹⁰ ABE 93J analyzed using $J/\psi(1S) \rightarrow \mu\mu$ vertices.

¹¹ABREU 93D data analyzed using $D/D^*\ell$ anything event vertices.

¹² ABREU 93G data analyzed using charged and neutral vertices.

 $^{^{13}}$ ACTON 93C analysed using $D/D^*\ell$ anything event vertices.

 $^{^{14}}$ ACTON 93L and ADRIANI 93K analyzed using lepton (e and μ) impact parameter at Z.

¹⁵ BUSKULIC 930 analyzed using dipole method.

 $^{^{16}}$ ABREU 92 is combined result of muon and hadron impact parameter analyses. Hadron tracks gave $(12.7\pm0.4\pm1.2)\times10^{-13}$ s for an admixture of B species weighted by production fraction and mean charge multiplicity, while muon tracks gave $(13.0\pm1.0\pm0.8)\times10^{-13}$ s for an admixture weighted by production fraction and semileptonic branching fraction.

¹⁷ ACTON 92 is combined result of muon and electron impact parameter analyses.

¹⁸ BUSKULIC 92F uses the lepton impact parameter distribution for data from the 1991

¹⁹ BUSKULIC 92G use $J/\psi(1S)$ tags to measure the average b lifetime. This is comparable to other methods only if the $J/\psi(1S)$ branching fractions of the different b-flavored hadrons are in the same ratio.

Using $Z \to e^+ X$ or $\mu^+ X$, ADEVA 91H determined the average lifetime for an admixture of B hadrons from the impact parameter distribution of the lepton.

²¹ Using $Z \to J/\psi(1S)$ X, $J/\psi(1S) \to \ell^+\ell^-$, ALEXANDER 91G determined the average lifetime for an admixture of B hadrons from the decay point of the $J/\psi(1S)$.

²² Using $Z \rightarrow eX$ or μX , DECAMP 91C determines the average lifetime for an admixture of B hadrons from the signed impact parameter distribution of the lepton.

²³ HAGEMANN 90 uses electrons and muons in an impact parameter analysis.

²⁴LYONS 90 combine the results of the *B* lifetime measurements of ONG 89, BRAUN-SCHWEIG 89B, KLEM 88, and ASH 87, and JADE data by private communication. They use statistical techniques which include variation of the error with the mean life, and possible correlations between the systematic errors. This result is not independent of the measured results used in our average.

 $^{^{25}}$ We have combined an overall scale error of 15% in quadrature with the systematic error of ± 0.7 to obtain ± 2.1 systematic error.

²⁶ Statistical and systematic errors were combined by BROM 87.

CHARGED b-HADRON ADMIXTURE MEAN LIFE

$VALUE (10^{-12} \text{ s})$	DOCUMENT ID		TECN	COMMENT
1.72±0.08±0.06	¹ ADAM			
¹ ADAM 95 data analyze	ed using vertex-charge to	chniqu	ue to tag	<i>b</i> -hadron charge.
NEUTRA	L <i>b</i> -HADRON ADM	XTU	RE ME	AN LIFE
$VALUE~(10^{-12}~{ m s})$	DOCUMENT ID		TECN	COMMENT
$1.58 \pm 0.11 \pm 0.09$	1 ADAM	95	DLPH	$e^+e^- ightarrow Z$
¹ ADAM 95 data analyzo	ed using vertex-charge to	chniqu	ue to tag	b-hadron charge.
MEAN LIFE	E RATIO $ au_{charged}$ $b-$	nadron	$/ au_{neutr}$	al <i>b</i> —hadron
	DOCUMENT ID		TECN	COMMENT
VALUE				
	¹ ADAM			
	¹ ADAM	95	DLPH	$e^+e^- ightarrow Z$
<u>VALUE</u> 1.09 ^{+0.11} _{-0.10} ±0.08 ¹ ADAM 95 data analyzo	¹ ADAM	95 echniqu	DLPH	$e^+e^- ightarrow Z$

 $\tau_{b,\overline{b}}$ and $|\Delta\tau_b|$ are the mean life average and difference between b and \overline{b} hadrons.

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.001\pm0.012\pm0.008$	1 ABBIENDI 99	9J OPAL	$e^+e^- ightarrow Z$

 $^{^{}m 1}$ Data analyzed using both the jet charge and the charge of secondary vertex in the opposite hemisphere.

\overline{b} PRODUCTION FRACTIONS AND DECAY MODES

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\,\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

Mode

Fraction (Γ_i/Γ)

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p_{\overline{p}}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to \ B^+) = \mathsf{B}(\overline{b}\to \ B^0) \\ \mathsf{B}(\overline{b}\to \ B^+) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(b\to \ b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b ext{-baryon}) = 0.064$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.633$
 $cor(b ext{-baryon}, B^{\pm} = B^0) = -0.813.$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

Γ_1	B^+	(40.8 =	± 0.7) %
Γ_2	B^0	(40.8 =	± 0.7) %
Γ ₃	B_s^0	(10.0 =	± 0.8) %
Γ_4	B_c^+		
Γ_5	<i>b</i> -baryon	(8.4 =	± 1.1) %

DECAY MODES

Semileptonic and leptonic modes

Γ_6	u anything	(23.1 ± 1.5) %	
Γ_7	$\ell^+ u_\ell$ anything	[a] ($10.69\pm~0.22)~\%$	
Γ ₈	$e^+ u_e$ anything	($10.86\pm~0.35)~\%$	
Γ ₉	$\mu^+ u_\mu$ anything	$(\ 10.95 {}^{+}_{-}\ 0.29)\ \%$	
Γ_{10}	$D^-\ell^+ u_\ell$ anything	[a] (2.2 \pm 0.4)%	S=1.9
Γ_{11}	$D^-\pi^+\ell^+ u_\ell$ anything	$(4.9 \pm 1.9) \times 10^{-3}$	

https://pdg.lbl.gov

Page 4

Γ ₄₁	$D^0 D^*(2010)^\pm$ anything	[c]	$(3.0\ \frac{+}{-}\ \frac{1.1}{0.9})\%$
Γ ₄₂	$D^*(2010)^\pmD^\mp$ anything	[c]	(2.5 + 1.2)%
	$D^*(2010)^{\pm} D^*(2010)^{\mp}$ anything		$(1.2 \pm 0.4)\%$
_	$\overline{D}D$ anything	[-]	(10 + 11 - 10)%
	$D_2^*(2460)^0$ anything		= *
	$D_2(2400)$ anything D_s^- anything		(4.7 ± 2.7) % (14.7 ± 2.1) %
	D_s^+ anything D_s^+ anything		$(10.1 \pm 3.1)\%$
	Λ_c^+ anything		$(7.8 \pm 1.1)\%$
	$\frac{\pi_c}{c}/c$ anything	[4]	$(7.8 \pm 1.1)\%$ $(116.2 \pm 3.2)\%$
· 49			, ,
г.	Charmoniun	n mo	
	$J/\psi(1S)$ anything $\psi(2S)$ anything		$(1.16\pm 0.10)\%$ $(3.06\pm 0.30)\times 10^{-3}$
	$\chi_{c0}(1P)$ anything		$(1.4 \pm 0.5)\%$
	$\chi_{c1}(1P)$ anything		$(1.4 \pm 0.4)\%$
Γ ₅₄	$\chi_{c2}(1P)$ anything		$(5.5 \pm 2.4) \times 10^{-3}$
Γ ₅₅	$\chi_c(2P)$ anything, $\chi_c \to \phi \phi$	<	$< 2.8 \times 10^{-7} CL=95\%$
	$\eta_{m{c}}(1S)$ anything		$(5.6 \pm 0.9) \times 10^{-3}$
			$(4.1 \pm 1.7) \times 10^{-7}$
Γ ₅₈	$\chi_{c1}(3872)$ anything, $\chi_{c1} \rightarrow \phi \phi$		
Γ ₅₉	$\chi_{c0}(3915)$ anything, $\chi_{c0} \rightarrow \phi \phi$	<	$< 3.1 \times 10^{-7} \text{ CL}=95\%$
	<i>K</i> or <i>K</i> * ı		
Γ ₆₀			$(3.1 \pm 1.1) \times 10^{-4}$
Γ ₆₁	$\overline{S}\overline{\nu}\nu$ B1	<	$< 6.4 \times 10^{-4} \text{ CL}=90\%$
	K^{\pm} anything K^0_S anything		$(74 \pm 6)\%$ $(29.0 \pm 2.9)\%$
1 63			(29.0 ± 2.9) /0
г	π^\pm anything	odes	(207 21) 9/
	π^0 anything	[4]	$(397 \pm 21) \%$ $(280 \pm 60) \%$
	ϕ anything	լսյ	(2.82± 0.23) %
- 00			,
г	Baryon m	nodes	
	p/\overline{p} anything $\Lambda/\overline{\Lambda}$ anything		$(13.1 \pm 1.1) \% $ $(5.9 \pm 0.6) \%$
ι 68 Γ ₆₀	<u>b</u> -baryon anything		$(10.2 \pm 2.8)\%$
Γ ₇₀	$\frac{\delta}{\Lambda_b^0}$ anything		(10.2 ± 2.0) /0
	Ξ_b^+ anything		
11	-		
Γ ₇₀	Other m charged anything		(497 ± 7)%
	hadron ⁺ hadron ⁻	[-]	· ·
			$(1.7 + 1.0 \atop -0.7) \times 10^{-5}$
I ₇₄	charmless		$(7 \pm 21) \times 10^{-3}$
https:	//pdg.lbl.gov Page 6		Created: 5/31/2024 10:16

$\Delta B = 1$ weak neutral current (B1) modes

 Γ_{75} $e^+\,e^-$ anything $$\rm B1$$ < 3.2 $\times\,10^{-4}$ CL=90% Γ_{77} $\nu\overline{\nu}$ anything

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

$B^{\pm}/B^{0}/B_{\epsilon}^{0}/b$ -baryon ADMIXTURE BRANCHING RATIOS

 $\Gamma(B^+)/\Gamma_{\text{total}}$ "OUR EVALUATION" is an average from Z decay.

VALUEDOCUMENT IDTECNCOMMENT0.408 ± 0.007 OUR EVALUATION(Produced by HFLAV)0.4099 $\pm 0.0082\pm 0.0111$ 1 ABDALLAH03KDLPH $e^+e^- \rightarrow Z$

 $\Gamma(B^+)/\Gamma(B^0)$ VALUE

DOCUMENT ID

TECN

COMMENT

1.054 \pm 0.018 \pm 0.062

AALTONEN

OBN

CDF $p \overline{p}$ at 1.96 TeV

 $\Gamma(B^0_s)/\Gamma(B^+)$ VALUE DOCUMENT ID TECK COMMENT

• • We do not use the following data for averages, fits, limits, etc. • •

¹ The analysis is based on a neural network, to estimate the charge of the weakly-decaying b hadron by distinguishing its decay products from particles produced at the primary vertex.

¹ AAIJ 20V measures the average value using the observed $B_s^0 \to J/\psi \phi$ and $B^+ \to J/\psi K^+$ yields, over the ranges *b*-hadron p_T of 0.5 and 40 GeV and η of 2.0 and 6.5. The value is not used in averages as BR-related systematic uncertainties are not evaluated.

² AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1238 \pm 0.0010 \pm 0.0022$ which we multiply or divide by our best values $B(B_s^0 \to J/\psi(1S)\phi) = (1.04 \pm 0.04) \times 10^{-3}$, $B(B^+ \to J/\psi(1S)K^+) = (1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

³ AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1270 \pm 0.0007 \pm 0.0022$ which we multiply or divide by our best

values B($B_s^0 \to J/\psi(1S)\phi$) = (1.04 \pm 0.04) \times 10⁻³, B($B^+ \to J/\psi(1S)K^+$) = (1.020 \pm 0.019) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 4 AAIJ 20V reports the results in two different data sets, and we quote here the weighted

 $^{5}\,\text{AAIJ 20V reports}\,\left[\Gamma(\overline{b}\to\ B_{\mathcal{S}}^{0})/\Gamma(\overline{b}\to\ B^{+})\right]\times\left[\text{B}(B_{\mathcal{S}}^{0}\to\ J/\psi(1S)\phi)\right]\,/\,\left[\text{B}(B^{+}\to B_{\mathcal{S}}^{0})/\Gamma(B_{\mathcal{S}}^{0}\to\ B^{+})\right]$ $J/\psi(1S)K^+)] = 0.1326 \pm 0.0007 \pm 0.0023$ which we multiply or divide by our best values $B(B_s^0 \rightarrow J/\psi(1S)\phi) = (1.04 \pm 0.04) \times 10^{-3}$, $B(B^+ \rightarrow J/\psi(1S)K^+) =$ $(1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values

 $\Gamma_3/(\Gamma_1+\Gamma_2)$

 $\Gamma(B_s^0)/[\Gamma(B^+)+\Gamma(B^0)]$ "OUR EVALUATION" is an average from Z decay.

VALUE	DOCUMENT ID	TECN	COMMENT			
0.1230 ± 0.0115 OUR EVALUATION	N (Produced b	y HFLAV)				
• • We do not use the following data for averages, fits, limits, etc. • •						
0.122 ± 0.006	¹ AAIJ	19AD LHCB	pp at 13 TeV			
$0.134\ \pm0.004\ ^{+0.011}_{-0.010}$	² AAIJ	12J LHCB	pp at 7 TeV			
$0.1265 \pm 0.0085 \pm 0.0131$	³ AAIJ	11F LHCB	pp at 7 TeV			
$0.128 \begin{array}{l} +0.011 \\ -0.010 \end{array} \pm 0.011$	⁴ AALTONEN	08N CDF	$p\overline{p}$ at 1.96 TeV			
0.213 ± 0.068	⁵ AFFOLDER	00E CDF	$p\overline{p}$ at 1.8 TeV			
$0.21 \pm 0.036 ^{+ 0.038}_{- 0.030}$	⁶ ABE	99P CDF	$\overline{p}p$ at 1.8 TeV			

 $^{^{}m 1}$ AAIJ $^{
m 19}$ AD measured the average value using $^{
m b}$ -hadron semileptonic decays and assuming isospin symmetry for b-hadron p_T of 4 and 25 GeV and η of 2 and 5.

 $^{^5}$ AFFOLDER 00E uses several electron-charm final states in $b\to c\,e^-$ X. 6 ABE 99P uses the numbers of $K^*(892)^0,~K^*(892)^+,$ and $\phi(1020)$ events produced in association with the double semileptonic decays $b o c \mu^- X$ with $c o s \mu^+ X$.

$\Gamma(B_s^0)/\Gamma(B^0)$				Γ_3/Γ_2
VALUE	DOCUMENT ID	TECN	COMMENT	
0.246 ± 0.023 OUR EVALUATION	N (Produced by	HFLAV)		
0.239 ± 0.016 OUR AVERAGE				
		15см ATLS	pp at 7 TeV	
$0.238 \pm 0.004 \pm 0.026$	2 AAIJ	13P LHCB	pp at 7 TeV	
ullet $ullet$ We do not use the following	data for averages,	fits, limits, e	etc. • • •	
	³ AAIJ	21Y LHCB	pp at 8 TeV	
		21Y LHCB	pp at 13 TeV	
0.2390 ± 0.0076	³ AAIJ	21Y LHCB	pp at 7 TeV	

https://pdg.lbl.gov

Page 8

 $^{^2}$ AAIJ 12J measured this value using b-hadron semileptonic decays and assuming isospin

 $^{^3}$ AAIJ 11F measured $f_s/f_d=0.253\pm0.017\pm0.017\pm0.020$, where the errors are statistical, systematic, and theoretical. We divide their value by 2. Our second error combines systematic and theoretical uncertainties.

⁴ AALTONEN 08N reports $[\Gamma(\overline{b} \rightarrow B_s^0)/[\Gamma(\overline{b} \rightarrow B^+) + \Gamma(\overline{b} \rightarrow B^0)]] \times [B(D_s^+ \rightarrow \phi\pi^+)] = (5.76 \pm 0.18^{+0.45}_{-0.42}) \times 10^{-3}$ which we divide by our best value $B(D_s^+ \rightarrow B_s^+)$ $\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ¹ AAD 15CM measurement is derived from the observed $B_s^0 o J/\psi \phi$ and $B_d^0 o J/\psi K^{*0}$ yields and a recent theory prediction of B($B_s^0 \to J/\psi \phi$)/B($B_d^0 \to J/\psi K^{*0}$). The second uncertainty combines in quadrature systematic and theoretical uncertainties.
- 2 AAIJ 13P studies also separately the $p_T(B)$ and $\eta(B)$ dependency of $\Gamma(\overline{b} o B_s^0)/\Gamma(\overline{b} o B_s^0)$ (B^0) , finding $f_s/f_d(p_T) = (0.256 \pm 0.020) + (-2.0 \pm 0.6) \ 10^{-3} \ / \text{GeV/c} \ (p_T - \langle p_T \rangle)$ and $f_{\rm S}/f_{\rm d}(\eta)$ = (0.256 \pm 0.020) + (0.005 \pm 0.006) (η – $\langle \eta \rangle$), where $\langle p_{\rm T} \rangle$ = 10.4 GeV/c and $\langle \eta \rangle =$ 3.28. AAIJ 13P reports the measurement as 0.238 \pm 0.004 \pm 0.015 \pm 0.021 where the last uncertainly is theoretical.
- 3 AAIJ 21Y uses hadronic decays $B^0 o D^-\pi^+$, $B^0 o D^-K^+$, $B^0_S o D^-_S\pi^+$ and $B_s^0 \to J/\psi \phi$ as well as semileptonic B^0 and B_s^0 decays. Measured within the p_T range [0.5,40] GeV/c, η range [2, 6.4].

$\Gamma(B_c^+)/[\Gamma(B^+)+\Gamma(B^0)]$

 $\Gamma_4/(\Gamma_1+\Gamma_2)$

<i>VALUE</i> (units 10^{-3})	DOCUMENT ID	TEC	N COMMENT
3.7 ±0.6 OUR AVERAGE			
$3.63 \pm 0.08 \pm 0.87$	¹ AAIJ	19ALLHO	CB pp at 7 TeV
$3.78 \pm 0.04 \pm 0.90$	1 AAIJ	19ALLHO	CB pp at 13 TeV

¹ Measured using B_c^+ semileptonic decays.

$\Gamma(b\text{-baryon})/[\Gamma(B^+)+\Gamma(B^0)]$ "OUR EVALUATION" is an average from Z decay.

 $\Gamma_5/(\Gamma_1+\Gamma_2)$

DOCUMENT ID <u>TECN</u> <u>COMMENT</u> 0.103 ± 0.015 OUR EVALUATION (Produced by HFLAV)

We do not use the following data for averages, fits, limits, etc.

0.259 ± 0.018	¹ AAIJ	19AD LHCB	pp at 13 TeV
$0.305 \pm 0.010 \pm 0.081$	² AAIJ	12J LHCB	pp at 7 TeV
$\begin{array}{ccc} 0.31 & \pm 0.11 & +0.12 \\ -0.08 & \end{array}$	³ AALTONEN	09E CDF	$p\overline{p}$ at 1.8 TeV
$0.23 \ ^{+ 0.09}_{- 0.07} \ \pm 0.01$	⁴ AALTONEN		• •
0.118 ± 0.042	^{3,5} AFFOLDER	00E CDF	$p\overline{p}$ at 1.8 TeV

- 1 AAIJ 19AD measured the average value for \varLambda_b^0 using semileptonic decays and assuming isospin symmetry for $b\text{-hadron }p_T$ of 4 and 25 GeV and η of 2 and 5.
- 2 AAIJ 12J measured the ratio to be (0.404 \pm 0.017 \pm 0.027 \pm 0.105) \times [1 (0.031 \pm $0.004 \pm 0.003) imes P_T$]using b-hadron semileptonic decays where the P_T is the momentum of charmed hadron-muon pair in GeV/c.We quote their weighted average value where the second error combines systematic and the error on B($\Lambda_c^+ \to p K^- \pi^+$).
- 3 AALTONEN 09E errata to the measurement reported in AFFOLDER 00E using the $ho_{\mathcal{T}}$ spectra from fully reconstructed ${\it B}^{0}$ and ${\it \Lambda}_{\it b}$ decays.
- ⁴ AALTONEN 08N reports $[\Gamma(\overline{b} \rightarrow b\text{-baryon})/[\Gamma(\overline{b} \rightarrow B^+) + \Gamma(\overline{b} \rightarrow B^0)]] \times [B(\Lambda_c^+ \rightarrow b^+)]$ $pK^-\pi^+)]=(14.1\pm0.6^{+5.3}_{-4.4})\times10^{-3}$ which we divide by our best value B($\Lambda_C^+\to$ $pK^-\pi^+$) = $(6.24 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 5 AFFOLDER 00E uses several electron-charm final states in $b
ightarrow c \, e^{-}$ X.

$\Gamma(\nu \text{ anything})/\Gamma_{\text{total}}$ 96c L3 $0.2308 \pm 0.0077 \pm 0.0124$

https://pdg.lbl.gov

Page 9

Created: 5/31/2024 10:16

 Γ_6/Γ

 2 Assumes Standard Model value for R_{B} .

 $\Gamma(\ell^+\nu_\ell \, {\rm anything})/\Gamma_{\rm total}$ "OUR EVALUATION" is an average of the data listed below, excluding all asymmetry

measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT
0.1069±0.0022 OUR EVALUATION	NC			
0.1064 ± 0.0016 OUR AVERAGE				
$0.1070 \pm 0.0010 \pm 0.0035$	$^{ m 1}$ HEISTER	02G	ALEP	$e^+e^- ightarrow Z$
$0.1070 \pm 0.0008 {}^{+ 0.0037}_{- 0.0049}$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$
$0.1083 \!\pm\! 0.0010 \!+\! 0.0028 \\ -0.0024$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
$0.1016 \pm 0.0013 \pm 0.0030$	⁴ ACCIARRI		-	$e^+e^- ightarrow Z$
$0.1085 \pm 0.0012 \pm 0.0047$	^{5,6} ACCIARRI	96 C	L3	$e^+e^- ightarrow Z$
	g data for average	s, fits,	limits, e	etc. • • •
$0.1106 \pm 0.0039 \pm 0.0022$	⁷ ABREU	95 D	DLPH	$e^+e^- ightarrow Z$
$0.114\ \pm0.003\ \pm0.004$	⁸ BUSKULIC	94 G	ALEP	$e^+e^- ightarrow Z$
$0.100 \pm 0.007 \pm 0.007$	⁹ ABREU	93C	DLPH	$e^+e^- ightarrow Z$
$0.105 \pm 0.006 \pm 0.005$	¹⁰ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E

 $^{^{}m 1}$ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and

the second error is the total systematic error including the modeling.

The experimental systematic and model uncertainties are combined in quadrature.

obtain $0.100 \pm 0.007 \pm 0.007$.

10 AKERS 93B analysis performed using single and dilepton events.

$I(e^{+}\nu_{e} \text{ anything})/I_{\text{total}}$							
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		
0.1086±0.0035 OUR AVE	RAGE						
$0.1078 \!\pm\! 0.0008 \!+\! 0.0050 \\ -0.0046$		¹ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$		
$0.1089 \pm 0.0020 \pm 0.0051$ $0.107 \pm 0.015 \pm 0.007$	260	^{2,3} ACCIARRI ⁴ ABREU	93C	DLPH	$e^+e^- \rightarrow Z$ $e^+e^- \rightarrow Z$		
0.138 ±0.032 ±0.008		⁵ ADEVA			$e^+e^- \rightarrow Z$		
https://pdg.lbl.gov		Page 10		Created	d: 5/31/2024	10:16	

¹ ACCIARRI 96C assumes relative b semileptonic decay rates $e:\mu:\tau$ of 1:1:0.25. Based on missing-energy spectrum.

³ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic

⁴ ACCIARRI 00 result obtained from a combined fit of $R_b = \Gamma(Z \to b \, \overline{b})/\Gamma(Z \to \text{hadrons})$ and B($b \rightarrow \ell \nu X$), using double-tagging method.

⁵ ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

 $^{^6}$ Assumes Standard Model value for R_B .

 $^{^7}$ ABREU 95D give systematic errors ± 0.0019 (model) and 0.0012 (R_c). We combine these in quadrature.

 $^{^8}$ BUSKULIC 94G uses e and μ events. This value is from a global fit to the lepton p and p_T (relative to jet) spectra which also determines the b and c production fractions, the fragmentation functions, and the forward-backward asymmetries. This branching ratio depends primarily on the ratio of dileptons to single leptons at high p_T , but the lower p_T portion of the lepton spectrum is included in the global fit to reduce the model dependence. The model dependence is ± 0.0026 and is included in the systematic error. 9 ABREU 93C event count includes $e\,e$ events. Combining $e\,e$, $\mu\,\mu$, and $e\,\mu$ events, they

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.086 ± 0.027	± 0.008		⁶ ABE	93E	VNS	$E_{ m cm}^{ m ee} =$ 58 GeV
$0.109 \begin{array}{l} +0.014 \\ -0.013 \end{array}$	± 0.0055	2719	⁷ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E
0.111 ± 0.028	±0.026		BEHREND	90 D	CELL	$E_{\rm cm}^{ee} = 43 \text{ GeV}$
$0.150\ \pm0.011$	± 0.022		BEHREND	90 D	CELL	$E_{ m cm}^{\it ee}=$ 35 GeV
0.112 ± 0.009	±0.011		ONG	88	MRK2	$E_{ m cm}^{ee} =$ 29 GeV
$0.149 \begin{array}{l} +0.022 \\ -0.019 \end{array}$			PAL	86	DLCO	Eee = 29 GeV
0.110 ± 0.018	± 0.010		AIHARA	85	TPC	$E_{ m cm}^{ee} =$ 29 GeV
0.111 ± 0.034	± 0.040		ALTHOFF	84J	TASS	$E_{\rm cm}^{ee} = 34.6 \text{ GeV}$
0.146 ± 0.028			KOOP	84		Repl. by PAL 86
0.116 ± 0.021	±0.017		NELSON	83	MRK2	$E_{\rm cm}^{ee} = 29 \; {\rm GeV}$

¹ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error

AKERS 93B analysis performed using single and dilepton events.

$\Gamma(\mu^+ u_\mu$ anything)/ $\Gamma_{ m to}$	otal				٦/و۲
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.1095 ⁺ 0.0029 OUR AVI	ERAGE				
$0.1096 \pm 0.0008 {}^{+ 0.0034}_{- 0.0027}$		¹ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
$0.1082 \pm 0.0015 \pm 0.0059$ $0.110 \pm 0.012 \pm 0.007$	656	^{2,3} ACCIARRI ⁴ ABREU	93C	DLPH	$e^+e^- ightarrow Z$ $e^+e^- ightarrow Z$
$0.113 \pm 0.012 \pm 0.006$ • • • We do not use the	following			mits, etc	
$0.122 \pm 0.006 \pm 0.007$		³ UENO	96	AMY	e^+e^- at 57.9 GeV
$0.101 {}^{+0.010}_{-0.009} \pm 0.0055$	4248	⁶ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E
$0.104 \pm 0.023 \pm 0.016$		BEHREND	90 D	CELL	$E_{cm}^{ee} = 43 \; GeV$
$0.148 \pm 0.010 \pm 0.016$		BEHREND	90 D	CELL	$E_{cm}^{\mathit{ee}} = 35 \; GeV$
$0.118 \pm 0.012 \pm 0.010$		ONG	88	MRK2	E ^{ee} _{cm} = 29 GeV
$0.117\ \pm0.016\ \pm0.015$		BARTEL	87	JADE	$E_{\rm cm}^{ee} = 34.6 \; {\rm GeV}$
$0.114\ \pm0.018\ \pm0.025$		BARTEL	8 5 J	JADE	Repl. by BARTEL 87
$0.117 \pm 0.028 \pm 0.010$		ALTHOFF	84G	TASS	E _{cm} = 34.5 GeV
https://pdg.lbl.gov		Page 11		Create	d: 5/31/2024 10:16

error. 2 ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

 $^{^3}$ Assumes Standard Model value for R_R .

⁴ ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

Solution 0.100 \pm 0.007 \pm 0.007. Solution 5 ADEVA 91C measure the average B($b \rightarrow eX$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm 0.006$. Constraining the initial number of b quarks by the Standard Model prediction (378 \pm 3 MeV) for the decay of the Z into $b\bar{b}$, the electron result gives $0.112 \pm 0.004 \pm 0.008$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\bar{b}$ width itself, this electron result gives $370 \pm 12 \pm 24$ MeV and combined with the muon result gives $385 \pm 7 \pm 22$ MeV.

 $^{^6}$ ABE 93E experiment also measures forward-backward asymmetries and fragmentation _functions for b and c.

0.105
$$\pm$$
0.015 \pm 0.013 ADEVA 83B MRKJ $E_{\rm cm}^{\it ee}=$ 33–38.5 GeV 0.155 $^{+0.054}_{-0.029}$ FERNANDEZ 83D MAC $E_{\rm cm}^{\it ee}=$ 29 GeV

error. $^2\,\text{ACCIARRI}$ 96C result obtained by a fit to the single lepton spectrum.

$\Gamma(D^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{10}/Γ

(,
VALUE	DOCUMENT ID	TECN COMMENT	
0.022 ±0.004 OUR AVERAGE	Error includes scale fa	actor of 1.9.	
$0.0272 \pm 0.0028 \pm 0.0018$	¹ ABREU 00F	R DLPH $e^+e^- o Z$	
$0.0194 \pm 0.0025 \pm 0.0003$	² AKERS 950	Q OPAL $e^+e^- o Z$	

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0019 \pm 0.0016 \pm 0.0018$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.

² AKERS 95Q reports $[\Gamma(\overline{b} \to D^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+ \to K^-2\pi^+)] = (1.82 \pm 0.20 \pm 0.12) \times 10^{-3}$ which we divide by our best value $B(D^+ \to K^-2\pi^+) = (9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Γ($(D^{-}$	π^+	·	$ u_\ell$ and	ything	ا/($\Gamma_{ ext{total}}$
----	----------	---------	---	---------------	--------	-----	------------------------

 Γ_{11}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0049 \pm 0.0018 \pm 0.0007$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	

$\Gamma(D^-\pi^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{12}/Γ

•	·	•	Ο, ,	totai					/
VALUE					DOCUMENT ID		TECN	COMMENT	
0.0026±0.00)15±0	.0004			ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	

$\Gamma(\overline{D}^0\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{13}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
0.0679±0.0034 OUR AVERAGE				
$0.0704 \pm 0.0040 \pm 0.0017$	¹ ABREU	00 R	DLPH	$e^+e^- ightarrow Z$
$0.0638 \pm 0.0056 \pm 0.0005$	² AKERS	95Q	OPAL	$e^+e^- ightarrow Z$

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0034 \pm 0.0036 \pm 0.0017$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.

¹ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

 $^{^3}$ Assumes Standard Model value for R_B .

⁴ ABREU 93C event count includes $\mu\mu$ events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

ADEVA 91C measure the average B($b \rightarrow eX$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm 0.006$. Constraining the initial number of b quarks by the Standard Model prediction (378 ± 3 MeV) for the decay of the Z into $b\bar{b}$, the muon result gives $0.123 \pm 0.003 \pm 0.006$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\bar{b}$ width itself, this muon result gives $394 \pm 9 \pm 22$ MeV and combined with the electron result gives $385 \pm 7 \pm 22$ MeV.

⁶AKERS 93B analysis performed using single and dilepton events.

²AKERS 95Q reports $[\Gamma(\overline{b} \to \overline{D}^0 \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^- \pi^+)] = (2.52 \pm 0.14 \pm 0.17) \times 10^{-3}$ which we divide by our best value $B(D^0 \to K^- \pi^+) = (3.947 \pm 0.030) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{D}^0\pi^-\ell^+\nu_\ell$ anything)/ $\Gamma_{\rm to}$	otal				Γ_{14}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0107 \pm 0.0025 \pm 0.0011$	ABREU	00 R	DLPH	$e^{+}e^{-} \rightarrow z$	Z
$\Gamma(\overline{D}{}^0\pi^+\ell^+ u_\ell$ anything)/ $\Gamma_{ m to}$	otal				Γ ₁₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0023 \pm 0.0015 \pm 0.0004$	ABREU	00 R	DLPH	$e^+e^- \rightarrow z$	Z
$\Gamma(D^{*-}\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$	al DOCUMENT ID		TECN	COMMENT	Γ ₁₆ /Γ
0.0275±0.0019 OUR AVERAGE			7207	COMMENT	
$0.0275 \pm 0.0021 \pm 0.0009$		00 R	DLPH	$e^+e^- ightarrow 2$	Z
$0.0276 \pm 0.0027 \pm 0.0011$	² AKERS	95Q	OPAL	$e^+e^- \rightarrow Z$	Z
¹ ABREU 00R reports their expectation the first error is statistical, the tothe D branching fraction. ² AKERS 95Q reports $[B(\overline{b} \rightarrow (7.53 \pm 0.47 \pm 0.56) \times (9.56) \times ($	he second is system. We combine first to $D^*\ell^+ u_\ell X) imes B(10^{-4})$ and uses $B(1\pm 0.0014)$ to obtain	atic, and two in $D^{*+} - D^{*+} - D^$	and the the quadrative $ ightarrow D^0 \pi^0$ above re	nird is the undure. $^{+})\times B(D^{0}-^{+})=0.681:$ sult. The first	certainty due $ ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\Gamma(D^{*-}\pi^-\ell^+\nu_\ell)$ anything)/I			TECN	COMMENT	Γ ₁₇ /Γ
VALUE 0.0006±0.0007±0.0002	<u>DOCUMENT ID</u> ABREU				
0.0000±0.0007±0.0002	ABINEO	UUK	DEFII	$e \cdot e \rightarrow I$	_
$\Gamma(D^{*-}\pi^+\ell^+\nu_\ell$ anything)/I					Γ ₁₈ /Γ
VALUE	DOCUMENT ID				
$0.0048 \pm 0.0009 \pm 0.0005$	ABREU	00R	DLPH	$e^+e^- \rightarrow Z$	Z
$\Gamma(\overline{D}_j^0 \ell^+ \nu_\ell \text{ anything } \times B(\overline{D}_j^0)$	$D^{*+}\pi^{-}))/\Gamma$	total			Γ ₁₉ /Γ
D; represents an unresolve			and ter	sor D^{**} (P -v	wave) states.
VALUE (units 10^{-3})	DOCUMENT ID		ECN CO		,
	ABBIENDI 0				
• • We do not use the following the fol					
6.1 $\pm 1.3 \pm 1.3$				epl. by ABBII	ENDI 03M
$\Gamma(D_i^-\ell^+\nu_\ell)$ anything \times B(D	$_{i}^{-} \rightarrow D^{0}\pi^{-}))/\Gamma$	total			Γ ₂₀ /Γ
D_{j} represents an unresolve	,		and ter	D^{**} (P-v	vave) states.
	DOCUMENT ID				,
7.0 \pm 1.9 \pm 1.2	AKERS				
7.0±1.9 ⁺ _1.3	ANERS	95Q	UPAL	$e \cdot e \rightarrow \lambda$	۷
$\Gamma(\overline{D}_2^*(2460)^0\ell^+\nu_\ell$ anything	\times B(\overline{D}_2^* (2460) ⁰	$\rightarrow D$	*- \pi^+)	$)/\Gamma_{total}$	Γ_{21}/Γ
$VALUE$ (units 10^{-3}) $CL\%$	DOCUMENT ID		TECN	COMMENT	
<1.4 90	ABBIENDI				Z

$\Gamma(D_2^*(2460)^-\ell^+\nu_\ell$ anything \times B $(D_2^*(2460)^- \rightarrow D^0\pi^-))/\Gamma_{total}$							
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT			
$4.2 \pm 1.3 ^{+0.7}_{-1.2}$	AKERS	95Q	OPAL	$e^+e^- ightarrow Z$			
$\Gamma(\overline{D}_2^*(2460)^0\ell^+\nu_\ell$ anything \times	$B(\overline{D}_2^*(2460)^0$	$\rightarrow D$	$^{-}\pi^{+}))$	$/\Gamma_{ ext{total}}$	Γ ₂₃ /Γ		
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT			
$1.6 \pm 0.7 \pm 0.3$	AKERS	95Q	OPAL	$e^+e^- ightarrow~Z$			

 $\Gamma(\text{charmless } \ell \overline{\nu}_{\ell})/\Gamma_{\text{total}}$

 Γ_{24}/Γ

"OUR EVALUATION" is an average of the data listed below performed by the LEP Heavy Flavour Steering Group. The averaging procedure takes into account correlations between the measurements.

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.00171±0.00052 OUR EVALUAT				
0.0017 ± 0.0004 OUR AVERAGE	<u>:</u>			
$0.00163\!\pm\!0.00053\!+\!0.00055\\-0.00062$	¹ ABBIENDI	01 R	OPAL	$e^+e^- ightarrow Z$
$0.00157 \pm 0.00035 \pm 0.00055$	² ABREU			$e^+e^- ightarrow Z$
$0.00173 \pm 0.00055 \pm 0.00055$	³ BARATE	99G	ALEP	$e^+e^- ightarrow Z$
$0.0033 \pm 0.0010 \pm 0.0017$	⁴ ACCIARRI	98K	L3	$e^+e^- o Z$

¹ Obtained from the best fit of the MC simulated events to the data based on the $b \to X_{II} \ell \nu$ neutral network output distributions.

$\Gamma(au^+ u_ au$ anything)/ $\Gamma_{ total}$

•					
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.41±0.23 OUR AVER	RAGE				
$2.78\!\pm\!0.18\!\pm\!0.51$		¹ ABBIENDI	•		$e^+e^- ightarrow Z$
$2.43\!\pm\!0.20\!\pm\!0.25$		² BARATE	01E	ALEP	$e^+e^- ightarrow Z$
$2.19\!\pm\!0.24\!\pm\!0.39$		³ ABREU	00C	DLPH	$e^+e^- ightarrow Z$
$1.7\ \pm0.5\ \pm1.1$		^{4,5} ACCIARRI	96C	L3	$e^+e^- ightarrow Z$
$2.4 \pm 0.7 \pm 0.8$	1032	⁶ ACCIARRI	94C	L3	$e^+e^- ightarrow Z$
• • • We do not use t	he followi	ng data for averages	, fits,	limits, e	etc. • • •
$2.75\!\pm\!0.30\!\pm\!0.37$	405	⁷ BUSKULIC	95	ALEP	Repl. by BARATE 01E
$4.08\!\pm\!0.76\!\pm\!0.62$		BUSKULIC	93 B	ALEP	Repl. by BUSKULIC 95

¹ ABBIENDI 01Q uses a missing energy technique.

 $^{^2}$ ABREU 00D result obtained from a fit to the numbers of decays in $b\to u$ enriched and depleted samples and their lepton spectra, and assuming $|V_{c\,b}| = 0.0384 \pm 0.0033$ and $\tau_b = 1.564 \pm 0.014$ ps.

 $^{^3}$ Uses lifetime tagged $b\overline{b}$ sample.

 $^{^4}$ ACCIARRI 98K assumes $R_b = 0.2174 \pm 0.0009$ at Z decay.

² The energy-flow and *b*-tagging algorithms were used.

³ Uses the missing energy in $Z \rightarrow b\overline{b}$ decays without identifying leptons.

⁴ ACCIARRI 96C result obtained from missing energy spectrum.

 $^{^{5}}$ Assumes Standard Model value for R_{B} .

⁶ This is a direct result using tagged $b\overline{\overline{b}}$ events at the Z, but species are not separated.

⁷ BUSKULIC 95 uses missing-energy technique.

$\Gamma(D^{*-}\tau\nu_{\tau} \text{ anything})/\Gamma_{\text{total}}$					Γ_{26}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$(0.88\pm0.31\pm0.28)\times10^{-2}$	¹ BARATE	01E	ALEP	$e^+e^- ightarrow~Z$	

 $^{^{1}}$ The energy-flow and b-tagging algorithms were used.

$\Gamma(\overline{b} \to \overline{c} \to \ell^- \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}$

 Γ_{27}/Γ

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT
0.0802±0.0019 OUR EVALUATIO	N			
0.0817 ± 0.0020 OUR AVERAGE				
$0.0818 \!\pm\! 0.0015 \!+\! 0.0024 \\ -0.0026$	¹ HEISTER	02G	ALEP	$e^+e^- o Z$
$0.0798 \!\pm\! 0.0022 \!+\! 0.0025 \\ -\! 0.0029$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$
$0.0840 \pm 0.0016 ^{+0.0039}_{-0.0036}$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$0.0770 \pm 0.0097 \pm 0.0046$	⁴ ABREU			$e^+e^- \rightarrow Z$
$0.082\ \pm0.003\ \pm0.012$	⁵ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$
$0.077 \pm 0.004 \pm 0.007$	⁶ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

$\Gamma(c \to \ell^+ \nu \text{anything}) / \Gamma_{\text{total}}$

 Γ_{28}/Γ

VALUE	DOCUMENT ID	TECN	COMMENT	
$0.0161 \pm 0.0020 {+0.0034 \atop -0.0047}$	¹ ABREU 011	DLPH	$e^+e^- ightarrow Z$	

 $^{^{}m 1}$ The experimental systematic and model uncertainties are combined in quadrature.

$\Gamma(\overline{\mathcal{D}}{}^0 \, \text{anything})/\Gamma_{\text{total}}$

 Γ_{29}/Γ

VALUE	DOCUMENT ID		IECN	COMMENT
$0.587 \pm 0.028 \pm 0.004$	$^{ m 1}$ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

¹ BUSKULIC 96Y reports $0.605 \pm 0.024 \pm 0.016$ from a measurement of $[\Gamma(\overline{b} \to \overline{D}^0 \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)]$ assuming $B(D^0 \to K^-\pi^+) = 0.0383$, which we rescale to our best value $B(D^0 \to K^-\pi^+) = (3.947 \pm 0.030) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{2}\}mbox{The experimental systematic and model uncertainties are combined in quadrature.}$

³ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b\overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ ABREU 95D give systematic errors ± 0.0033 (model) and 0.0032 (R_c). We combine these in quadrature. This result is from the same global fit as their $\Gamma(\overline{b} \to \ell^+ \nu_\ell X)$ _ data.

data. 5 BUSKULIC 94G uses e and μ events. This value is from the same global fit as their $\Gamma(\overline{b}\to~\ell^+\nu_\ell$ anything)/ $\Gamma_{\rm total}$ data.

⁶ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(D^0D_s^{\pm})/\Gamma_{total}$					Γ ₃₀ /Γ
<u>VALUE</u>	DOCUMENT ID		· ·		
$0.091^{+0.020}_{-0.018}^{+0.034}_{-0.022}$	¹ BARATE	98Q	ALEP	$e^+e^- o Z$	
$^{\mathrm{1}}\mathrm{The}$ systematic error includes	the uncertainties	due to	the cha	rm branching rat	ios.
$\Gamma(D^{\mp}D_s^{\pm})$ anything $\Gamma(D^{\mp}D_s^{\pm})$					Г ₃₁ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	J1 /
$0.040^{+0.017}_{-0.014}^{+0.016}_{-0.011}$	¹ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching rat	ios.
$\left[\Gamma(D^0D_s^{\pm}\text{ anything}) + \Gamma(D^{\mp})\right]$, ,			(Г ₃₀ -	-Γ ₃₁)/Γ
<u>VALUE</u>	DOCUMENT ID				
$0.131^{+0.026}_{-0.022}^{+0.048}_{-0.031}$	¹ BARATE	98Q	ALEP	$e^+e^- o Z$	
¹ The systematic error includes	the uncertainties	due to	the cha	rm branching rat	ios.
$\Gamma(\overline{D}{}^0D^0$ anything)/ $\Gamma_{ ext{total}}$					Γ_{32}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.051 ^{+0.016}_{-0.014} ^{+0.012}_{-0.011}$	$^{ m 1}$ BARATE	98Q	ALEP	$e^+e^-\to~Z$	
$^{ m 1}$ The systematic error includes		due to	the cha	rm branching rat	ios.
$\Gamma(D^0D^{\pm})/\Gamma_{total}$					Г ₃₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	1 33/1
$0.027^{+0.015}_{-0.013}^{+0.010}_{-0.009}$	<u>- </u>		· ·		
$^{\mathrm{1}}$ The systematic error includes	the uncertainties	due to	the cha	rm branching rat	ios.
$\left[\Gamma(\overline{D}^0D^0\text{ anything})+\Gamma(D^0)\right]$	D^{\pm} anything)	/F _{total}		(F ₃₂ -	-Г ₃₃)/Г
VALUE	DOCUMENT ID			,	3371
$0.078 ^{+ 0.020 + 0.018}_{- 0.018 - 0.016}$	¹ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching rat	ios.
$\Gamma(D^{\pm}D^{\mp}$ anything)/ Γ_{total}					Г ₃₄ /Г
I (D D allytillig)/I total					
VALUE CL%	DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> <u>CL%</u> <0.009 90	DOCUMENT ID BARATE	98Q	TECN ALEP	$\frac{COMMENT}{e^+e^- \rightarrow Z}$	
<u>VALUE</u> <u>CL%</u> <0.009 90	_		TECN ALEP		
$ \frac{\text{VALUE}}{< 0.009} \qquad \frac{\text{CL\%}}{90} $ $ \left[\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ any})\right] $	γ thing)]/ Γ_{total}			(Γ ₃₅ ⊣	-Г ₃₆)/Г
$ \frac{\text{VALUE}}{< 0.009} \qquad \frac{\text{CL\%}}{90} $ $ \left[\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ any})\right] $	_			(Γ ₃₅ ⊣	-Г ₃₆)/Г
$\frac{\text{VALUE}}{< 0.009} \qquad \frac{\text{CL\%}}{90}$ $\left[\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ any})\right]$ $\frac{\text{VALUE}}{\text{VALUE}} \qquad \frac{\text{CL\%}}{90}$	ything)]/Γ _{total} <u>DOCUMENT ID</u> 1 ABDALLAH	03E	<u>TECN</u> DLPH	$\frac{\text{COMMENT}}{e^+e^- \rightarrow Z}$	-Г ₃₆)/Г
$\frac{VALUE}{<0.009} \qquad \frac{CL\%}{90}$ $\left[\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ any})\right]$ $\frac{VALUE}{0.093 \pm 0.017 \pm 0.014}$ 1 The second error is the total of	ything)]/F _{total} <u>DOCUMENT ID</u> 1 ABDALLAH of systematic uncer	03E rtainties	<u>TECN</u> DLPH s includi	$egin{pmatrix} oldsymbol{\left(\Gamma_{35}+ ight)} & & \\ \hline & & \\ e^{+}e^{-} ightarrow & Z \ & \\ ext{ng the branching} & & \\ \end{array}$	$-\Gamma_{36})/\Gamma$ fractions Γ_{37}/Γ
$ \frac{VALUE}{<0.009} \frac{CL\%}{90} $ $ \frac{\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ any})}{VALUE} $ $ \frac{VALUE}{0.093 \pm 0.017 \pm 0.014} $ $ \frac{1}{1} \text{ The second error is the total oused in the measurement.} $ $ \frac{\Gamma(D^- \text{ anything})}{VALUE} $	ything)]/F _{total} <u>DOCUMENT ID</u> 1 ABDALLAH of systematic uncer	03E rtainties	<u>TECN</u> DLPH s includi	$egin{pmatrix} oldsymbol{\left(\Gamma_{35}+ ight)} & & \\ \hline & & \\ e^{+}e^{-} ightarrow & Z \ & \\ ext{ng the branching} & & \\ \end{array}$	$-\Gamma_{36})/\Gamma$ fractions Γ_{37}/Γ
$ \frac{VALUE}{<0.009} \frac{CL\%}{90} $ $ \left[\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ any}) \right] $ $ \frac{VALUE}{0.093 \pm 0.017 \pm 0.014} $ $ ^1 \text{ The second error is the total oused in the measurement.} $ $ \Gamma(D^- \text{ anything}) / \Gamma_{\text{total}} $	ything)]/F _{total} <u>DOCUMENT ID</u> 1 ABDALLAH of systematic uncer	03E rtainties	<u>TECN</u> DLPH s includi	$\frac{\text{COMMENT}}{e^+e^- \rightarrow Z}$	$-\Gamma_{36})/\Gamma$ fractions Γ_{37}/Γ

¹ BUSKULIC 96Y reports 0.234 \pm 0.013 \pm 0.010 from a measurement of $[\Gamma(\overline{b} \to D^- \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+ \to K^- 2\pi^+)]$ assuming $B(D^+ \to K^- 2\pi^+) = 0.091$, which we rescale to our best value $B(D^+ \to K^- 2\pi^+) = (9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^*(2010)^+ \text{ anything})/\Gamma_{\text{total}}$ Γ_{38}/Γ VALUE TECN COMMENT 1 ACKERSTAFF 98E OPAL $e^{+}e^{-} \rightarrow Z$ $0.173 \pm 0.016 \pm 0.012$ ¹Uses lepton tags to select $Z \rightarrow b\overline{b}$ events. $\Gamma(D_1(2420)^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{39}/Γ VALUE DOCUMENT ID TECN COMMENT 1 ACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ $0.050 \pm 0.014 \pm 0.006$ ¹ ACKERSTAFF 97W assumes $B(D_2^*(2460)^0 \rightarrow$ $D^{*+}\pi^{-}) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{hadrons} = 0.216$ at Z decay. $\Gamma(D^*(2010)^{\mp}D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{40}/Γ VALUE DOCUMENT ID TECN COMMENT $0.033^{\displaystyle{+0.010}}_{\displaystyle{-0.009}}^{\displaystyle{+0.012}}_{\displaystyle{-0.009}}^{\displaystyle{+0.012}}$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^0D^*(2010)^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{41}/Γ DOCUMENT ID TECN COMMENT $0.030^{+0.009}_{-0.008}^{+0.007}_{-0.005}$ ¹ BARATE 980 ALEP $e^+e^- \rightarrow Z$ $^{ m 1}$ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})/\Gamma_{\text{total}}$ <u>VALUE</u> TECN COMMENT $0.025 {}^{\displaystyle +0.010}_{\displaystyle -0.009} {}^{\displaystyle +0.006}_{\displaystyle -0.005}$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ $^{ m 1}$ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp}$ anything)/ Γ_{total} Γ_{43}/Γ TECN COMMENT $0.012^{+0.004}_{-0.003}\pm0.002$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(\overline{D}Danything)/\Gamma_{total}$ Γ_{44}/Γ

TECN COMMENT

Created: 5/31/2024 10:16

04I OPAL $e^+e^- \rightarrow 7$

 $0.10\pm0.032^{+0.107}_{-0.095}$

VALUE

¹ ABBIENDI

 $^{^{1}}$ Measurement performed using an inclusive identification of B mesons and the D candidates.

$\Gamma(D_2^*(2460)^0 \text{ anything})/\Gamma_{\text{total}}$

 Γ_{45}/Γ

 $0.047 \pm 0.024 \pm 0.013$

 $rac{ extit{DOCUMENT ID}}{1}$ ACKERSTAFF 97W OPAL $e^+e^ightarrow Z$

 1 ACKERSTAFF 97W assumes B($D_2^*(2460)^0\to D^{*+}\pi^-)=0.21\pm0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{\rm hadrons}=0.216$ at Z decay.

$\Gamma(D_s^- \text{ anything})/\Gamma_{\text{total}}$

 Γ_{46}/Γ

VALUE	DOCUMENT ID	TECN	COMMENT
$0.147 \pm 0.017 \pm 0.013$	¹ BUSKULIC 96Y	ALEP	$e^+e^- ightarrow~Z$

¹ BUSKULIC 96Y reports $0.183 \pm 0.019 \pm 0.009$ from a measurement of $[\Gamma(\overline{b} \to D_s^- \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.036$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value

$\Gamma(D_s^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{A7}/Γ

SE DLPH $e^+e^- o Z$

$\Gamma(b \to \Lambda_c^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{48}/Γ

VALUE DOCUMENT ID TECN COMME $0.078 \pm 0.011 \pm 0.003$ BUSKULIC 96Y ALEP e^+e^-

$\Gamma(\overline{c}/c \text{ anything})/\Gamma_{\text{total}}$

 Γ_{49}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
1.162±0.032 OUR AVERAGE				
$1.12 \begin{array}{c} +0.11 \\ -0.10 \end{array}$	¹ ABBIENDI	041	OPAL	$e^+e^- \rightarrow Z$
$1.166 \pm 0.031 \pm 0.080$	² ABREU	00	DLPH	$e^+e^- ightarrow Z$
1.147 ± 0.041	³ ABREU			$e^+e^- ightarrow Z$
$1.230 \pm 0.036 \pm 0.065$	⁴ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

 $^{^1}$ Measurement performed using an inclusive identification of B mesons and the D candidates.

¹ The second error is the total of systematic uncertainties including the branching fractions used in the measurement.

 $^{^{1}}$ BUSKULIC 96Y reports 0.110 \pm 0.014 \pm 0.006 from a measurement of [\Gamma(b \rightarrow Λ_{c}^{+} anything)/ $\Gamma_{\text{total}}] \times [B(\Lambda_{c}^{+} \rightarrow p \, K^{-} \, \pi^{+})]$ assuming $B(\Lambda_{c}^{+} \rightarrow p \, K^{-} \, \pi^{+}) = 0.044$, which we rescale to our best value $B(\Lambda_{c}^{+} \rightarrow p \, K^{-} \, \pi^{+}) = (6.24 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Evaluated via summation of exclusive and inclusive channels.

³ABREU 98D results are extracted from a fit to the *b*-tagging probability distribution based on the impact parameter.

⁴ BUSKULIC 96Y assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons, and PDG 96 branching ratios for charm decays. This is sum of their inclusive \overline{D}^0 , D^- , \overline{D}_s , and Λ_c branching ratios, corrected to include inclusive Ξ_c and charmonium.

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024) $\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$ Γ_{50}/Γ VALUE (units 10^{-2}) 1.16±0.10 OUR AVERAGE ¹ ABREU $1.12 \!\pm\! 0.12 \!\pm\! 0.10$ DLPH $e^+e^- \rightarrow Z$ ² ADRIANI $1.16 \pm 0.16 \pm 0.14$ 121 $1.21\!\pm\!0.13\!\pm\!0.08$ BUSKULIC 92G ALEP • We do not use the following data for averages, fits, limits, etc. ³ ADRIANI L3 $1.3 \pm 0.2 \pm 0.2$ MATTEUZZI 83 <4.9 90 MRK2 E_{cm}^{ee} = 29 GeV 1 ABREU 94P is an inclusive measurement from b decays at the Z. Uses $J/\psi(1S) ightarrow$ e⁺ e⁻ and $\mu^+\mu^-$ channels. Assumes $\Gamma(Z\to\ b\,\overline{b})/\Gamma_{\mbox{hadron}}{=}0.22.$ 2 ADRIANI 93J is an inclusive measurement from b decays at the Z. Uses $J/\psi(1S) ightarrow$ $\mu^+\mu^-$ and $J/\psi(1S) \rightarrow e^+e^-$ channels. 3 ADRIANI 92 measurement is an inclusive result for B(Z $ightarrow~J/\psi(1S)$ X) = (4.1 \pm 0.7 \pm $0.3) imes 10^{-3}$ which is used to extract the *b*-hadron contribution to $J/\psi(1S)$ production. $\Gamma(\psi(2S))$ anything $\Gamma(\psi(2S))$ Γ_{51}/Γ **VALUE** TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • ¹ ABRFU 94P DLPH $e^+e^- \rightarrow Z$ $0.0048 \pm 0.0022 \pm 0.0010$ ¹ABREU 94P is an inclusive measurement from b decays at the Z. Uses $\psi(2S) \rightarrow$ $J/\psi(1S)\pi^+\pi^-$, $J/\psi(1S) \rightarrow \mu^+\mu^-$ channels. Assumes $\Gamma(Z \rightarrow b\overline{b})/\Gamma_{\rm hadron}=0.22$. $\Gamma(\psi(2S))$ anything $\Gamma(J/\psi(1S))$ anything Γ_{51}/Γ_{50} DOCUMENT ID 0.263 ± 0.013 OUR AVERAGE ¹ AAIJ 20G LHCB pp at 13 TeV $0.265 \pm 0.002 \pm 0.016$ 2,3 AAIJ 12BD LHCB pp at 7 TeV $0.266 \pm 0.06 \pm 0.03$ 4,5 CHATRCHYAN 12AK CMS $0.257 \pm 0.015 \pm 0.019$ 1 The first error is statistic; the second error is the total systematic error. ² AAIJ 12BD reports B($b o \psi(2S)X$) = $(3.08 \pm 0.07 \pm 0.36 \pm 0.27) imes 10^{-3}$ and we divided our best value of B($b \to \psi(1S)X$) = $(1.16 \pm 0.10) \times 10^{-2}$ as the ratio listed Assumes lepton universality imposing B($\psi(2s) \rightarrow \mu^+\mu^-$) = B($\psi(2s) \rightarrow e^+e^-$). 4 CHATRCHYAN 12AK really reports $\Gamma_{51}/\Gamma=(3.08\pm0.12\pm0.13\pm0.42)\times10^{-3}$ assuming PDG 10 value of $\Gamma_{50}/\Gamma = (1.16 \pm 0.10) \times 10^{-2}$ which we present as a ratio of Γ_{51}/Γ_{50} $= (26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10^{-2}$. 5 CHATRCHYAN 12AK reports (26.5 \pm 1.0 \pm 1.1 \pm 2.8) imes 10 $^{-2}$ from a measurement of $[\Gamma(\overline{b} \to \psi(2S) \text{ anything})/\Gamma(\overline{b} \to J/\psi(1S) \text{ anything})] \times [B(\psi(2S) \to \mu^+ \mu^-)]$ / $[B(J/\psi(1S) \rightarrow \mu^+\mu^-)]$ assuming $B(\psi(2S) \rightarrow \mu^+\mu^-) = (7.7 \pm 0.8) \times$ 10^{-3} ,B $(J/\psi(1S) \rightarrow \mu^{+}\mu^{-}) = (5.93 \pm 0.06) \times 10^{-2}$, which we rescale to our best values B($\psi(2S) \to \mu^+ \mu^-$) = (8.0 ± 0.6) × 10⁻³, B($J/\psi(1S) \to \mu^+ \mu^-$)

$\Gamma(\chi_{c0}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

error is the systematic error from using our best values.

 Γ_{52}/Γ_{56}

Created: 5/31/2024 10:16

= $(5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second

https://pdg.lbl.gov

Page 19

 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\chi_{c0}(1P)\,\text{anything})/\Gamma(\overline{b}\to\eta_{c}(1S)\,\text{anything})]\,/\,[\text{B}(\eta_{c}(1S)\to\phi\phi)]\,\times\,[\text{B}(\chi_{c0}(1P)\to\phi\phi)]\,=\,0.147\,\pm\,0.023\,\pm\,0.011$ which we multiply or divide by our best values B($\eta_c(1S) \rightarrow \phi \phi$) = (1.8 \pm 0.4) \times 10⁻³, B($\chi_{c0}(1P) \rightarrow \phi \phi$) = $(8.48 \pm 0.31) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c1}(1P))$

 Γ_{53}/Γ

TECN COMMENT

OIGET TOIGGE COIL VALE					
$0.0112^{+0.0057}_{-0.0050}\pm0.0004$		¹ ABREU	94 P	DLPH	$e^+e^- ightarrow Z$
0.019 + 0.007 + 0.001	19	² ADRIANI	93.1	L3	$e^+e^- o Z$

 1 ABREU 94P reports 0.014 \pm 0.006 $^{+0.004}_{-0.002}$ from a measurement of $[\Gamma(\overline{b}
ightarrow$ $\chi_{c1}(1P)$ anything)/ Γ_{total}] \times [B($\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$)] assuming B($\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$) = 0.273 \pm 0.016, which we rescale to our best value B($\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$) $\gamma J/\psi(1S))=(34.3\pm 1.3)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes no $\chi_{c2}(1P)$ and $\Gamma(Z \rightarrow b\overline{b})/\Gamma_{hadron} = 0.22$.

 2 ADRIANI 93J reports 0.024 \pm 0.009 \pm 0.002 from a measurement of [$\Gamma(\overline{b} \rightarrow$ $\chi_{c1}(1P)\, {\rm anything})/\Gamma_{\rm total}] \times [{\rm B}(\chi_{c1}(1P)\to \gamma J/\psi(1S))]$ assuming ${\rm B}(\chi_{c1}(1P)\to \gamma J/\psi(1S))=0.273\pm0.016,$ which we rescale to our best value ${\rm B}(\chi_{c1}(1P)\to \gamma J/\psi(1S))=0.273\pm0.016$ $\gamma J/\psi(1S)$) = (34.3 \pm 1.3) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{53}/Γ_{50}

(, , , , ,	-,, , , , ,	, , ,			00, 00
VALUE	<u>EVTS</u>	DOCUMENT IE	D TECN	COMMENT	
• • • We do not i	use the following	data for averag	ges, fits, limits,	etc. • • •	
1.92 ± 0.82	121	¹ ADRIANI	93J L3	$e^+e^- ightarrow~Z$	

93J L3 1.92 ± 0.82 121 ¹ ADRIANI

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything

 Γ_{53}/Γ_{52}

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
$1.00\pm0.22\pm0.06$	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

 1 AAIJ $\,$ 17BB $\,$ reports $\,[\Gamma(\overline{b}\to\chi_{c1}(1P)\,{\rm anything})/\Gamma(\overline{b}\to\chi_{c0}(1P)\,{\rm anything})]\,/\,[{\rm B}(\chi_{c0}(1P)\to\phi\phi)]\times[{\rm B}(\chi_{c1}(1P)\to\phi\phi)]=0.50\pm0.11\pm0.01$ which we multiply or divide by our best values B($\chi_{c0}(1P) \to \phi \phi$) = (8.48 \pm 0.31) \times 10⁻⁴, B($\chi_{c1}(1P) \to$ $\phi\phi$) = (4.26 \pm 0.21) \times 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\eta_{c1S)$ anything

 Γ_{53}/Γ_{56}

VALUE	DOCUMENT ID	TECN	COMMENT	
$0.31 \pm 0.07 \pm 0.08$	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV	

 $^{^1}$ AAIJ 17BB reports [$\Gamma(\overline{b}\to\chi_{\mathcal{C}1}(1P) \, \text{anything})/\Gamma(\overline{b}\to\eta_{\mathcal{C}}(1S) \, \text{anything})] \, / \, [\mathrm{B}(\eta_{\mathcal{C}}(1S)\to\phi\phi)] \, \times \, [\mathrm{B}(\chi_{\mathcal{C}1}(1P)\to\phi\phi)] = 0.073 \pm 0.016 \pm 0.006 \, \, \text{which we multiply or divide by}$ our best values B($\eta_c(1S) \rightarrow \phi \phi$) = (1.8 \pm 0.4) \times 10⁻³, B($\chi_{c1}(1P) \rightarrow \phi \phi$) = $(4.26 \pm 0.21) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $^{^{}m 1}$ ADRIANI 93J is a ratio of inclusive measurements from b decays at the Z using only the $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ channel since some systematics cancel.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything Γ_{54}/Γ_{52} **VALUE** $0.39 \pm 0.07 \pm 0.03$ 17BB LHCB pp at 7, 8 TeV 1 AAIJ $\,$ 17BB $\,$ reports $\,[\Gamma(\overline{b}\to\chi_{c2}(1P)\,{\rm anything})/\Gamma(\overline{b}\to\chi_{c0}(1P)\,{\rm anything})] / \,[{\rm B}(\chi_{c0}(1P)\to\phi\phi)] \times [{\rm B}(\chi_{c2}(1P)\to\phi\phi)] = 0.56\pm0.10\pm0.01$ which we multiply or divide by our best values B($\chi_{c0}(1P) \rightarrow \phi \phi$) = (8.48 ± 0.31)×10⁻⁴, B($\chi_{c2}(1P) \rightarrow$ $\phi\phi)=(1.23\pm0.07) imes10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything Γ_{54}/Γ_{56} TECN COMMENT $0.121 \pm 0.021 \pm 0.030$ 17BB LHCB pp at 7, 8 TeV 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\chi_{\mathcal{C}2}(1P)\,\text{anything})/\Gamma(\overline{b}\to\eta_{\mathcal{C}}(1S)\,\text{anything})]~/~[B(\eta_{\mathcal{C}}(1S)\to\phi\phi)]~\times~[B(\chi_{\mathcal{C}2}(1P)\to\phi\phi)]=0.081\pm0.013\pm0.005$ which we multiply or divide by our best values B($\eta_{c}(1S) \rightarrow \phi \phi$) = (1.8 \pm 0.4) \times 10⁻³, B($\chi_{c2}(1P) \rightarrow \phi \phi$) = $(1.23 \pm 0.07) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(\chi_c(2P))$ anything, $\chi_c \to \phi \phi / \Gamma_{total}$ Γ_{55}/Γ $< 2.8 \times 10^{-7}$ AAIJ 17BB LHCB pp at 7, 8 TeV $\Gamma(\eta_c(1S))$ anything $\Gamma(J/\psi(1S))$ anything Γ_{56}/Γ_{50} $0.48 \pm 0.03 \pm 0.06$ 20H LHCB pp at 13 TeV $\Gamma(\eta_c(2S))$ anything, $\eta_c \to \phi \phi / \Gamma(\eta_c(1S))$ anything Γ_{57}/Γ_{56} DOCUMENT ID VALUE (units 10^{-5}) $7.3 \pm 2.1 \pm 1.7$ 17BB LHCB pp at 7, 8 TeV 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\eta_{\it c}(2S) \, {\rm anything}, \,\,\eta_{\it c}\to\phi\phi)/\Gamma(\overline{b}\to\eta_{\it c}(1S) \, {\rm anything})]$ / $[{\rm B}(\eta_{\it c}(1S)\to\phi\phi)]=0.040\pm0.011\pm0.004$ which we multiply by our best value $B(\eta_c(1S) \to \phi\phi) = (1.8 \pm 0.4) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\chi_{c1}(3872))$ anything, $\chi_{c1} \rightarrow \phi \phi)/\Gamma_{total}$ Γ_{58}/Γ $<4.5 \times 10^{-7}$ 95 **AAIJ** 17BB LHCB pp at 7, 8 TeV $\Gamma(\chi_{c0}(3915))$ anything, $\chi_{c0} \rightarrow \phi \phi / \Gamma_{total}$ Γ_{59}/Γ VALUE CL% DOCUMENT ID TECN COMMENT $< 3.1 \times 10^{-7}$ 95 AAIJ 17BB LHCB pp at 7, 8 TeV $\Gamma(\overline{s}\gamma)/\Gamma_{\text{total}}$ Γ_{60}/Γ VALUE (units 10^{-4}) TECN $3.11\pm0.80\pm0.72$ ¹ BARATE 981 ALEP e⁺e • • We do not use the following data for averages, fits, limits, etc. ² ADAM 96D DLPH 90 < 5.4 ³ ADRIANI 93L L3 <12 90 https://pdg.lbl.gov Page 21 Created: 5/31/2024 10:16

Created: 5/31/2024 10:16

Page 22

· ·

https://pdg.lbl.gov

¹BARATE 981 uses lifetime tagged $Z \rightarrow b\overline{b}$ sample. $^2\,\mathrm{ADAM}$ 96D assumes $\mathit{f}_{B^0}=\mathit{f}_{B^-}=0.39$ and $\mathit{f}_{B_{\mathrm{S}}}=0.12.$ 3 ADRIANI 93L result is for $\overline{b} o \overline{s} \gamma$ is performed inclusively. $\Gamma(\overline{s}\overline{\nu}\nu)/\Gamma_{\text{total}}$ Γ_{61}/Γ DOCUMENT ID $< 6.4 \times 10^{-4}$ ¹ BARATE 90 ALEP 01E ¹ The energy-flow and *b*-tagging algorithms were used. $\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{62}/Γ 0.74±0.06 OUR AVERAGE $0.72 \pm 0.02 \pm 0.06$ **BARATE** 98∨ ALEP 95C DLPH $e^+e^- \rightarrow Z$ $0.88 \pm 0.05 \pm 0.18$ **ABREU** $\Gamma(K_S^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{63}/Γ <u>TECN</u> <u>COMMENT</u> 95C DLPH $e^+e^- \rightarrow Z$ $0.290 \pm 0.011 \pm 0.027$ **ABREU** $\Gamma(\pi^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{64}/Γ <u>VA</u>LUE DOCUMENT ID TECN COMMENT 98V ALEP $e^+e^- \rightarrow Z$ $3.97 \pm 0.02 \pm 0.21$ $\Gamma(\pi^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{65}/Γ TECN COMMENT ¹ ADAM DLPH $e^+e^- \rightarrow Z$ $2.78\pm0.15\pm0.60$ 1 ADAM 96 measurement obtained from a fit to the rapidity distribution of $\pi^{0's}$ in Z
ightharpoonupbb events. $\Gamma(\phi \text{ anything})/\Gamma_{\text{total}}$ Γ_{66}/Γ DOCUMENT ID TECN COMMENT 00Z OPAL $e^+e^- \rightarrow Z$ $0.0282 \pm 0.0013 \pm 0.0019$ **ABBIENDI** $\Gamma(p/\overline{p}anything)/\Gamma_{total}$ Γ_{67}/Γ DOCUMENT ID TECN 0.131 ± 0.011 OUR AVERAGE 98∨ ALEP $0.131 \pm 0.004 \pm 0.011$ **BARATE** 95C DLPH $e^+e^- \rightarrow Z$ $0.141 \pm 0.018 \pm 0.056$ ABREU $\Gamma(\Lambda/\overline{\Lambda}$ anything)/ Γ_{total} Γ_{68}/Γ TECN COMMENT 0.059 ± 0.006 OUR AVERAGE ACKERSTAFF 97N OPAL $e^+e^-
ightarrow Z$ $0.0587 \pm 0.0046 \pm 0.0048$ 95C DLPH $e^+e^- \rightarrow Z$ $0.059 \pm 0.007 \pm 0.009$ **ABREU** $\Gamma(b$ -baryon anything)/ Γ_{total} Γ_{69}/Γ VALUE

$\Gamma(\Xi_b^+ \text{ anything})/\Gamma(\overline{\Lambda})$	$_{b}^{0}$ anything	g)			Γ ₇₁ /Γ ₇₀
<i>VALUE</i> (units 10^{-2})	-	DOCUMENT ID		TECN	COMMENT
7.3±1.7 OUR AVERAGE					
$6.7\!\pm\!0.5\!\pm\!2.1$		¹ AAIJ	19 AB	LHCB	pp at 7 and 8 TeV
$8.2 \pm 0.7 \pm 2.6$		¹ AAIJ	19 AB	LHCB	pp at 13 TeV
					$(B(\overline{b} \rightarrow \overline{\Lambda}_b^0) \times B(\overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0) \times B(\overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0) \times B(\overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0) \times B(\overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0) \times B(\overline{\Lambda}_b^0 \rightarrow \overline{\Lambda}_b^0 \rightarrow \overline$
	Ξ_b^+ $ o$	$J/\psi \equiv + 7$ $\Lambda_b^0 =$	$\rightarrow J/\psi$ /	10	'2 related through SU(3)
flavor symmetry.					
「(charged anything)/	Γ_{total}	DOCUMENT ID		TECN	Γ ₇₂ /Γ
4.97±0.03±0.06		¹ ABREU			$e^+e^- \rightarrow Z$
• • • We do not use the					
	, ronoving c	ABREU			
$5.84 \pm 0.04 \pm 0.38$		_			Repl. by ABREU 98H
¹ ABREU 98H measure	ement exclu	des the contribu	tion fr	rom K	and /I decay.
Γ(hadron ⁺ hadron ⁻)	/F _{total}				Γ ₇₃ /Γ
`		DOCUMENT ID		TECN	,
$1.7^{+1.0}_{-0.7}\pm0.2$		² BUSKULIC			
	DDC 0			. 50	D+ D
¹ BUSKULIC 96V assu					
hadrons, weighted by	their produ	veakly decaying uction cross sect	B had ion an	drons int id lifetin	to two long-lived charged nes.
$\Gamma(\text{charmless})/\Gamma_{\text{total}}$					Γ ₇₄ /Γ
VALUE		DOCUMENT ID		TECN	• -,
0.007±0.021		¹ ABREU			
					bability distribution based ation of 0.026 \pm 0.004 has
$\Gamma(\mu^+\mu^-$ anything)/ Γ					Γ ₇₆ /Γ
Test for $\Delta B = 1$ v		l current.			. 70/ .
	CL%	DOCUMENT ID		TECN	COMMENT
<3.2 × 10 ⁻⁴	90	ABBOTT	98 B	D0	p p 1.8 TeV
• • • We do not use the	following o	data for averages	s, fits,	limits, e	etc. • • •
$< 5.0 \times 10^{-5}$	90	¹ ALBAJAR	91 C	UA1	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV
< 0.02	95	ALTHOFF			Eee = 34.5 GeV
< 0.007	95	ADEVA	83		$E_{\rm cm}^{ee}$ = 30–38 GeV
< 0.007	95	BARTEL			$E_{\rm cm}^{\rm ee} = 33-37 \text{ GeV}$
					Citi
was overestimated by			tne er	riciency	quoted in ALBAJAR 91C
$[\Gamma(e^+e^-\text{ anything}) + \Gamma_{\text{out for }} \land R = 1$			total		(Γ ₇₅ +Γ ₇₆)/Γ
Test for $\Delta B = 1$ v	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following o				
<0.008	90	MATTEUZZI			E ^{ee} _{cm} = 29 GeV
https://pdg.lbl.gov		Page 23		Creat	red: 5/31/2024 10:16

$\Gamma(\nu \overline{\nu} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{77}/Γ

ν	ALUE	DOCUMENT ID		TECN	COMMENT
•	• • We do not use the following	ng data for average	s, fits,	limits, e	etc. • • •
<	$< 3.9 \times 10^{-4}$	$^{ m 1}$ GROSSMAN	96	RVUE	$e^+e^- ightarrow Z$
	¹ GROSSMAN 96 limit is derive	ed from the ALEPH	H BUS	KULIC 9	95 limit B($B^+ ightarrow ~ au^+ u_ au$)

 $^{^{1}}$ GROSSMAN 96 limit is derived from the ALEPH BUSKULIC 95 limit B($B^{+}\to\tau^{+}\nu_{\tau}$) $<1.8\times10^{-3}$ at CL=90% using conservative simplifying assumptions.

χ_b AT HIGH ENERGY

 χ_b is the average $B - \overline{B}$ mixing parameter at high-energy $\chi_b = f_d' \chi_d + f_s' \chi_s$ where f_d' and f_s' are the fractions of B^0 and B_s^0 hadrons in an unbiased sample of semileptonic b-hadron decays. We consider here $\overline{\chi}$ for hadrons produced in Z decays.

```
VALUE (units 10^{-2})
                                              DOCUMENT ID
                              EVTS
                                                                       TECN COMMENT
12.59± 0.42 OUR EVALUATION (from SCHAEL 06D, eq. 5.39)
12.6 \pm 0.4 OUR AVERAGE
13.12 \pm 0.49 \pm 0.42
                                            <sup>1</sup> ABBIENDI
                                                                  03P OPAL e^+e^- \rightarrow Z
                                                                  01L DLPH e^+e^- \rightarrow Z
                                           <sup>2</sup> ABREU
12.7 \pm 1.3 \pm 0.6
                                           <sup>3</sup> ACCIARRI
11.92 \pm 0.68 \pm 0.51
                                                                  94J DLPH e^+e^- \rightarrow Z
                                            <sup>4</sup> ABREU
12.1 \pm 1.6 \pm 0.6
                                           <sup>5</sup> BUSKULIC
                                                                  94G ALEP
11.4 \pm 1.4 \pm 0.8
                                           <sup>6</sup> BUSKULIC
                                                                  92B ALEP
12.9 + 2.2

    • • We do not use the following data for averages, fits, limits, etc.

                                           <sup>7</sup> ABAZOV
13.2 \pm 0.1 \pm 2.4
                                                                  06s D0
                                                                                    p\overline{p} at 1.96 TeV
                                           <sup>8</sup> ACOSTA
15.2 \pm 0.7 \pm 1.1
                                                                  04A CDF
                                                                                    p\overline{p} at 1.8 TeV
                                           <sup>9</sup> ABE
13.1 \pm 2.0 \pm 1.6
                                                                  971 CDF
                                                                                    Repl. by ACOSTA 04A
                                          <sup>10</sup> ALEXANDER 96
11.07 \pm 0.62 \pm 0.55
                                                                         OPAL Rep. by ABBIENDI 03P
                                          <sup>11</sup> UENO
13.6 \pm 3.7 \pm 4.0
                                                                  96
                                                                         AMY
                                                                                    e^{+}e^{-} at 57.9 GeV
14.4 \pm 1.4 \, {}^{+\, 1.7}_{-\, 1.1}
                                          <sup>12</sup> ABREU
                                                                  94F DLPH Sup. by ABREU 94J
                                          <sup>13</sup> ABREU
                                                                  94J DLPH e^+e^- \rightarrow Z
13.1 \pm 1.4
                                              ACCIARRI
                                                                  94D L3
                                                                                    Repl. by ACCIARRI 99D
12.3 \pm 1.2 \pm 0.8
                                          <sup>14</sup> ALBAJAR
15.7 \pm 2.0 \pm 3.2
                                                                                    \sqrt{s} = 630 \text{ GeV}
                                                                   94
                                                                          UA1
12.1 \ \ ^{+}_{-} \ \ \overset{4.4}{4.0} \ \ \pm 1.7
                                          <sup>15</sup> ABREU
                                                                  93C DLPH Sup. by ABREU 94J
                              1665
14.3 \begin{array}{c} + & 2.2 \\ - & 2.1 \end{array} \pm 0.7
                                          <sup>16</sup> AKERS
                                                                  93B OPAL Sup. by ALEXANDER 96
14.5 \ \ \begin{array}{c} + \ \ 4.1 \\ - \ \ 3.5 \end{array} \ \pm 1.8
                                          <sup>17</sup> ACTON
                                                                  92C OPAL e^+e^- \rightarrow Z
                                          <sup>18</sup> ADEVA
12.1 \pm 1.7 \pm 0.6
                                                                  92c L3
                                                                                    Sup. by ACCIARRI 94D
                                          <sup>19</sup> ABE
17.6 \pm 3.1 \pm 3.2
                                                                   91<sub>G</sub> CDF
                              1112
                                                                                    p <del>p</del> 1.8 TeV
                                          <sup>20</sup> ALBAJAR
14.8 \pm 2.9 \pm 1.7
                                                                  91D UA1
                                                                                    p p 630 GeV
13.2 \pm 22.0 \begin{array}{c} +1.5 \\ -1.2 \end{array}
                                          <sup>21</sup> DECAMP
                                                                          ALEP e^+e^- \rightarrow Z
                                823
                                                                  91
17.8 \ ^{+}_{-} \ ^{4.9}_{4.0} \ \pm 2.0
                                          <sup>22</sup> ADEVA
                                                                                    e^+e^- \rightarrow Z
                                                                  90P L3
       ^{+15}_{-8}
                                      23,24 WEIR
                                                                  90
                                                                         MRK2 e^{+}e^{-} 29 GeV
       +29 \\ -15
                                          <sup>23</sup> BAND
                                                                          MAC
                                                                                    E_{\rm cm}^{ee} = 29 \text{ GeV}
                                                                  88
                                          <sup>23</sup> BAND
                                                                                    E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}
>2 at 90%CL
                                                                         \mathsf{MAC}
                                                                  88
```

https://pdg.lbl.gov

Page 24

12.1 ± 4.7	^{23,25} ALBAJAR	87C	UA1	Repl. by ALBAJAR 91D
<12 at 90% <i>CL</i>	^{23,26} SCHAAD	85	MRK2	$E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}$

¹ The average B mixing parameter is determined simultaneously with b and c forwardbackward asymmetries in the fit.

CP VIOLATION PARAMETERS in semileptonic b-hadron decays.

 $\operatorname{Re}(\epsilon_b) / (1 + |\epsilon_b|^2)$ CP impurity in semileptonic *b*-hadron decays.

<i>VALUE</i> (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	wing data for averag	es, fits, l	limits, e	etc. • • •
$-6.2 \pm 5.2 \pm 4.7$	¹ AABOUD	17E	ATLS	pp at 8 TeV
$-1.24\pm0.38\pm0.18$	² ABAZOV	14	D0	$p\overline{p}$ at 1.96 TeV
$-1.97\!\pm\!0.43\!\pm\!0.23$	³ ABAZOV	11 U	D0	Repl. by ABAZOV 14
$-2.39\pm0.63\pm0.37$	⁴ ABAZOV	10H	D0	Repl. by ABAZOV 11U
¹ AABOUD 17E reports a i	measurement of char	ge asvm	metry o	of $A_{Gr}^b = (-25 \pm 21 \pm$

UD 17E reports a measurement of charge asymmetry of A^{o}_{SL} 19) \times 10⁻³ in lepton + jets $t\bar{t}$ events in which a b-hadron decays semileptonically to a soft muon.

² The experimental systematic and model uncertainties are combined in quadrature.

³ACCIARRI 99D uses maximum-likelihood fits to extract χ_b as well as the A_{FR}^b in $Z \to$ $b\overline{b}$ events containing prompt leptons.

⁴ This ABREU 94J result is from 5182 $\ell\ell$ and 279 $\Lambda\ell$ events. The systematic error includes 0.004 for model dependence.

⁵ BUSKULIC 94G data analyzed using ee, $e\mu$, and $\mu\mu$ events.

⁶ BUSKULIC 92B uses a jet charge technique combined with electrons and muons.

 $^{^7}$ Uses the dimuon charge asymmetry. Averaged over the mix of *b*-flavored hadrons.

⁸ Measurement performed using events containing a dimuon or an e/μ pair.

⁹ Uses di-muon events.

 $^{^{10}}$ ALEXANDER 96 uses a maximum likelihood fit to simultaneously extract χ as well as the forward-backward asymmetries in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ and $c\overline{c}$.

 $^{^{11}}$ UENO 96 extracted χ from the energy dependence of the forward-backward asymmetry.

 $^{^{12}}$ ABREU 94F uses the average electric charge sum of the jets recoiling against a b-quark jet tagged by a high p_T muon. The result is for $\overline{\chi} = f_d \chi_d + 0.9 f_s \chi_s$.

¹³ This ABREU 94J result combines $\ell\ell$, $\Lambda\ell$, and jet-charge ℓ (ABREU 94F) analyses. It is for $\overline{\chi} = f_d \chi_d + 0.96 f_s \chi_s$.

¹⁴ ALBAJAR 94 uses dimuon events. Not independent of ALBAJAR 91D.

 $^{^{15}}$ ABREU 93C data analyzed using ee, e μ , and $\mu\mu$ events.

 $^{^{16}}$ AKERS 93B analysis performed using dilepton events.

¹⁷ ACTON 92C uses electrons and muons. Superseded by AKERS 93B.

¹⁸ ADEVA 92C uses electrons and muons.

¹⁹ ABE 91G measurement of χ is done with $e\mu$ and ee events.

 $^{^{20}}$ ALBAJAR 91D measurement of χ is done with dimuons.

 $^{^{21}}$ DECAMP 91 done with opposite and like-sign dileptons. Superseded by BUSKULIC 92B.

 $^{^{22}}$ ADEVA 90P measurement uses ee, $\mu\mu$, and $e\mu$ events from 118k events at the Z. Superseded by ADEVA 92C.

²³ These experiments are not in the average because the combination of B_s and B_d mesons which they see could differ from those at higher energy.

²⁴ The WEIR 90 measurement supersedes the limit obtained in SCHAAD 85. The 90% CL

are 0.06 and 0.38. ²⁵ ALBAJAR 87C measured $\chi = (\overline{B}{}^0 \to B^0 \to \mu^+ X)$ divided by the average production weighted semileptonic branching fraction for B hadrons at 546 and 630 GeV.

 $^{^{26}}$ Limit is average probability for hadron containing B quark to produce a positive lepton.

- 2 ABAZOV 14 reports a measurement of like-sign dimuon charge asymmetry of A $_{SL}^b$ = $(-4.96\pm1.53\pm0.72) imes10^{-3}$ in semileptonic *b*-hadron decays.
- 3 ABAZOV 11U reports a measurement of like-sign dimuon charge asymmetry of $A^b_{SL}=$ $(-7.87 \pm 1.72 \pm 0.93) imes 10^{-3}$ in semileptonic *b*-hadron decays.
- 4 ABAZOV 10H reports a measurement of like-sign dimuon charge asymmetry of A $^b_{SL}$ =(-9.57 \pm 2.51 \pm 1.46) \times 10 $^{-3}$ in semileptonic b-hadron decays. Using the measurement of like-sign dimuon charge asymmetry of A $^b_{SL}$ =(-9.57 \pm 2.51 \pm 1.46) \times 10 $^{-3}$ in semileptonic b-hadron decays. sured production ratio of B^0_d and B^0_s , and the asymmetry of B^0_d ${\sf A}^d_{SL}$ =(-4.7 \pm 4.6) imes 10^{-3} measured from *B*-factories, they obtain the asymmetry for B_s^0 as $A_{SL}^s = (-14.6 \pm$ 7.5) \times 10⁻³.

B-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT Tevatron

The production fractions for b-hadrons in $p\overline{p}$ collisions at the Tevatron have been calculated from the best values of mean lifetimes, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) (see https://hflav.web.cern.ch/).

The values reported below assume:

$$\begin{array}{ll} \mathsf{f}(\overline{b} \to B^+) = \mathsf{f}(\overline{b} \to B^0) \\ \mathsf{f}(\overline{b} \to B^+) + \mathsf{f}(\overline{b} \to B^0) + \mathsf{f}(\overline{b} \to B^0_s) + \mathsf{f}(b \to b\text{-baryon}) = 1 \end{array}$$

$$f(\overline{b} \to B^+) = f(\overline{b} \to B^0) = 0.344 \pm 0.021$$

$$f(\overline{b} \to B_c^0) = 0.115 \pm 0.013$$

$$\mathsf{f}(b
ightarrow \ b ilde{\mathsf{b}}\mathsf{-baryon}) = 0.198 \pm 0.046$$

$$f(\overline{b} \rightarrow B^0) = 1(\overline{b} \rightarrow B^0) = 0.344 \pm 0.025$$

$$f(\overline{b} \rightarrow B^0_s) = 0.115 \pm 0.013$$

$$f(\overline{b} \rightarrow B^0_s) / f(\overline{b} \rightarrow B^0_d) = 0.334 \pm 0.041$$
and their correlation coefficients are:
$$cor(B^0_s, b\text{-baryon}) = -0.429$$

$$cor(B_s^0, b$$
-baryon $) = -0.429$

$$cor(B_s^0, B^+=B^0) = +0.159$$

$$cor(b$$
-baryon, $B^+ = B^0$) = -0.960

as obtained with the Tevatron average of time-integrated mixing parameter $\overline{\chi} = 0.147 \pm 0.011.$

PRODUCTION ASYMMETRIES

 $\mathsf{A}_{C}^{\underline{b}\,\overline{b}} = \left[\mathsf{N}(\Delta \mathsf{y} > \mathsf{0}) - \mathsf{N}(\Delta \mathsf{y} < \underline{\mathsf{0}})\right] / \left[\mathsf{N}(\Delta \mathsf{y} > \mathsf{0}) + \mathsf{N}(\Delta \mathsf{y} < \mathsf{0})\right] \text{ with } \Delta \mathsf{y} = \left|\mathsf{y}_{\underline{b}}\right| - \left|\mathsf{y}_{\overline{\underline{b}}}\right|$ where $y_{h/\overline{h}}$ is rapidity of b or \overline{b} quarks.

VALUE (units 10^{-2})	DOCUMENT ID	TECI	N COMMENT			
Average is meaningless.						
$0.4 \pm 0.4 \pm 0.3$	$^{ m 1}$ AAIJ	14AS LHC	B pp at 7 TeV			
$2.0 \pm 0.9 \pm 0.6$	² AAIJ	14AS LHC	B pp at 7 TeV			
$1.6 \pm 1.7 \pm 0.6$	³ AAIJ	14AS LHC	CB pp at 7 TeV			
1 Measured for 40 $<$ M($b\overline{b}$) $<$ 75 GeV/ c^{2} .						
² Measured for 75 $<$ M($b\overline{b}$) $<$ 105 GeV/ c^2 .						
3 Measured for M($b\overline{b}$) > 105 GeV/ c^2 .						

$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE REFERENCES

	011/	DD D104 00000F	D 4 " · /	(11161 6 11 1)
AAIJ	21Y	PR D104 032005	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20G	EPJ C80 185	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20H	EPJ C80 191	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20V	PRL 124 122002		
			R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PR D99 052006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19AD	PR D100 031102	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19AI	PR D100 112006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AABOUD	17E	JHEP 1702 071	M. Aaboud <i>et al.</i>	(ÀTLAS Collab.)
AAIJ		EPJ C77 609	R. Aaij <i>et al.</i>	(LHCb Collab.)
			•	
AAD		PRL 115 262001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ	14AS	PRL 113 082003	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	14	PR D89 012002	V.M. Abazov et al.	(D0 Collab.)
AAIJ	13P	JHEP 1304 001	R. Aaij et al.	(LHCb Collab.)
AAIJ		EPJ C72 2100	,	3
	1200		R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		EPJ C80 49 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12J	PR D85 032008	R. Aaji <i>et al.</i>	(LHCb Collab.)
CHATRCHYAN	12AK	JHEP 1202 011	S. Chatrchyan et al.	(CMS Collab.)
AAIJ	11F	PRL 107 211801	R. Aaij et al.	(LHCb Collab.)
ABAZOV	11U	PR D84 052007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
				· · · · · · · · · · · · · · · · · · ·
ABAZOV	10H	PRL 105 081801	V.M. Abazov et al.	(D0 Collab.)
Also		PR D82 032001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
PDG	10	JP G37 075021	K. Nakamura <i>et al.</i>	(PDG Collab.)
AALTONEN	09E	PR D79 032001	T. Aaltonen et al.	(CDF Collab.)
	08N	PR D77 072003	T. Aaltonen et al.	(CDF Collab.)
AALTONEN				
ABAZOV	06S	PR D74 092001	V.M. Abazov et al.	(D0 Collab.)
SCHAEL	06D	PRPL 427 257	S. Schael <i>et al.</i>	(LEP, SLD Collabs. and EWWG)
ABBIENDI	041	EPJ C35 149	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04E	EPJ C33 307	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	04A	PR D69 012002	D. Acosta <i>et al.</i>	(CDF Collab.)
ABBIENDI	03M	EPJ C30 467	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	03P	PL B577 18	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	03E	PL B561 26	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	03K	PL B576 29	J. Abdallah et al.	(DELPHI Collab.)
				`. :
HEISTER	02G	EPJ C22 613	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	01R	EPJ C21 399	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	01L	EPJ C20 455	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BARATE	01E	EPJ C19 213	R. Barate et al.	(ALEPH Collab.)
ABBIENDI	00E	EPJ C13 225	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
				\ .
ABBIENDI	00Z	PL B492 13	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	00	EPJ C12 225	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00C	PL B496 43	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00D	PL B478 14	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00R	PL B475 407	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	00	EPJ C13 47	M. Acciarri et al.	(L3 Collab.)
AFFOLDER	00E	PRL 84 1663	T. Affolder et al.	(CDF Collab.)
ABBIENDI	99 J	EPJ C12 609	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	99P	PR D60 092005	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	99D	PL B448 152	M. Acciarri et al.	`(L3 Collab.)
	99G			
BARATE		EPJ C6 555	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBOTT	98B	PL B423 419	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	98D	PL B426 193	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	98H	PL B425 399	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	98	PL B416 220	M. Acciarri <i>et al.</i>	(L3 Collab.)
) (
ACCIARRI	98K	PL B436 174	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	98E	EPJ C1 439	K. Ackerstaff et al.	(OPAL Collab.)
BARATE	98I	PL B429 169	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	98Q	EPJ C4 387	R. Barate et al.	(ALEPH Collab.)
BARATE	98V	EPJ C5 205	R. Barate et al.	(ALEPH Collab.)
			S. Glenn <i>et al.</i>	
GLENN	98	PRL 80 2289		(CLEO Collab.)
ABE	971	PR D55 2546	F. Abe <i>et al.</i>	(CDF Collab.)
ACKERSTAFF	97F	ZPHY C73 397	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97N	ZPHY C74 423	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97W	ZPHY C76 425	K. Ackerstaff et al.	(OPAL Collab.)
ABREU	96E	PL B377 195	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	96C	ZPHY C71 379	M. Acciarri <i>et al.</i>	
				(L3 Collab.)
ADAM	96	ZPHY C69 561	W. Adam <i>et al.</i>	(DELPHI Collab.)

ADAM ALEXANDER BUSKULIC BUSKULIC BUSKULIC GROSSMAN Also	96D 96 96F 96V 96Y 96	ZPHY C72 207 ZPHY C70 357 PL B369 151 PL B384 471 PL B388 648 NP B465 369 NP B480 753 (errat.)	W. Adam et al. G. Alexander et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. Y. Grossman, Z. Ligeti, E. Nardi Y. Grossman, Z. Ligeti, E. Nardi	(DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (REHO, CIT)
PDG UENO ABE,K ABREU ABREU ADAM AKERS BUSKULIC ABREU ABREU ABREU	96 96 95B 95C 95D 95 95Q 95 94F 94J	PR D54 1 PL B381 365 PRL 75 3624 PL B347 447 ZPHY C66 323 ZPHY C68 363 ZPHY C67 57 PL B343 444 PL B322 459 PL B332 488 ZPHY C63 3	R. M. Barnett et al. K. Ueno et al. K. Abe et al. P. Abreu et al. P. Abreu et al. W. Adam et al. R. Akers et al. D. Buskulic et al. P. Abreu et al. P. Abreu et al.	(PDG Collab.) (AMY Collab.) (SLD Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
ABREU ACCIARRI ACCIARRI ALBAJAR BUSKULIC ABE ABE ABREU ABREU	94P 94C 94D 94 94G 93E 93J 93C 93D	PL B341 109 PL B332 201 PL B335 542 ZPHY C61 41 ZPHY C62 179 PL B313 288 PRL 71 3421 PL B301 145 ZPHY C57 181	P. Abreu et al. M. Acciarri et al. M. Acciarri et al. C. Albajar et al. D. Buskulic et al. K. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (L3 Collab.) (L3 Collab.) (UA1 Collab.) (ALEPH Collab.) (VENUS Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.)
ABREU ACTON ACTON ADRIANI ADRIANI ADRIANI AKERS BUSKULIC BUSKULIC	93G 93C 93L 93J 93K 93L 93B 93B	PL B312 253 PL B307 247 ZPHY C60 217 PL B317 467 PL B317 637 ZPHY C60 199 PL B298 479 PL B314 459	P. Abreu et al. P.D. Acton et al. P.D. Acton et al. O. Adriani et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al.	(DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.)
ABREU ACTON ACTON ADEVA ADRIANI BUSKULIC BUSKULIC BUSKULIC ABE	92 92 92C 92C 92 92B 92F 92G 91G	ZPHY C53 567 PL B274 513 PL B276 379 PL B288 395 PL B288 412 PL B284 177 PL B295 174 PL B295 396 PRL 67 3351	P. Abreu et al. D.P. Acton et al. D.P. Acton et al. B. Adeva et al. O. Adriani et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. F. Abe et al.	(DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.)
ADEVA ADEVA ALBAJAR ALBAJAR ALEXANDER DECAMP DECAMP ADEVA BEHREND	91C 91H 91C 91D 91G 91 91C 90P 90D	PL B261 177 PL B270 111 PL B262 163 PL B262 171 PL B266 485 PL B258 236 PL B257 492 PL B252 703 ZPHY C47 333	B. Adeva et al. B. Adeva et al. C. Albajar et al. C. Albajar et al. G. Alexander et al. D. Decamp et al. D. Decamp et al. B. Adeva et al. H.J. Behrend et al.	(L3 Collab.) (L3 Collab.) (UA1 Collab.) (UA1 Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (L3 Collab.) (CELLO Collab.)
HAGEMANN LYONS WEIR BRAUNSCH ONG BAND KLEM ONG ALBAJAR ASH	90 90 90 89B 89 88 88 88 87 87	ZPHY C48 401 PR D41 982 PL B240 289 ZPHY C44 1 PRL 62 1236 PL B200 221 PR D37 41 PRL 60 2587 PL B186 247 PRL 58 640	J. Hagemann et al. L. Lyons, A.J. Martin, D.H. Saxon A.J. Weir et al. R. Braunschweig et al. R.A. Ong et al. H.R. Band et al. D.E. Klem et al. R.A. Ong et al. C. Albajar et al. W.W. Ash et al.	(JADE Collab.) (OXF, BRIS+) (Mark II Collab.) (TASSO Collab.) (Mark II Collab.) (MAC Collab.) (DELCO Collab.) (Mark II Collab.) (Mark II Collab.) (UA1 Collab.) (MAC Collab.)
BARTEL BROM PAL AIHARA BARTEL SCHAAD ALTHOFF	87 87 86 85 85 85 J 85 84G	ZPHY C33 339 PL B195 301 PR D33 2708 ZPHY C27 39 PL 163B 277 PL 160B 188 ZPHY C22 219	W. Bartel et al. J.M. Brom et al. T. Pal et al. H. Aihara et al. W. Bartel et al. T. Schaad et al. M. Althoff et al.	(JADE Collab.) (HRS Collab.) (DELCO Collab.) (TPC Collab.) (JADE Collab.) (Mark II Collab.) (TASSO Collab.)

ALTHOFF	84J	PL 146B 443	M. Althoff et al.	(TASSO Collab.)
KOOP	84	PRL 52 970	D.E. Koop et al.	(DELCO Collab.)
ADEVA	83	PRL 50 799	B. Adeva <i>et al.</i>	(Mark-J Collab.)
ADEVA	83B	PRL 51 443	B. Adeva <i>et al.</i>	(Mark-J Collab.)
BARTEL	83B	PL 132B 241	W. Bartel et al.	(JADE Collab.)
FERNANDEZ	83D	PRL 50 2054	E. Fernandez <i>et al.</i>	(MAC Collab.)
MATTEUZZI	83	PL 129B 141	C. Matteuzzi <i>et al.</i>	(Mark II Collab.)
NELSON	83	PRL 50 1542	M.E. Nelson <i>et al.</i>	(Mark II Collab.)